中考备考 百文网手机站

中考数学的知识点

时间:2022-02-22 14:35:35 中考备考 我要投稿

中考数学的知识点

  在平时的学习中,大家都背过不少知识点,肯定对知识点非常熟悉吧!知识点也可以通俗的理解为重要的内容。为了帮助大家掌握重要知识点,下面是小编整理的中考数学的知识点 ,仅供参考,欢迎大家阅读。

中考数学的知识点

中考数学的知识点 1

  第一次月考已经结束,同学们是否还沉浸在考试成功的喜悦与考试失利的悲伤中?不管你考的好与坏,那都不重要了,重要的是你要通过这次月考发现自己在哪些方面还存在问题。

  还有不到一个月的时间初三第一次大考——期中考试就要到了,一定要改掉上次的不足,争取期中考试的好成绩。

  我现在对如何备战初三数学期中考试谈一下我的看法,希望能对同学们有所帮助。

  首先同学们要赶快走出上次月考成功的喜悦与失败的阴影,初三考的不仅仅是你的学习,而且需要过硬的心态,不能被一时的成功冲昏头脑,更不能因一时的失败而丧失信心。

  其次上课一定注意听讲,因为现在每个学校的进度都非常快,而知识点又非常难,相信很多同学都跟不上老师的进度,那上课一定注意听讲,把不会的知识点在课上记下来,课下一定要主动问老师。

  一定要注意老师上课讲的题是最精华,一定要弄懂。现在是初学不在乎你做多少题,关键在于你会多少题。一定要准备错题本,反复看,只要你能保证再出现以前错过的题不再出错,那我相信你的成绩会非常理想的。

  还有就是尽可能找一下学校去年的试卷自己检测一下自己,看看自己还有那些问题。

  因为我们知道期中考试的难点有二次函数,所以最后把二次函数当中经常考的题型和大家分享一下:

  二次函数:

  1.求二次函数解析式。

  (1)当出现任意三个点坐标的时候,直接带入求出解析式。

  (2)当出现(X1,0),(X2,0)的时候,用双根式求解析式。

  (3)当出现(h,k)时,就用顶点式求解析式。

  2.根据函数图象判断正负(a,b,c,a+b+c,a-b+c,2a+b)

  a看开口方向(a>0开口向上,a<0开口向下),b看对称轴(左同右异,a和b共同决定对称轴),c看与y轴交点(c>0交y轴正半轴,=0过原点,<0交负半轴),a+b+c看当x=1时所对应的y值正负,a-b+c看当x=-1时所对应的y值正负,2a+b看对称轴。

中考数学的知识点 2

  相似形

  重点相似三角形的判定和性质

  ☆内容提要☆

  一、本章的两套定理

  第一套(比例的有关性质):

  涉及概念:①第四比例项②比例中项③比的前项、后项,比的内项、外项④黄金分割等。

  第二套:

  注意:①定理中“对应”二字的含义;

  ②平行相似(比例线段)平行。

  二、相似三角形性质

  1.对应线段…;2.对应周长…;3.对应面积…。

  三、相关作图

  ①作第四比例项;②作比例中项。

  四、证(解)题规律、辅助线

  1.“等积”变“比例”,“比例”找“相似”。

  2.找相似找不到,找中间比。方法:将等式左右两边的比表示出来。

  3.添加辅助平行线是获得成比例线段和相似三角形的重要途径。

  4.对比例问题,常用处理方法是将“一份”看着k;对于等比问题,常用处理办法是设“公比”为k。

  5.对于复杂的几何图形,采用将部分需要的图形(或基本图形)“抽”出来的办法处理。

中考数学的知识点 3

  第一章、测量

  考前读一读

  1、比较大小一定要化到知识点相同。

  2、注意超载问题一定要比较大小。

  3、解决问题认真审题,观察单位的变化。

  一、长度单位

  基础知识过关

  1、在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)。

  2、1厘米的长度里有(10)小格,每小格的长度(相等),都是(1)毫米。

  3、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。

  4、在计算长度时,只有相同的长度单位才能相加减。

  小技巧:换算长度单位时,把大单位换成小单位就在数字的末尾添加0(关系式中有几个0,就添几个0);把小单位换成大单位就在数字的末尾去掉0(关系式中有几个0,就去掉几个0)。

  5、长度单位的关系式有:( 每两个相邻的长度单位之间的进率是10 )

  ① 进率是10:

  1米=10分米 1分米=10厘米 1厘米=10毫米

  10分米=1米 10厘米=1分米 10毫米=1厘米

  ② 进率是100:

  1米=100厘米 1分米=100毫米 100厘米=1米 100毫米=1分米

  ③ 进率是1000:

  1千米=1000米 1公里= =1000米 1000米=1千米 1000米 = 1公里

  第二单元

  一、质量单位

  基础知识过关

  1、当我们表示物体有多重时,通常要用到(质量单位 )。在生活中,称比较轻的物品的质量,可以用( 克 )做单位;称一般物品的质量,常用(千克 )做单位;计量较重的或大宗物品的质量,通常用( 吨 )做单位。

  小技巧:在“吨”与“千克”的换算中,把吨换算成千克,是在数字的末尾加上3个0;把千克换算成吨,是在数字的末尾去掉3个0。

  2、相邻两个质量单位进率是1000。

  1吨=1000千克 1千克=1000克 1000千克= 1吨 1000克=1千克

  万以内的加法和减法

  考前读一读

  ①竖式格式(尺子)②进位1和退位③看准符号

  ④横式得数⑤注意验算,看标什么的一定验算

  ⑥估算时注意十位数要估算到个位、百位数要估算到十位。

  复习内容:

  两位数进位加法、三位数连续进位加法、三位数退位减法、中间含有的零的退位减法、中间和末尾同时有零的连续退位减法、加减法的验算(逆运算法、十叉加乘验算法)、估算

  基础知识过关

  1、被减数是三位数的连续退位减法的运算步骤:

  ① 列竖式时相同数位一定要对齐;

  ② 减法时,哪一位上的数不够减,从前一位退1;如果前一位是0,则再从前一位退1。

  2、在做题时,我们要注意中间的0,因为是连续退位的,所以从百位退1到十位当10后,还要从十位退1当10,借给个位,那么十位只剩下9,而不是10。(两个三位数相加的和:可能是三位数,也有可能是四位数。)

  3、公式。 被减数=减数+差 和=加数+另一个加数

  减数=被减数-差 加数=和-另一个加数

  差=被减数-减数

  第3单元 四边形

  考前读一读

  1、应用题中提及到将图形的一周用花边、篱笆、栏杆围的话,那么求花边的长、篱笆的长、栏杆的长等等都是求的图形的周长

  2、如果题目中提及到了图形一面靠墙,问题是篱笆至少要用多少的时候,就要写出两种可能性。其一是图形的长靠墙,那么求的篱笆长就是一个长加上两个宽;其二是图形的宽靠墙,那么求的篱笆长就是一个宽加上两个长。

  3、拼图形问题:上下拼变成一个大正方形、左右拼变成一个大长方形

  基础知识过关

  1、有4条直的边和4个角封闭图形我们叫它四边形。

  2、四边形的特点:有四条直的边,有四个角。

  3、长方形的特点:长方形有两条长,两条宽,四个直角,对边相等。

  4、正方形的特点:有4个直角,4条边相等。

  5、长方形和正方形是特殊的平行四边形。

  6、平行四边形的特点:①对边相等、对角相等。

  ②平行四边形容易变形。(三角形不容易变形)

  7、封闭图形一周的长度,就是它的周长。

  8、公式。 长方形的周长=(长+宽)×2 正方形的周长=边长×4

  长方形的长=周长÷2-宽 正方形的边长=周长÷4

  长方形的宽=周长÷2-长

  第4单元 有余数的除法

  考前读一读

  1、有余数的除法竖式、横式中的余数、

  2、余数一定要比除数小

  3、应用题中余数和除数的单位要根据答话而确定。

  4、解决问题至多至少一定要注意

  基础知识过关

  1、余数和除数之间的关系:进行有余数的除法计算时,结果中的余数一定要比除数小。

  2.有余数的除法应用题中:①商和余数都有单位;

  ②商和余数的单位名称有可能不一样。

  3、公式。被除数 = 除数×商+余数 除数=被除数÷商-余数

  商=被除数÷除数-余数

  希望提供的数学三年级上期中考各单元知识点纲要,能帮助大家迅速提高数学成绩!

中考数学的知识点 4

  椭圆知识:平面内与两定点F1、F2的距离的和等于常数2a(2a>|F1F2|)的动点P的轨迹叫做椭圆。

  椭圆的第一定义

  即:│PF1│+│PF2│=2a

  其中两定点F1、F2叫做椭圆的焦点,两焦点的距离│F1F2│=2c<2a叫做椭圆的焦距。P 为椭圆的动点。

  长轴为 2a; 短轴为 2b。

  椭圆的第二定义

  平面内到定点F的距离与到定直线的距离之比为常数e(即椭圆的离心率,e=c/a)的点的集合(定点F不在定直线上,该常数为小于1的正数) 其中定点F为椭圆的焦点,定直线称为椭圆的准线(该定直线的方程是x=±a^2/c[焦点在X轴上];或者y=±a^2/c[焦点在Y轴上])。

  椭圆的其他定义

  根据椭圆的一条重要性质,也就是椭圆上的点与椭圆短轴两端点连线的斜率之积是定值 定值为e^2-1 可以得出:平面内与两定点的连线的斜率之积是常数k的动点的轨迹是椭圆,此时k应满足一定的条件,也就是排除斜率不存在的情况,还有K应满足<0且不等于-1。

  简单几何性质

  1、范围

  2、对称性:关于X轴对称,Y轴对称,关于原点中心对称。

  3、顶点:(当中心为原点时)(a,0)(-a,0)(0,b)(0,-b)

  4、离心率:e=c/a

  5、离心率范围 0

  知识归纳:离心率越大椭圆就越扁,越小则越接近于圆。

  初中数学知识点总结:平面直角坐标系

  平面直角坐标系

  平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

  水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

  平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合

  三个规定:

  ①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

  ②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

  ③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

  初中数学知识点:平面直角坐标系的构成

  平面直角坐标系的构成

  在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。

  初中数学知识点:点的坐标的性质

  点的坐标的性质

  建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

  对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。

  一个点在不同的象限或坐标轴上,点的坐标不一样。

  希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。

  初中数学知识点:因式分解的一般步骤

  因式分解的一般步骤

  如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,

  通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

  注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

  初中数学知识点:因式分解

  因式分解

  因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

  因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④

  因式分解与整式乘法的关系:m(a+b+c)

  公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

  公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

  提取公因式步骤

  ①确定公因式。②确定商式③公因式与商式写成积的形式。

  分解因式注意

  ①不准丢字母

  ②不准丢常数项注意查项数

  ③双重括号化成单括号

  ④结果按数单字母单项式多项式顺序排列

  ⑤相同因式写成幂的形式

  ⑥首项负号放括号外

  ⑦括号内同类项合并。

中考数学的知识点 5

  1、矩形的概念

  有一个角是直角的平行四边形叫做矩形。

  2、矩形的性质

  (1)具有平行四边形的一切性质(2)矩形的四个角都是直角

  (3)矩形的对角线相等(4)矩形是轴对称图形

  3、矩形的判定

  (1)定义:有一个角是直角的平行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形

  (3)定理2:对角线相等的平行四边形是矩形

  4、矩形的面积S矩形=长×宽=ab

  二次函数概念

  二次函数的概念:一般地,形如ax^2+bx+c = 0的函数,叫做二次函数。

  这里需要强调:和一元二次方程类似,二次项系数a≠0,而b,c可以为零.二次函数的定义域是全体实数.

  二次函数图像与性质口诀

  二次函数抛物线,图象对称是关键;

  开口、顶点和交点,它们确定图象限;

  开口、大小由a断,c与Y轴来相见,b的符号较特别,符号与a相关联;顶点位置先找见,Y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见。若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换。

  一、目标与要求

  1、感受生活中存在着大量的不等关系,了解不等式和一元一次不等式的意义,通过解决简单的实际问题,使学生自发地寻找不等式的解,会把不等式的解集正确地表示到数轴上;

  2、经历由具体实例建立不等模型的'过程,经历探究不等式解与解集的不同意义的过程,渗透数形结合思想;

  3、通过对不等式、不等式解与解集的探究,引导学生在独立思考的基础上积极参与对数学问题的讨论,培养他们的合作交流意识;让学生充分体会到生活中处处有数学,并能将它们应用到生活的各个领域。

  二、重点

  理解并掌握不等式的性质;

  正确运用不等式的性质;

  建立方程解决实际问题,会解"ax+b=cx+d"类型的一元一次方程;

  寻找实际问题中的不等关系,建立数学模型;

  一元一次不等式组的解集和解法。

  三、难点

  一元一次不等式组解集的理解;

  弄清列不等式解决实际问题的思想方法,用去括号法解一元一次不等式;

  正确理解不等式、不等式解与解集的意义,把不等式的解集正确地表示到数轴上。

中考数学的知识点 6

  初中数学多项式的加法中考知识点

  多项式和单项式一起被称为整式,整式的运算离不开加法,多项式也是如此。

  多项式的加法

  有限个单项式之和称为多元多项式,简称多项式。不同类的单项式之和表示的多项式,其中系数不为零的单项式的最高次数,称为此多项式的次数。

  多项式的加法,是指多项式中同类项的系数相加,字母保持不变(即合并同类项)。多项式的乘法,是指把一个多项式中的每个单项式与另一个多项式中的每个单项式相乘之后合并同类项。

  F上x1,x2,…,xn的多项式全体所成的集合F[x1,x2,…,xn],对于多项式的加法和乘法成为一个环,是具有单位元素的整环。 域上的多元多项式也有因式分解惟一性定理。

  关于多项式的加法计算的中考知识要领已经为大家整合出来了,请同学们相应做好笔记了。

中考数学的知识点 7

  1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式;数字或字母的乘积叫单项式(单独的一个数字或字母也是单项式)。

  2.系数:单项式中的数字因数叫做这个单项式的系数。所有字母的指数之和叫做这个单项式的次数。任何一个非零数的零次方等于1.

  3.多项式:几个单项式的和叫多项式。

  4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。

  5.常数项:不含字母的项叫做常数项。

  6.多项式的排列

  (1)把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。

  (2)把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。

  7.多项式的排列时注意:

  (1)由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。

  (2)有两个或两个以上字母的多项式,排列时,要注意:

  a.先确认按照哪个字母的指数来排列。

  b.确定按这个字母向里排列,还是向外排列。

  (3)整式:

  单项式和多项式统称为整式。

  8.多项式的加法:

  多项式的加法,是指多项式的同类项的系数相加(即合并同类项)。

  9.同类项:所含字母相同,并且相同字母的次数也分别相同的项叫做同类项。

  10.合并同类项:多项式中的同类项可以合并,叫做合并同类项,合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母与字母的指数不变。

  11.掌握同类项的概念时注意:

  (1)判断几个单项式或项,是否是同类项,就要掌握两个条件:

  ①所含字母相同。

  ②相同字母的次数也相同。

  (2)同类项与系数无关,与字母排列的顺序也无关。

  (3)所有常数项都是同类项。

  12.合并同类项步骤:

  (1)准确的找出同类项;

  (2)逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变;

  (3)写出合并后的结果。

  13.在掌握合并同类项时注意:

  (1)如果两个同类项的系数互为相反数,合并同类项后,结果为0;

  (2)不要漏掉不能合并的项;

  (3)只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。

  14.整式的拓展

  整式的乘除:重点是整式的乘除,尤其是其中的乘法公式。乘法公式的结构特征以及公式中的字母的广泛含义,学生不易掌握.因此,乘法公式的灵活运用是难点,添括号(或去括号)时,括号中符号的处理是另一个难点。添括号(或去括号)是对多项式的变形,要根据添括号(或去括号)的法则进行。在整式的乘除中,单项式的乘除是关键,这是因为,一般多项式的乘除都要“转化”为单项式的乘除。

  整式四则运算的主要题型有:

  (1)单项式的四则运算

  此类题目多以选择题和应用题的形式出现,其特点是考查单项式的四则运算。

  (2)单项式与多项式的运算

  

中考数学的知识点 8

  基于质数定义的基础之上而建立的问题有很多世界级的难题,如哥德巴赫猜想等。

  质数

  质数又称素数。指在一个大于1的自然数中,除了1和此整数自身外,不能被其他自然数整除的数。

  素数在数论中有着很重要的地位。比1大但不是素数的数称为合数。1和0既非素数也非合数。质数是与合数相对立的两个概念,二者构成了数论当中最基础的定义之一。

  算术基本定理证明每个大于1的正整数都可以写成素数的乘积,并且这种乘积的形式是唯一的。这个定理的重要一点是,将1排斥在素数集合以外。如果1被认为是素数,那么这些严格的阐述就不得不加上一些限制条件。

  概念

  只有1和它本身两个约数的自然数,叫质数(Prime Number)。(如:由2÷1=2,2÷2=1,可知2的约数只有1和它本身2这两个约数,所以2就是质数。与之相对立的是合数:“除了1和它本身两个约数外,还有其它约数的数,叫合数。”如:4÷1=4,4÷2=2,4÷4=1,很显然,4的约数除了1和它本身4这两个约数以外,还有约数2,所以4是合数。)

  100以内的质数有2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,在100内共有25个质数。

  注:1既不是质数也不是合数。因为它的约数有且只有1这一个约数。

中考数学的知识点 9

  第1课 实数的有关概念

  考查重点:

  1. 有理数、无理数、实数、非负数概念;

  2.相反数、倒数、数的绝对值概念;

  3.在已知中,以非负数a2、|a|、a (a≥0)之和为零作为条件,解决有关问题。

  实数的有关概念

  (1)实数的组成

  (2)数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注童上述规定的三要素缺一不可),

  实数与数轴上的点是一一对应的。 数轴上任一点对应的数总大于这个点左边的点对应的数,

  (3)相反数: 实数的相反数是一对数(只有符号不同的两个数,叫做互为相反数,零的相反效是零).

  从数轴上看,互为相反数的两个数所对应的点关于原点对称.

  (4)绝对值

  从数轴上看,一个数的绝对值就是表示这个数的点与原点的距离

  (5)倒数: 实数a(a≠0)的倒数是(乘积为1的两个数,叫做互为倒数);零没有倒数.

  第2课 实数的运算

  考查重点:

  1. 考查近似数、有效数字、科学计算法;

  2. 考查实数的运算;

  3. 计算器的使用。

  实数的运算

  (1)加法: 同号两数相加,取原来的符号,并把绝对值相加;

  异号两数相加。取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;

  任何数与零相加等于原数。

  (2)减法 a-b=a+(-b)

  (3)乘法: 两数相乘,同号得正,异号得负,并把绝对值相乘;零乘以任何数都得零.

  (4)除法

  (5)乘方

  (6)开方 如果x2=a且x≥0,那么 =x; 如果x3=a,那么

  在同一个式于里,先乘方、开方,然后乘、除,最后加、减.有括号时,先算括号里面.

  实数的运算律

  (1)加法交换律 a+b=b+a

  (2)加法结合律 (a+b)+c=a+(b+c)

  (3)乘法交换律 ab=ba.

  (4)乘法结合律 (ab)c=a(bc)

  (5)分配律 a(b+c)=ab+ac

  其中a、b、c表示任意实数.运用运算律有时可使运算简便.

中考数学的知识点 10

  一般地,在某一个变化过程中,有两个变量x和y,如果给定一个x值,相应夺就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。函数的表示法有三种:解析法、图象法、列表法。

  把一个函数关系式的自变量x与对应的因变量y的值分别作为点的横坐标和纵坐标,在平面坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。即:若点P(x,y)的坐标满足函数关系式,则点P在函数图象上;反之,若点P在函数图象上,则P(x,y)的坐标满足函数关系式。描点法画函数图象的步骤:列表、描点、连线。

  要使函数关系式有意义:

  函数关系式形式

  自变量取值范围

  整式函数

  全体实数

  分式函数

  使分母不为零

  根式函数

  偶次根式

  使被开方数非负

  奇次根式

  全体实数

  零指数、负指数形式函数

  使底数不为零

  正比例函数与一次函数的概念:(1)一次函数:形如(k≠0,k,b是常数)的函数叫做一次函数。(2)正比例函数:形如,k是常数)的函数叫做正比例函数。(3)正比例函数与一次函数的关系:正比例函数是一次函数的特殊情形。

  中考数学知识点

  三角函数关系

  倒数关系

  tanα·cotα=1

  sinα·cscα=1

  cosα·secα=1

  商的关系

  sinα/cosα=tanα=secα/cscα

  cosα/sinα=cotα=cscα/secα

  平方关系

  sin^2(α)+cos^2(α)=1

  1+tan^2(α)=sec^2(α)

  1+cot^2(α)=csc^2(α)

  同角三角函数关系六角形记忆法

  构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。

  倒数关系

  对角线上两个函数互为倒数;

  商数关系

  六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。(主要是两条虚线两端的三角函数值的乘积,下面4个也存在这种关系。)。由此,可得商数关系式。

  平方关系

  在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。

  中考数学知识点整理

  1、反比例函数的概念

  一般地,函数(k是常数,k0)叫做反比例函数。反比例函数的解析式也可以写成的形式。自变量x的取值范围是x0的一切实数,函数的取值范围也是一切非零实数。

  2、反比例函数的图像

  反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。由于反比例函数中自变量x0,函数y0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

  3、反比例函数的性质

  反比例函数k的符号k>0k<0图像yO xyO x性质①x的取值范围是x0,

  y的取值范围是y0;

  ②当k>0时,函数图像的两个分支分别

  在第一、三象限。在每个象限内,y

  随x 的增大而减小。

  ①x的取值范围是x0,

  y的取值范围是y0;

  ②当k<0时,函数图像的两个分支分别

  在第二、四象限。在每个象限内,y

  随x 的增大而增大。

  4、反比例函数解析式的确定

  确定及诶是的方法仍是待定系数法。由于在反比例函数中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k的值,从而确定其解析式。

  5、反比例函数的几何意义

  设是反比例函数图象上任一点,过点P作轴、轴的垂线,垂足为A,则

  (1)△OPA的面积.

  (2)矩形OAPB的面积。这就是系数的几何意义.并且无论P怎样移动,△OPA的面积和矩形OAPB的面积都保持不变。

  矩形PCEF面积=,平行四边形PDEA面积=

中考数学的知识点 11

  对某些知识点概念理解不清,很容易造成做题时拿不定主意,模棱两可而造成错误。在中考数学的复习中怎么有效改善这种问题呢?

  自己应该先分析自己。自己对自己最了解,知道自己的学习中哪个环节最薄弱最需要帮助,只要把这个环节打通了剩下的工作就可事半功倍了。

  其次,制定学习计划。包括时间计划、学习内容和形式等等。因为中学生已经经过了多年的学习过程,有些问题累积的过多,需要系统的来解决,不能只是头疼医头脚疼医脚,只是解决了表面问题,真到综合训练和考试的时候,问题依然会存在。

  最后,要从思想上下定决心,努力实施。解决自己沉积的问题,不是一朝一夕的事情,需要有恒心、耐心,切忌耍小聪明,敷衍了事。无论采取什么方案,都要扎扎实实的去做。

中考数学的知识点 12

  顾名思义。中位线就是图形的中点的连线,包括三角形中位线和梯形中位线两种。

  中位线

  中位线概念

  (1)三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线。

  (2)梯形中位线定义:连结梯形两腰中点的线段叫做梯形的中位线。

  注意:

  (1)要把三角形的中位线与三角形的中线区分开。三角形中线是连结一顶点和它对边的中点,而三角形中位线是连结三角形两边中点的线段。

  (2)梯形的中位线是连结两腰中点的线段而不是连结两底中点的线段。

  (3)两个中位线定义间的联系:可以把三角形看成是上底为零时的梯形,这时梯形的中位线就变成三角形的中位线。

中考数学的知识点 13

  知识点1:一元二次方程的基本概念

  1、一元二次方程3x2+5x-2=0的常数项是-2。

  2、一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2。

  3、一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7。

  4、把方程3x(x-1)-2=-4x化为一般式为3x2-x-2=0。

  知识点2:直角坐标系与点的位置

  1、直角坐标系中,点A(3,0)在y轴上。

  2、直角坐标系中,x轴上的任意点的横坐标为0。

  3、直角坐标系中,点A(1,1)在第一象限。

  4、直角坐标系中,点A(-2,3)在第四象限。

  5、直角坐标系中,点A(-2,1)在第二象限。

  知识点3:已知自变量的值求函数值

  1、当x=2时,函数y=的值为1。

  2、当x=3时,函数y=的值为1。

  3、当x=-1时,函数y=的值为1。

  知识点4:基本函数的概念及性质

  1、函数y=-8x是一次函数。

  2、函数y=4x+1是正比例函数。

  3、函数是反比例函数。

  4、抛物线y=-3(x-2)2-5的开口向下。

  5、抛物线y=4(x-3)2-10的对称轴是x=3。

  6、抛物线的顶点坐标是(1,2)。

  7、反比例函数的图象在第一、三象限。

  知识点5:数据的平均数中位数与众数

  1、数据13,10,12,8,7的平均数是10。

  2、数据3,4,2,4,4的众数是4。

  3、数据1,2,3,4,5的中位数是3。

  知识点6:特殊三角函数值

  1、cos30°=。

  2、sin260°+cos260°=1。

  3、2sin30°+tan45°=2。

  4、tan45°=1。

  5、cos60°+sin30°=1。

  知识点7:圆的基本性质

  1、半圆或直径所对的圆周角是直角。

  2、任意一个三角形一定有一个外接圆。

  3、在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。

  4、在同圆或等圆中,相等的圆心角所对的弧相等。

  5、同弧所对的圆周角等于圆心角的一半。

  6、同圆或等圆的半径相等。

  7、过三个点一定可以作一个圆。

  8、长度相等的两条弧是等弧。

  9、在同圆或等圆中,相等的圆心角所对的弧相等。

  10、经过圆心平分弦的直径垂直于弦。

  知识点8:直线与圆的位置关系

  1、直线与圆有唯一公共点时,叫做直线与圆相切。

  2、三角形的外接圆的圆心叫做三角形的外心。

  3。弦切角等于所夹的弧所对的圆心角。

  4、三角形的内切圆的圆心叫做三角形的内心。

  5、垂直于半径的直线必为圆的切线。

  6、过半径的外端点并且垂直于半径的直线是圆的切线。

  7、垂直于半径的直线是圆的切线。

  8、圆的切线垂直于过切点的半径。

中考数学的知识点 14

  一、数与代数

  Ⅰ、数与式

  1.有理数的加法、乘法运算

  同号相加一边倒,异号相加“大”减“小”;符号跟着大的跑,绝对值相等“零”正好。

  同号得正异号负,一项为零积是零。【注】“大”减“小”是指绝对值的大小。

  2.合并同类项

  合并同类项,法则不能忘;只求系数代数和,字母、指数不变样。

  3.去、添括号法则

  去括号、添括号,关键看符号;括号前面是正号,去、添括号不变号;

  括号前面是负号,去、添括号都变号。

  4.单项式运算

  加、减、乘、除、乘(开)方,三级运算分得清;系数进行同级(运)算,指数运算降级(进)行。

  5.分式混合运算法则

  分式四则运算,顺序乘除加减;乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先;分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;

  变号必须两处,结果要求最简。

  6.平方差公式

  两数和乘两数差,等于两数平方差;积化和差变两项,完全平方不是它。

  7.完全平方公式

  首平方又末平方,二倍首末在中央;和的平方加再加,先减后加差平方。

  8.因式分解

  一提二套三分组,十字相乘也上数;四种方法都不行,拆项添项去重组;重组无望试求根,

  换元或者算余数;多种方法灵活选,连乘结果是基础;同式相乘若出现,乘方表示要记住。

  【注】一提(提公因式)二套(套公式)

  9.二次三项式的因式分解

  先想完全平方式,十字相乘是其次;两种方法行不通,求根分解去尝试。

  10.比和比例

  两数相除也叫比,两比相等叫比例;基本性质第一条,外项积等内项积;

  前后项和比后项,组成比例叫合比;前后项差比后项,组成比例是分比;

  两项和比两项差,比值相等合分比;前项和比后项和,比值不变叫等比;

  商定变量成正比,积定变量成反比;判断四数成比例,两端积等中间积。

  11.根式和无理式

  表示方根代数式,都可称其为根式;根式异于无理式,被开方式无限制;

  无理式都是根式,区分它们有标志;被开方式有字母,才能称为无理式。

  12.最简根式的条件

  最简根式三条件:号内不把分母含,幂指(数)根指(数)要互质,幂指比根指小一点。

中考数学的知识点 15

  角度制知识:用度(°)、分(′)、秒(″)来测量角的大小的制度叫做角度制。

  角度制

  角度制:规定周角的360分之一为1度的角,用度作为单位来度量角的单位制叫做角度制。

  角度制中单位的换算。

  角度制中,1°=60′,1′=60″,1′=(1/60)°,1″=(1/60)′。

  角度制就是运用60进制的例子。

  角度制中角度的运算。

  两个角相加时,°与°相加,′与′相加,″与″相加,其中如果满60则进1。

  两个角相减时,°与°相减,′与′相减,″与″相减,其中如果不够则从上一个单位退1当作60。

  测量角的大小的另外一个方法,角度制与弧度制的换算。

  主要把握180°=π rad这个关系式。

  例如:1度=π /180 弧度30度转换成弧度值:弧度=30*π /180终边相同的角的表示β=α+k360°k属于整数。

  知识归纳:除了角度制可以测量角的大小,还有一种——弧度制也可以测量角的大小。

【中考数学的知识点】相关文章:

数学中考的知识点01-25

数学中考的知识点11-22

数学中考知识点02-17

中考数学最热的知识点11-19

数学中考知识点集锦11-02

中考数学知识点10-31

数学中考知识点汇总10-26

数学中考的知识点15篇11-23

初中数学数轴的中考知识点11-10

初中数学质数的中考知识点11-08