中考备考 百文网手机站

中考数学知识点

时间:2021-12-11 14:35:45 中考备考 我要投稿

中考数学知识点汇编15篇

  在我们的学习时代,是不是经常追着老师要知识点?知识点是知识中的最小单位,最具体的内容,有时候也叫“考点”。哪些知识点能够真正帮助到我们呢?下面是小编收集整理的中考数学知识点,希望能够帮助到大家。

中考数学知识点汇编15篇

中考数学知识点1

  知识要领:非负数,顾名思义,就是不是负数的数,也就是零和正实数。例如:0、3.4、9/10、π(圆周率)。

  非负数

  非负数大于或等于0。

  非负数中含有有理数和无理数。

  非负数的和或积仍是非负数。

  非负数的和为零,则每个非负数必等于零。

  非负数的积为零,则至少有一个非负数为零。

  非负数的绝对值等于本身。

  常见的非负数

  实数的绝对值、实数的偶次幂、算术根等都是常见的非负数。

  常见表现形式

  非负数的准确数学表达是a≥0、│a│、a^2n是常见的非负数。

  知识归纳:任何一个非负数乘以-1都会得到一个非正数。

中考数学知识点2

  1.解直角三角形

  1.1.锐角三角函数

  锐角a的正弦、余弦和正切统称∠a的三角函数。

  如果∠a是Rt△ABC的一个锐角,则有

  1.2.锐角三角函数的计算

  1.3.解直角三角形

  在直角三角形中,由已知的一些边、角,求出另一些边、角的过程,叫做解直角三角形。

  2.直线与圆的位置关系

  2.1.直线与圆的位置关系

  当直线与圆有两个公共点时,叫做直线与圆相交;当直线与圆有公共点时,叫做直线与圆相切,公共点叫做切点;当直线与圆没有公共点时,叫做直线与圆相离。

  直线与圆的位置关系有以下定理:

  直线与圆相切的判定定理:

  经过半径的外端并且垂直这条半径的直线是圆的切线。

  圆的切线性质:

  经过切点的半径垂直于圆的切线。

  2.2.切线长定理

  从圆外一点作圆的切线,通常我们把圆外这一点到切点间的线段的长叫做切线长。

  切线长定理:过圆外一点所作的圆的两条切线长相等。

  2.3.三角形的内切圆

  与三角形三边都相切的圆叫做三角形的内切圆,圆心叫做三角形的内心,三角形叫做圆的外切三角形。三角形的内心是三角形的三条角平分线的交点。

  3.三视图与表面展开图

  3.1.投影

  物体在光线的照射下,在某个平面内形成的影子叫做投影。光线叫做投影线,投影所在的平面叫做投影面。由平行的投射线所形成的投射叫做平行投影。

  可以把太阳光线、探照灯的光线看成平行光线,它们所形成的投影就是平行投影。

  3.2.简单几何体的三视图

  物体在正投影面上的正投影叫做主视图,在水平投影面上的正投影叫做俯视图,在侧投影面上的正投影叫做左视图。

  主视图、左视图和俯视图合称三视图。

  产生主视图的投影线方向也叫做主视方向。

  3.3.由三视图描述几何体

  三视图不仅反映了物体的形状,而且反映了各个方向的尺寸大小。

  3.4.简单几何体的表面展开图

  将几何体沿着某些棱“剪开”,并使各个面连在一起,铺平所得到的平面图形称为几何体的表面展开图。

  圆柱可以看做由一个矩形ABCD绕它的一条边BC旋转一周,其余各边所成的面围成的几何体。AB、CD旋转所成的面就是圆柱的两个底面,是两个半径相同的圆。AD旋转所成的面就是圆柱的侧面,AD不论转动到哪个位置,都是圆柱的母线。

  圆锥可以看做将一根直角三角形ACB绕它的一条直角边(AC)旋转一周,它的其余各边所成的面围成的一个几何体。直角边BC旋转所成的面就是圆锥的底面,斜边AB旋转所成的面就是圆锥的侧面,斜边AB不论转动到哪个位置,都叫做圆锥的母线。

中考数学知识点3

  圆的知识:平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。

  圆心:

  (1)如定义(1)中,该定点为圆心

  (2)如定义(2)中,绕的那一端的端点为圆心。

  (3)圆任意两条对称轴的交点为圆心。

  (4) 垂直于圆内任意一条弦且两个端点在圆上的线段的二分点为圆心。

  注:圆心一般用字母O表示

  直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。

  半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示。

  圆的直径和半径都有无数条。圆是轴对称图形,每条直径所在的直线是圆的对称轴。在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=d/2。

  圆的半径或直径决定圆的大小,圆心决定圆的位置。

  圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。

  圆的周长与直径的比值叫做圆周率。

  圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。计算时,通常取它的近似值,π≈3.14。

  直径所对的圆周角是直角。90°的圆周角所对的弦是直径。

  圆的面积公式:圆所占平面的大小叫做圆的面积。πr,用字母S表示。

  一条弧所对的圆周角是圆心角的二分之一。

  在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。

  在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。

中考数学知识点4

  重点①圆的重要性质;②直线与圆、圆与圆的位置关系;③与圆有关的角的定理;④与圆有关的比例线段定理。

  ☆ 内容提要☆

  一、圆的基本性质

  1.圆的定义(两种)

  2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。

  3.“三点定圆”定理

  4.垂径定理及其推论

  5.“等对等”定理及其推论

  5. 与圆有关的角:⑴圆心角定义(等对等定理)

  ⑵圆周角定义(圆周角定理,与圆心角的关系)

  ⑶弦切角定义(弦切角定理)

  二、直线和圆的位置关系

  1.三种位置及判定与性质:

  2.切线的性质(重点)

  3.切线的判定定理(重点)。圆的切线的判定有⑴…⑵…

  4.切线长定理

  三、圆换圆的位置关系

  1.五种位置关系及判定与性质:(重点:相切)

  2.相切(交)两圆连心线的性质定理

  3.两圆的公切线:⑴定义⑵性质

  四、与圆有关的比例线段

  1.相交弦定理

  2.切割线定理

  五、与和正多边形

  1.圆的内接、外切多边形(三角形、四边形)

  2.三角形的外接圆、内切圆及性质

  3.圆的外切四边形、内接四边形的性质

  4.正多边形及计算

  中心角:

  内角的一半: (右图)

  (解Rt△OAM可求出相关元素, 、 等)

  六、 一组计算公式

  1.圆周长公式

  2.圆面积公式

  3.扇形面积公式

  4.弧长公式

  5.弓形面积的计算方法

  6.圆柱、圆锥的侧面展开图及相关计算

  七、 点的轨迹

  六条基本轨迹

  八、 有关作图

  1.作三角形的外接圆、内切圆

  2.平分已知弧

  3.作已知两线段的比例中项

  4.等分圆周:4、8;6、3等分

  九、 基本图形

  十、 重要辅助线

  1.作半径

  2.见弦往往作弦心距

  3.见直径往往作直径上的圆周角

  4.切点圆心莫忘连

  5.两圆相切公切线(连心线)

  6.两圆相交公共弦

中考数学知识点5

  一、锐角三角函数

  正弦等于对边比斜边

  余弦等于邻边比斜边

  正切等于对边比邻边

  余切等于邻边比对边

  正割等于斜边比邻边

  二、三角函数的计算

  幂级数

  c0+c1x+c2x2+...+cnxn+...=∑cnxn(n=0..∞)

  c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n(n=0..∞)

  它们的各项都是正整数幂的幂函数,其中c0,c1,c2,...cn...及a都是常数,这种级数称为幂级数.

  泰勒展开式(幂级数展开法)

  f(x)=f(a)+f'(a)/1!_x-a)+f''(a)/2!_x-a)2+...f(n)(a)/n!_x-a)n+...

  三、解直角三角形

  1.直角三角形两个锐角互余。

  2.直角三角形的三条高交点在一个顶点上。

  3.勾股定理:两直角边平方和等于斜边平方

  四、利用三角函数测高

  1、解直角三角形的应用

  (1)通过解直角三角形能解决实际问题中的很多有关测量问.

  如:测不易直接测量的物体的高度、测河宽等,关键在于构造出直角三角形,通过测量角的度数和测量边的长度,计算出所要求的物体的高度或长度.

  (2)解直角三角形的一般过程是:

  ①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).

  ②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.

  半径与弦长计算,弦心距来中间站。圆上若有一切线,切点圆心半径连。

  切线长度的计算,勾股定理最方便。要想证明是切线,半径垂线仔细辨。

  是直径,成半圆,想成直角径连弦。弧有中点圆心连,垂径定理要记全。

  圆周角边两条弦,直径和弦端点连。弦切角边切线弦,同弧对角等找完。

  要想作个外接圆,各边作出中垂线。还要作个内接圆,内角平分线梦圆。

  如果遇到相交圆,不要忘作公共弦。内外相切的两圆,经过切点公切线。

  若是添上连心线,切点肯定在上面。要作等角添个圆,证明题目少困难。

  辅助线,是虚线,画图注意勿改变。假如图形较分散,对称旋转去实验。

  基本作图很关键,平时掌握要熟练。解题还要多心眼,经常总结方法显。

  切勿盲目乱添线,方法灵活应多变。分析综合方法选,困难再多也会减。

  虚心勤学加苦练,成绩上升成直线。

中考数学知识点6

  中考数学三角函数知识点资料1:同角互余角的三角函数间的关系

  平方关系:

  sin^2(α)+cos^2(α)=1

  tan^2(α)+1=sec^2(α)

  cot^2(α)+1=csc^2(α)

  ·积的关系:

  sinα=tanα·cosα

  cosα=cotα·sinα

  tanα=sinα·secα

  cotα=cosα·cscα

  secα=tanα·cscα

  cscα=secα·cotα

  ·倒数关系:

  tanα·cotα=1

  sinα·cscα=1

  cosα·secα=1

  直角三角形ABC中,

  角A的正弦值就等于角A的对边比斜边,

  余弦等于角A的邻边比斜边

  正切等于对边比邻边,

  余切等于邻边比对边

  互余角的三角函数间的关系:

  sin(90°-α)=cosα, cos(90°-α)=sinα,

  tan(90°-α)=cotα, cot(90°-α)=tanα.

  中考数学三角函数知识点资料2:锐角三角函数

  锐角三角函数的定义

  锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),(余割csc)都叫做角A的锐角三角函数。

  正弦等于对边比斜边

  余弦等于邻边比斜边

  正切等于对边比邻边

  余切等于邻边比对边

  正割等于斜边比邻边

  余割等于斜边比对边

  正切与余切互为倒数

  它的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。

  由于三角函数的周期性,它并不具有单值函数意义上的反函数。

  它有六种基本函数(初等基本表示):

  函数名正弦余弦正切余切正割余割

  在平面直角坐标系xOy中,从点O引出一条射线OP,设旋转角为θ,设OP=r,P点的坐标为(x,y)有

  正弦函数sinθ=y/r

  余弦函数cosθ=x/r

  正切函数tanθ=y/x

  余切函数cotθ=x/y

  正割函数secθ=r/x

  余割函数cscθ=r/y

  (斜边为r,对边为y,邻边为x。)

  以及两个不常用,已趋于被淘汰的函数:

  正矢函数versinθ =1-cosθ

  余矢函数coversθ =1-sinθ

中考数学知识点7

  一、数与代数

  Ⅰ、数与式

  1.有理数的加法、乘法运算

  同号相加一边倒,异号相加“大”减“小”;符号跟着大的跑,绝对值相等“零”正好。

  同号得正异号负,一项为零积是零。【注】“大”减“小”是指绝对值的大小。

  2.合并同类项

  合并同类项,法则不能忘;只求系数代数和,字母、指数不变样。

  3.去、添括号法则

  去括号、添括号,关键看符号;括号前面是正号,去、添括号不变号;

  括号前面是负号,去、添括号都变号。

  4.单项式运算

  加、减、乘、除、乘(开)方,三级运算分得清;系数进行同级(运)算,指数运算降级(进)行。

  5.分式混合运算法则

  分式四则运算,顺序乘除加减;乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先;分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;

  变号必须两处,结果要求最简。

  6.平方差公式

  两数和乘两数差,等于两数平方差;积化和差变两项,完全平方不是它。

  7.完全平方公式

  首平方又末平方,二倍首末在中央;和的平方加再加,先减后加差平方。

  8.因式分解

  一提二套三分组,十字相乘也上数;四种方法都不行,拆项添项去重组;重组无望试求根,

  换元或者算余数;多种方法灵活选,连乘结果是基础;同式相乘若出现,乘方表示要记住。

  【注】一提(提公因式)二套(套公式)

  9.二次三项式的因式分解

  先想完全平方式,十字相乘是其次;两种方法行不通,求根分解去尝试。

  10.比和比例

  两数相除也叫比,两比相等叫比例;基本性质第一条,外项积等内项积;

  前后项和比后项,组成比例叫合比;前后项差比后项,组成比例是分比;

  两项和比两项差,比值相等合分比;前项和比后项和,比值不变叫等比;

  商定变量成正比,积定变量成反比;判断四数成比例,两端积等中间积。

  11.根式和无理式

  表示方根代数式,都可称其为根式;根式异于无理式,被开方式无限制;

  无理式都是根式,区分它们有标志;被开方式有字母,才能称为无理式。

  12.最简根式的条件

  最简根式三条件:号内不把分母含,幂指(数)根指(数)要互质,幂指比根指小一点。

中考数学知识点8

  有理数的混合运算

  1.有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算。

  2.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化。

  3.有理数混合运算的四种运算技巧:

  ①转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算;

  ②凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解;

  ③分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算;

  ④巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便。

中考数学知识点9

  分类的原则:

  (1)分类中的每一部分是相互独立的;

  (2)一次分类按一个标准;

  (3)分类讨论应逐级有序进行。以探寻直角坐标系中等腰直角三角形存在的问题来说,如果给定两个点A、B,需要在X轴上找第三个点C使得这个三角形ABC是等腰直角三角形,这个时候同学们可以线段来分类讨论:AB为斜边时,AC为斜边或时BC为斜边时点C的坐标。这样讨论保证不会丢掉任何一种可能性,并且效率较高。当然也可以按照角来讨论,但是注意不要两种分类方法穿插进行。有些时候有可能会进行二次讨论,这个时候对于同学们的条理性要求就更大了,例如探讨含有30°角的直角三角形时,要先讨论那个角是直角,在讨论哪个角是30°或60°。

  第三、在列出所有需要讨论的可能性之后,要仔细审查是否每种可能性都会存在,是否有需要舍去的,最常见的就是一元二次方程如果有两个不等实根,那么我们就要看看是不是这两个根都能保留。同样有些时候也需要注意是否有些讨论结果重复,需要进行合并。例如直角坐标系中求能够成等腰三角形的点坐标,如果按照一定的原则分类讨论后,有可能会出现同一个点上可以构成两个等腰三角形的情况,这种情况下就要进行合并。也就是说找到的三角形的个数和点的个数是不一样的。

  以下几点是需要大家注意分类讨论的

  1、熟知直角三角形的直角,等腰三角形的腰与角以及圆的对称性,根据图形的特殊性质,找准讨论对象,逐一解决。在探讨等腰或直角三角形存在时,一定要按照一定的原则,不要遗漏,最后要综合。

  2、讨论点的位置,一定要看清点所在的范围,是在直线上,还是在射线或者线段上。

  3、图形的对应关系多涉及到三角形的全等或相似问题,对其中可能出现的有关角、边的可能对应情况加以分类讨论。

  4、代数式变形中如果有绝对值、平方时,里面的数开出来要注意正负号的取舍。

  5、考查点的取值情况或范围。这部分多是考查自变量的取值范围的分类,解题中应十分注意性质、定理的使用条件及范围。

  6、函数题目中如果说函数图象与坐标轴有交点,那么一定要讨论这个交点是和哪一个坐标轴的哪一半轴的交点。

  7、由动点问题引出的函数关系,当运动方式改变后(比如从一条线段移动到另一条线段)是,所写的函数应该进行分段讨论。

  由于考试题目千变万化,上面所列的项目不一定全面,所以还需要同学们在平时做题的时候多多积累。

中考数学知识点10

  一、初中数学基本知识

  ㈠、数与代数

  A、数与式:

  1、有理数

  有理数:①整数→正整数/0/负整数

  ②分数→正分数/负分数

  数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。②任何一个有理数都可以用数轴上的一个点来表示。③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。

  绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。

  有理数的运算:

  加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。③一个数与0相加不变。

  减法:减去一个数,等于加上这个数的相反数。

  乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。③乘积为1的两个有理数互为倒数。

  除法:①除以一个数等于乘以一个数的倒数。②0不能作除数。

  乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

  混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

  2、实数

  无理数:无限不循环小数叫无理数

  平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

  立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

  实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。③每一个实数都可以在数轴上的一个点来表示。

  3、代数式

  代数式:单独一个数或者一个字母也是代数式。

  合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。②把同类项合并成一项就叫做合并同类项。③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。

  4、整式与分式

  整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。②一个单项式中,所有字母的指数和叫做这个单项式的次数。③一个多项式中,次数最高的项的次数叫做这个多项式的次数。

  整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。

  幂的运算:AMAN=A(MN)

  (AM)N=AMN

  (A/B)N=AN/BN除法一样。

  整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。

  公式两条:平方差公式/完全平方公式

  整式的除法:

  ①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。

  ②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

  分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。

  方法:提公因式法、运用公式法、分组分解法、十字相乘法。

  分式:

  ①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。

  ②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。

  分式的运算:

  乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。

  除法:除以一个分式等于乘以这个分式的倒数。

  加减法:

  ①同分母的分式相加减,分母不变,把分子相加减。

  ②异分母的分式先通分,化为同分母的分式,再加减。

  分式方程:

  ①分母中含有未知数的方程叫分式方程。

  ②使方程的分母为0的解称为原方程的增根。

  20xx年中考数学基础知识总结20xx年中考数学基础知识总结

  B、方程与不等式

  1、方程与方程组

  一元一次方程:

  ①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。

  ②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。

  解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。

  二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。

  二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。解二元一次方程组的方法:代入消元法/加减消元法。

  一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程

  1)一元二次方程的二次函数的关系

  大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当的0的时候就构成了一元二次方程了。那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X轴的交点。也就是该方程的解了

  2)一元二次方程的解法

  大家知道,二次函数有顶点式(-b/2a,4ac-b2/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解

  (1)配方法

  利用配方,使方程变为完全平方公式,在用直接开平方法去求出解

  (2)分解因式法

  提取公因式,套用公式法,和十字相乘法。在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解

  (3)公式法

  这方法也可以是在解一元二次方程的万能方法了,方程的根X1={-b√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a

  3)解一元二次方程的步骤:

  (1)配方法的步骤:

  先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式

  (2)分解因式法的步骤:

  把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式

  (3)公式法

  就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c

  4)韦达定理

  利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a

  也可以表示为x1x2=-b/a,x1x2=c/a。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用

  5)一元一次方程根的情况

  利用根的判别式去了解,根的判别式可在书面上可以写为“△”,读作“diata”,而△=b2-4ac,这里可以分为3种情况:

  I当△>0时,一元二次方程有2个不相等的实数根;

  II当△=0时,一元二次方程有2个相同的实数根;

  III当△<0时,一元二次方程没有实数根(在这里,学到高中就会知道,这里有2个虚数根)

  2、不等式与不等式组

  不等式:

  ①用符号〉,=,〈号连接的式子叫不等式。

  ②不等式的两边都加上或减去同一个整式,不等号的方向不变。

  ③不等式的两边都乘以或者除以一个正数,不等号方向不变。

  ④不等式的两边都乘以或除以同一个负数,不等号方向相反。

  不等式的解集:

  ①能使不等式成立的未知数的值,叫做不等式的解。

  ②一个含有未知数的不等式的所有解,组成这个不等式的解集。

  ③求不等式解集的过程叫做解不等式。

  一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。

  一元一次不等式组:

  ①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

  ②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

  ③求不等式组解集的过程,叫做解不等式组。

  一元一次不等式的符号方向:

  在一元一次不等式中,不像等式那样,等号是不变的,他是随着你加或乘的运算改变。

  在不等式中,如果加上同一个数(或加上一个正数),不等式符号不改向;例如:A>B,AC>BC

  在不等式中,如果减去同一个数(或加上一个负数),不等式符号不改向;例如:A>B,A-C>B-C

  在不等式中,如果乘以同一个正数,不等号不改向;例如:A>B,A*C>B*C(C>0)

  在不等式中,如果乘以同一个负数,不等号改向;例如:A>B,A*C

  如果不等式乘以0,那么不等号改为等号

  所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;

  二、函数

  变量:因变量,自变量。

  在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。

  一次函数:①若两个变量X,间的关系式可以表示成=XB(B为常数,不等于0)的形式,则称是X的一次函数。②当B=0时,称是X的正比例函数。

  一次函数的图象:①把一个函数的自变量X与对应的因变量的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。②正比例函数=X的图象是经过原点的一条直线。③在一次函数中,当〈0,B〈O,则经234象限;当〈0,B〉0时,则经124象限;当〉0,B〈0时,则经134象限;当〉0,B〉0时,则经123象限。④当〉0时,的值随X值的增大而增大,当X〈0时,的值随X值的增大而减少。

  三、空间与图形

  A、图形的认识

  1、点,线,面

  点,线,面:①图形是由点,线,面构成的。②面与面相交得线,线与线相交得点。③点动成线,线动成面,面动成体。

  展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。②N棱柱就是底面图形有N条边的棱柱。

  截一个几何体:用一个平面去截一个图形,截出的面叫做截面。

  视图:主视图,左视图,俯视图。

  多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。

  20xx年中考数学基础知识总结建造师考试_建筑工程类工程师考试网

  弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。②圆可以分割成若干个扇形。

  2、角

  线:①线段有两个端点。②将线段向一个方向无限延长就形成了射线。射线只有一个端点。③将线段的两端无限延长就形成了直线。直线没有端点。④经过两点有且只有一条直线。

  比较长短:①两点之间的所有连线中,线段最短。②两点之间线段的长度,叫做这两点之间的距离。

  角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。②一度的1/60是一分,一分的1/60是一秒。

  角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

  平行:①同一平面内,不相交的两条直线叫做平行线。②经过直线外一点,有且只有一条直线与这条直线平行。③如果两条直线都与第3条直线平行,那么这两条直线互相平行。

  垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。②互相垂直的两条直线的交点叫做垂足。③平面内,过一点有且只有一条直线与已知直线垂直。

  垂直平分线:垂直和平分一条线段的直线叫垂直平分线。

  垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。

  垂直平分线定理:

  性质定理:在垂直平分线上的点到该线段两端点的距离相等;

  判定定理:到线段2端点距离相等的点在这线段的垂直平分线上

  角平分线:把一个角平分的射线叫该角的角平分线。

  定义中有几个要点要注意一下的,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点

  性质定理:角平分线上的点到该角两边的距离相等

  判定定理:到角的两边距离相等的'点在该角的角平分线上

  正方形:一组邻边相等的矩形是正方形

  性质:正方形具有平行四边形、菱形、矩形的一切性质

中考数学知识点11

  1、矩形的概念

  有一个角是直角的平行四边形叫做矩形。

  2、矩形的性质

  (1)具有平行四边形的一切性质(2)矩形的四个角都是直角

  (3)矩形的对角线相等(4)矩形是轴对称图形

  3、矩形的判定

  (1)定义:有一个角是直角的平行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形

  (3)定理2:对角线相等的平行四边形是矩形

  4、矩形的面积S矩形=长×宽=ab

  二次函数概念

  二次函数的概念:一般地,形如ax^2+bx+c = 0的函数,叫做二次函数。

  这里需要强调:和一元二次方程类似,二次项系数a≠0,而b,c可以为零.二次函数的定义域是全体实数.

  二次函数图像与性质口诀

  二次函数抛物线,图象对称是关键;

  开口、顶点和交点,它们确定图象限;

  开口、大小由a断,c与Y轴来相见,b的符号较特别,符号与a相关联;顶点位置先找见,Y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见。若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换。

  一、目标与要求

  1、感受生活中存在着大量的不等关系,了解不等式和一元一次不等式的意义,通过解决简单的实际问题,使学生自发地寻找不等式的解,会把不等式的解集正确地表示到数轴上;

  2、经历由具体实例建立不等模型的过程,经历探究不等式解与解集的不同意义的过程,渗透数形结合思想;

  3、通过对不等式、不等式解与解集的探究,引导学生在独立思考的基础上积极参与对数学问题的讨论,培养他们的合作交流意识;让学生充分体会到生活中处处有数学,并能将它们应用到生活的各个领域。

  二、重点

  理解并掌握不等式的性质;

  正确运用不等式的性质;

  建立方程解决实际问题,会解"ax+b=cx+d"类型的一元一次方程;

  寻找实际问题中的不等关系,建立数学模型;

  一元一次不等式组的解集和解法。

  三、难点

  一元一次不等式组解集的理解;

  弄清列不等式解决实际问题的思想方法,用去括号法解一元一次不等式;

  正确理解不等式、不等式解与解集的意义,把不等式的解集正确地表示到数轴上。

中考数学知识点12

  不等式与不等式组

  1.定义:

  用符号〉,=,〈号连接的式子叫不等式。

  2.性质:

  ①不等式的两边都加上或减去同一个整式,不等号方向不变。

  ②不等式的两边都乘以或者除以一个正数,不等号方向不变。

  ③不等式的两边都乘以或除以同一个负数,不等号方向相反。

  3.分类:

  ①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。

  ②一元一次不等式组:

  a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

  b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

  4.考点:

  ①解一元一次不等式(组)

  ②根据具体问题中的数量关系列不等式(组)并解决简单实际问题

  ③用数轴表示一元一次不等式(组)的解集

中考数学知识点13

  首先,要研读课本、数学课程标准和中考考试说明,挖掘教材,研究各知识点之间的纵横联系,然后把初中数学的核心内容整合成几个模块。

  其次,要重视课本例习题的“再创造”,充分发挥课本例习题的潜在价值。如把课本例习题由封闭型转向开放型、探究型,用问题探究代替命题论证,由静态情景变成动态情景等。在数学复习中,大部分学生往往重视解题而忽视复习基础知识。例如相当部分的学生仅满足于会用求根公式解一元二次方程,但对求根公式的推导却不去掌握。求根公式推导过程,也为求二次函数的极值、求抛物线的顶点等题目提供了极好的解法。

  第三,要分析研究近三年来全国各省市的中考数学试卷,将中考试题归类。可以发现一些中考试题是根据课本的例习题改编而来的,将这些中考试题穿插到第一轮复习中使用,可以促使学生在一轮复习中更加重视课本,并帮助学生提高能力。

  最后,教师编写教案要针对实际,面向全体学生。既照顾优等生,也要兼顾中等生,突出基础薄弱的学生。面对全体学生,教师有必要将教学案有针对性地编成几种形式,使不同层次的学生都有自己的复习目标,在自己的基础上通过复习都有不同层次的提高。

中考数学知识点14

  函数

  ①位置的确定与平面直角坐标系

  位置的确定

  坐标变换

  平面直角坐标系内点的特征

  平面直角坐标系内点坐标的符号与点的象限位置

  对称问题:P(x,y)→Q(x,- y)关于x轴对称P(x,y)→Q(- x,y)关于y轴对称P(x,y)→Q(- x,-y)关于原点对称

  变量、自变量、因变量、函数的定义

  函数自变量、因变量的取值范围(使式子有意义的条件、图象法) 56、函数的图象:变量的变化趋势描述

  ②一次函数与正比例函数

  一次函数的定义与正比例函数的定义

  一次函数的图象:直线,画法

  一次函数的性质(增减性)

  一次函数y=kx+b(k≠0)中k、b符号与图象位置

  待定系数法求一次函数的解析式(一设二列三解四回)

  一次函数的平移问题

  一次函数与一元一次方程、一元一次不等式、二元一次方程的关系(图象法)

  一次函数的实际应用

  一次函数的综合应用(1)一次函数与方程综合(2)一次函数与其它函数综合(3)一次函数与不等式的综合(4)一次函数与几何综合

中考数学知识点15

  1、用不等号表示不等关系的式子叫不等式,不等号主要包括: 、 、 、 、 。

  2、在含有未知数的不等式中,使不等式成立的未知数的值叫不等式的解,一个含有未知数的不等式的所有的解组成的集合,叫这个不等式的解集。

  不等式的解集可以在数轴上表示出来。求不等式的解集的过程叫解不等式。含有一个未知数,并且所含未知数的项的次数都是1,这样的不等式叫一元一次不等式。

  3、不等式的性质:

  ①性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向 不变 。

  用字母表示为: 如果 ,那么 ; 如果 ,那么

  如果 ,那么 ; 如果 ,那么 。

  ②性质2:不等式的两边同时乘以(或除以)同一个 正数 ,不等号的方向 不变 。

  用字母表示为: 如果 ,那么 (或 );如果 ,那么 (或 );

  如果 ,那么 (或 );如果 ,那么 (或 );

  ③性质3:不等式的两边同时乘以(或除以)同一个 负数 ,不等号的方向 改变 。

  用字母表示为: 如果 ,那么 (或 );如果 ,那么 (或 );

  如果 ,那么 (或 );如果 ,那么 (或 );

  4、解一元一次不等式的一般步骤:

  ①去分母;②去括号;③移项;④合并同类项; ⑤系数化为1 。这与解一元一次方程类似,在解时要根据一元一次不等式的具体情况灵活选择步骤。

  5、不等式组中含有一个未知数,并且所含未知数的项的次数都是1,这样的不等式组叫一元一次不等式组。

  使不等式组中的每个不等式都成立的未知数的值叫不等式组的解,一个不等式组的所有的解组成的集合,叫这个不等式组的解集解(简称不等式组的解)。不等式组的解集可以在数轴上表示出来。求不等式组的解集的过程叫解不等式组。

  6、解一元一次不等式组的一般步骤:

  ①求出这个不等式组中各个不等式的解集;②利用数轴求出这些不等式的解集的公共部分,得到这个不等式组的解集。如果这些不等式的解集的没有公共部分,则这个不等式组无解 ( 此时也称这个不等式组的解集为空集 )。

  7、求出各个不等式的解集后,确定不等式组的解的口诀:大大取大,小小取小,大小小大取中间,大大小小无处找。

【中考数学知识点汇编15篇】相关文章:

数学中考的知识点01-25

数学中考的知识点11-22

数学中考知识点集锦11-02

中考数学知识点10-31

数学中考知识点汇总10-26

中考数学知识点【圆】02-08

中考数学知识点:圆11-13

中考数学知识点总结05-27

中考数学最热的知识点11-19