中考备考 百文网手机站

中考知识点归纳数学

时间:2022-02-10 10:45:33 中考备考 我要投稿

2021中考知识点归纳数学大全

  在我们的学习时代,是不是听到知识点,就立刻清醒了?知识点是知识中的最小单位,最具体的内容,有时候也叫“考点”。掌握知识点是我们提高成绩的关键!以下是小编帮大家整理的中考知识点归纳数学,欢迎大家分享。

2021中考知识点归纳数学大全

  中考知识点归纳数学 1

  1、“三线八角”① 如何由线找角:一看线,二看型。 同位角是“F”型; 内错角是“Z”型; 同旁内角是“U”型。② 如何由角找线:组成角的三条线中的公共直线就是截线。

  2、平行公理: 如果两条直线都和第三条直线平行,那么这两条直线也平行。 简述:平行于同一条直线的两条直线平行。 补充定理: 如果两条直线都和第三条直线垂直,那么这两条直线也平行。 简述:垂直于同一条直线的两条直线平行。

  3、平行线的判定和性质: 判定定理 性质定理条件 结论 条件 结论同位角相等 两直线平行 两直线平行 同位角相等内错角相等 两直线平行 两直线平行 内错角相等同旁内角互补 两直线平行 两直线平行 同旁内角互补

  4、图形平移的性质: 图形经过平移,连接各组对应点所得的线段互相平行(或在同一直线上)并且相等。

  5、三角形三边之间的关系:三角形的任意两边之和大于第三边;三角形的任意两边之差小于第三边。若三角形的三边分别为a、b、c。

  6、三角形中的主要线段:三角形的高、角平分线、中线。注意:①三角形的高、角平分线、中线都是线段。 ②高、角平分线、中线的应用。

  7、三角形的内角和:三角形的3个内角的和等于180°;直角三角形的两个锐角互余;三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于与它不相邻的任意一个内角。

  8、多边形的内角和:n边形的内角和等于(n-2)180°; 任意多边形的外角和等于360°。

  中考知识点归纳数学 2

  1、二次函数的概念

  一般地,如果,那么y叫做x的二次函数。

  叫做二次函数的一般式。

  2、二次函数的图像

  二次函数的图像是一条关于对称的曲线,这条曲线叫抛物线。

  抛物线的主要特征:

  ①有开口方向;②有对称轴;③有顶点。

  3、二次函数图像的画法

  五点法:

  (1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M,并用虚线画出对称轴

  (2)求抛物线与坐标轴的交点:

  当抛物线与x轴有两个交点时,描出这两个交点A,B及抛物线与y轴的交点C,再找到点C的对称点D。将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。

  当抛物线与x轴只有一个交点或无交点时,描出抛物线与y轴的交点C及对称点D。由C、M、D三点可粗略地画出二次函数的草图。如果需要画出比较精确的图像,可再描出一对对称点A、B,然后顺次连接五点,画出二次函数的图像。

  中考知识点归纳数学 3

  椭圆知识:平面内与两定点F1、F2的距离的和等于常数2a(2a>|F1F2|)的动点P的轨迹叫做椭圆。

  椭圆的第一定义

  即:│PF1│+│PF2│=2a

  其中两定点F1、F2叫做椭圆的焦点,两焦点的距离│F1F2│=2c<2a叫做椭圆的焦距。P 为椭圆的动点。

  长轴为 2a; 短轴为 2b。

  椭圆的第二定义

  平面内到定点F的距离与到定直线的距离之比为常数e(即椭圆的离心率,e=c/a)的点的集合(定点F不在定直线上,该常数为小于1的正数) 其中定点F为椭圆的焦点,定直线称为椭圆的准线(该定直线的方程是x=±a^2/c[焦点在X轴上];或者y=±a^2/c[焦点在Y轴上])。

  椭圆的其他定义

  根据椭圆的一条重要性质,也就是椭圆上的点与椭圆短轴两端点连线的斜率之积是定值 定值为e^2-1 可以得出:平面内与两定点的连线的斜率之积是常数k的动点的轨迹是椭圆,此时k应满足一定的条件,也就是排除斜率不存在的情况,还有K应满足<0且不等于-1。

  简单几何性质

  1、范围

  2、对称性:关于X轴对称,Y轴对称,关于原点中心对称。

  3、顶点:(当中心为原点时)(a,0)(-a,0)(0,b)(0,-b)

  4、离心率:e=c/a

  5、离心率范围 0

  知识归纳:离心率越大椭圆就越扁,越小则越接近于圆。

  初中数学知识点总结:平面直角坐标系

  平面直角坐标系

  平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

  水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

  平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合

  三个规定:

  ①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

  ②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

  ③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

  初中数学知识点:平面直角坐标系的构成

  平面直角坐标系的构成

  在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。

  初中数学知识点:点的坐标的性质

  点的坐标的性质

  建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

  对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。

  一个点在不同的象限或坐标轴上,点的坐标不一样。

  希望上面对点的坐标的性质知识讲解学习,同学们都能很好的.掌握,相信同学们会在考试中取得优异成绩的。

  初中数学知识点:因式分解的一般步骤

  因式分解的一般步骤

  如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,

  通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

  注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

  初中数学知识点:因式分解

  因式分解

  因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

  因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④

  因式分解与整式乘法的关系:m(a+b+c)

  公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

  公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

  提取公因式步骤

  ①确定公因式。②确定商式③公因式与商式写成积的形式。

  分解因式注意

  ①不准丢字母

  ②不准丢常数项注意查项数

  ③双重括号化成单括号

  ④结果按数单字母单项式多项式顺序排列

  ⑤相同因式写成幂的形式

  ⑥首项负号放括号外

  ⑦括号内同类项合并。

  中考知识点归纳数学 4

  【知识点一】实数的分类

  1、按定义分类: 2.按性质符号分类:

  注:0既不是正数也不是负数.

  【知识点二】实数的相关概念

  1.相反数

  (1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0.

  (2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.

  (3)互为相反数的两个数之和等于0.a、b互为相反数 a+b=0.

  2.绝对值 |a|0.

  3.倒数 (1)0没有倒数 (2)乘积是1的两个数互为倒数.a、b互为倒数 .

  4.平方根

  (1)如果一个数的平方等于a,这个数就叫做a的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a(a0)的平方根记作.

  (2)一个正数a的正的平方根,叫做a的算术平方根.a(a0)的算术平方根记作 .

  5.立方根

  如果x3=a,那么x叫做a的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.

  【知识点三】实数与数轴

  数轴定义: 规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可.

  【知识点四】实数大小的比较

  1.对于数轴上的任意两个点,靠右边的点所表示的数较大.

  2.正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小.

  3.无理数的比较大小:

  【知识点五】实数的运算

  1.加法

  同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数.

  2.减法:减去一个数等于加上这个数的相反数.

  3.乘法

  几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负.几个数相乘,有一个因数为0,积就为0.

  4.除法

  除以一个数,等于乘上这个数的倒数.两个数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数都得0.

  5.乘方与开方

  (1)an所表示的意义是n个a相乘,正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数.

  (2)正数和0可以开平方,负数不能开平方;正数、负数和0都可以开立方.

  (3)零指数与负指数

  【知识点六】有效数字和科学记数法

  1.有效数字:

  一个近似数,从左边第一个不是0的数字起,到精确到的数位为止,所有的数字,都叫做这个近似数的有效数字.

  2.科学记数法:

  把一个数用 (110,n为整数)的形式记数的方法叫科学记数法.

  有了上文梳理的人教版数学期中考试知识点汇总(2),相信大家对考试充满了信心,同时预祝大家考试取得好成绩。

  中考知识点归纳数学 5

  1。整式和分式

  含有加、减、乘、除、乘方运算的代数式叫做有理式。

  没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。

  有除法运算并且除式中含有字母的有理式叫做分式。

  2。单项式与多项式

  没有加减运算的整式叫做单项式。(数字与字母的积—包括单独的一个数或字母)

  几个单项式的和,叫做多项式。

  说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从外形来看。如,

  =x, =│x│等。

  3。系数与指数

  区别与联系:①从位置上看;②从表示的意义上看

  4。同类项及其合并

  条件:①字母相同;②相同字母的指数相同

  合并依据:乘法分配律

  5。根式

  表示方根的代数式叫做根式。

  含有关于字母开方运算的代数式叫做无理式。

  注意:①从外形上判断;②区别: 、是根式,但不是无理式(是无理数)。

  6。算术平方根

  ⑴正数a的正的平方根( );

  ⑵算术平方根与绝对值

  ① 联系:都是非负数, =│a│

  ②区别:│a│中,a为一切实数; 中,a为非负数。

  7。同类二次根式、最简二次根式、分母有理化

  化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。

  满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。

  把分母中的根号划去叫做分母有理化。

  8。指数

  ⑴ ( —幂,乘方运算)

  ① a0时, 0;②a0时, 0(n是偶数),0(n是奇数)

  ⑵零指数: =1(a≠0)

  负整指数: =1/ (a≠0,p是正整数)

  中考知识点归纳数学 6

  自然数的分类包括了奇数和偶数,质数与合数、1和0。

  自然数的分类

  ①按能否被2整除分

  可分为奇数和偶数。

  1、奇 数:不能被2整除的数叫奇数。

  2、偶 数:能被2整除的数叫偶数。

  注:0是偶数。(20xx年国际数学协会规定,零为偶数.我国20xx年也规定零为偶数。偶数可以被2整除,0照样可以,只不过得数依然是0而已)。

  ②按因数个数分

  可分为质数、合数、1和0。

  1、质 数:只有1和它本身这两个因数的自然数叫做质数。也称作素数。

  2、合 数:除了1和它本身还有其它的因数的自然数叫做合数。

  3、1:只有1个因数。它既不是质数也不是合数。

  4、当然0不能计算因数,和1一样,也不是质数也不是合数。

  备注:这里是因数不是约数。

  同学们对于“0”,它是否包括在自然数之内存在争议,其实学术界目前关于这个问题尚无一致意见。

  中考知识点归纳数学 7

  射线:

  1、射线的定义:直线上一点和它们的一旁的部分叫做射线。

  2、射线的特征:“向一方无限延伸,它有一个端点。”

  线段:

  1、线段的定义:直线上两点和它之间的部分叫做线段,这两点叫做线段的端点。

  2、线段的性质(公理):所有连接两点的线中,线段最短。

  中考知识点归纳数学 8

  二次函数的最值(10分)

  如果自变量的取值范围是全体实数,那么函数在顶点处取得值(或最小值),即当时,。

  如果自变量的取值范围是,那么,首先要看是否在自变量取值范围内,若在此范围内,则当x=时,;若不在此范围内,则需要考虑函数在范围内的增减性,如果在此范围内,y随x的增大而增大,则当时,,当时,;如果在此范围内,y随x的增大而减小,则当时,,当时,。

  中考知识点归纳数学 9

  我们学习的圆是轴对称图形,其对称轴是任意一条通过圆心的直线,所以是无数条对称轴。

  圆及有关概念

  1 到定点的距离等于定长的点的集合叫做圆(circle).这个定点叫做圆的圆心。

  2 连接圆心和圆上的任意一点的线段叫做半径(radius)。

  3 通过圆心并且两端都在圆上的线段叫做直径(diameter)。

  4 连接圆上任意两点的线段叫做弦(chord). 最长的弦是直径。

  5 圆上任意两点间的部分叫做圆弧,简称弧(arc).大于半圆的弧称为优弧,优弧是用三个字母表示。小于半圆的弧称为劣弧,劣弧用两个字母表示。半圆既不是优弧,也不是劣弧。优弧是大于180度的弧,劣弧是小于180度的弧

  6 由两条半径和一段弧围成的图形叫做扇形(sector)。

  7 由弦和它所对的一段弧围成的图形叫做弓形。

  8 顶点在圆心上的角叫做圆心角(central angle)。

  9 顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

  10 圆周长度与圆的直径长度的比值叫做圆周率。它是一个超越数,通常用π表示,π=3.1415926535……。在实际应用中,一般取π≈3.14。

  11 圆周角等于弧所对的圆心角的一半。

  字母表示

  圆—⊙ ; 半径—r或R(在环形圆中外环半径表示的字母); 弧—⌒ ; 直径—d ;

  扇形弧长—L ; 周长—C ; 面积—S。

  圆的表示方法要求很严格,需要用到相应的知识要求。

  中考知识点归纳数学 10

  1、解不等式问题的分类

  (1)解一元一次不等式、

  (2)解一元二次不等式、

  (3)可以化为一元一次或一元二次不等式的不等式、

  ①解一元高次不等式;

  ②解分式不等式;

  ③解无理不等式;

  ④解指数不等式;

  ⑤解对数不等式;

  ⑥解带绝对值的不等式;

  ⑦解不等式组、

  2、解不等式时应特别注意下列几点:

  (1)正确应用不等式的基本性质、

  (2)正确应用幂函数、指数函数和对数函数的增、减性、

  (3)注意代数式中未知数的取值范围、

  3、不等式的同解性

  (5)|f(x)|<g(x)与-g(x)<f(x)0)

  (6)|f(x)|>g(x)①与f(x)>g(x)或f(x)<-g(x)(其中g(x)≥0)同解;②与g(x)<0同解、

  (9)当a>1时,af(x)>ag(x)与f(x)>g(x)同解,当0ag(x)与f(x)<g(x)同< p="">

  中考知识点归纳数学 11

  有理数的乘方

  (1)求相同因数的积的运算叫做乘方.乘方运算的结果叫幂.

  一般地,记作,读作:a的n次方,表示n个a相乘;其中,a是底数,n是指数,称为幂。

  (2)正数的任何次幂都是正数.

  负数的奇数次幂是负数,

  负数的偶数次幂是正数.

  (3)一个数的平方为它本身,这个数是0和1;

  一个数的立方为它本身,这个数是0、1和-1。

  中考知识点归纳数学 12

  有理数乘法法则:

  (1)两数相乘,同号为正,异号为负,并把绝对值相乘;

  (2)任何数同零相乘都得零;

  (3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.

  中考知识点归纳数学 13

  知识点1:一元二次方程的基本概念

  1.一元二次方程3x2+5x-2=0的常数项是-2.

  2.一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2.

  3.一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7.

  4.把方程3x(x-1)-2=-4x化为一般式为3x2-x-2=0.

  知识点2:直角坐标系与点的位置

  1.直角坐标系中,点A(3,0)在轴上。

  2.直角坐标系中,x轴上的任意点的横坐标为0.

  3.直角坐标系中,点A(1,1)在第一象限。

  4.直角坐标系中,点A(-2,3)在第四象限。

  5.直角坐标系中,点A(-2,1)在第二象限。

  知识点3:已知自变量的值求函数值

  1.当x=2时,函数=的值为1.

  2.当x=3时,函数=的值为1.

  3.当x=-1时,函数=的值为1.

  知识点4:基本函数的概念及性质

  1.函数=-8x是一次函数。

  2.函数=4x+1是正比例函数。

  3.函数是反比例函数。

  4.抛物线=-3(x-2)2-5的开口向下。

  5.抛物线=4(x-3)2-10的对称轴是x=3.

  6.抛物线的顶点坐标是(1,2)。

  7.反比例函数的图象在第一、三象限

  知识点5:特殊的数据

  1.数据13,10,12,8,7的平均数是10.

  2.数据3,4,2,4,4的众数是4.

  3.数据1,2,3,4,5的中位数是3.

  知识点6:特殊三角函数值

  1.cs30°=。

  2.sin260°+cs260°=1.

  3.2sin30°+tan45°=2.

  4.tan45°=1.

  5.cs60°+sin30°=1.

  知识点7:圆的基本性质

  1.半圆或直径所对的圆周角是直角。

  2.任意一个三角形一定有一个外接圆。

  3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。

  4.在同圆或等圆中,相等的圆心角所对的弧相等。

  5.同弧所对的圆周角等于圆心角的一半。

  6.同圆或等圆的半径相等。

  7.过三个点一定可以作一个圆。

  8.长度相等的两条弧是等弧。

  9.在同圆或等圆中,相等的圆心角所对的弧相等。

  10.经过圆心平分弦的直径垂直于弦。

  知识点8:直线与圆的位置关系

  1.直线与圆有唯一公共点时,叫做直线与圆相切。

  2.三角形的外接圆的圆心叫做三角形的外心。

  3.弦切角等于所夹的弧所对的圆心角。

  4.三角形的内切圆的圆心叫做三角形的内心。

  5.垂直于半径的直线必为圆的切线。

  6.过半径的外端点并且垂直于半径的直线是圆的切线。

  7.垂直于半径的直线是圆的切线。

  8.圆的切线垂直于过切点的半径。

  中考知识点归纳数学 14

  第十一章 全等三角形

  一、知识框架

  二、知识概念

  1、全等三角形:两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。

  2、全等三角形的性质:全等三角形的对应角相等、对应边相等。

  3、三角形全等的判定公理及推论有:

  (1)“边角边”简称“SAS”

  (2)“角边角”简称“ASA”

  (3)“边边边”简称“SSS”

  (4)“角角边”简称“AAS”

  (5)斜边和直角边相等的两直角三角形(HL)。

  4、角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。

  5、证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系)。②、回顾三角形判定,搞清我们还需要什么。③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题)。

  在学习三角形的全等时,教师应该从实际生活中的图形出发,引出全等图形进而引出全等三角形。通过直观的理解和比较发现全等三角形的奥妙之处。在经历三角形的角平分线、中线等探索中激发学生的集合思维,启发他们的灵感,使学生体会到集合的真正魅力。

  第十二章 轴对称

  一、知识框架

  二、知识概念

  1、对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

  2、性质:(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

  (2)角平分线上的点到角两边距离相等。

  (3)线段垂直平分线上的任意一点到线段两个端点的距离相等。

  (4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

  (5)轴对称图形上对应线段相等、对应角相等。

  3、等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)

  4、等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。

  5、等腰三角形的判定:等角对等边。

  6、等边三角形角的特点:三个内角相等,等于60°,

  7、等边三角形的判定:三个角都相等的三角形是等腰三角形。

  有一个角是60°的等腰三角形是等边三角形。

  有两个角是60°的三角形是等边三角形。

  8、直角三角形中,30°角所对的直角边等于斜边的一半。

  9、直角三角形斜边上的中线等于斜边的一半。

  本章内容要求学生在建立在轴对称概念的基础上,能够对生活中的图形进行分析鉴赏,亲身经历数学美,正确理解等腰三角形、等边三角形等的性质和判定,并利用这些性质来解决一些数学问题。

  第十三章 实数

  一、知识框架

  二、知识概念

  1、算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么正数x叫做a的算术平方根,记作。0的算术平方根为0;从定义可知,只有当a≥0时,a才有算术平方根。

  2、平方根:一般地,如果一个数x的平方根等于a,即x2=a,那么数x就叫做a的平方根。

  3、正数有两个平方根(一正一负)它们互为相反数;0只有一个平方根,就是它本身;负数没有平方根。

  4、正数的立方根是正数;0的立方根是0;负数的立方根是负数。

  5、数a的相反数是-a,一个正实数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0

  实数部分主要要求学生了解无理数和实数的概念,知道实数和数轴上的点一一对应,能估算无理数的大小;了解实数的运算法则及运算律,会进行实数的运算。重点是实数的意义和实数的分类;实数的运算法则及运算律。

  第十四章 一次函数

  一、知识框架

  二、知识概念

  1、一次函数:若两个变量x,y间的关系式可以表示成y=kx+b(k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称y是x的正比例函数。

  2、正比例函数一般式:y=kx(k≠0),其图象是经过原点(0,0)的一条直线。

  3、正比例函数y=kx(k≠0)的图象是一条经过原点的直线,当k>0时,直线y=kx经过第一、三象限,y随x的增大而增大,当k<0时,直线y=kx经过第二、四象限,y随x的增大而减小,在一次函数y=kx+b中:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。

  4、已知两点坐标求函数解析式:待定系数法

  一次函数是初中学生学习函数的开始,也是今后学习其它函数知识的基石。在学习本章内容时,教师应该多从实际问题出发,引出变量,从具体到抽象的认识事物。培养学生良好的变化与对应意识,体会数形结合的思想。在教学过程中,应更加侧重于理解和运用,在解决实际问题的同时,让学习体会到数学的实用价值和乐趣。

  第十五章整式的乘除与分解因式

  一、知识概念

  1、同底数幂的乘法法则:(m,n都是正数)

  2、幂的乘方法则:(m,n都是正数)

  3、整式的乘法

  (1)单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。

  (2)单项式与多项式相乘:单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

  (3)多项式与多项式相乘

  多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。

  4、平方差公式:

  5、完全平方公式:

  6、同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即(a≠0,m、n都是正数,且m>n)。

  在应用时需要注意以下几点:

  ①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0。

  ②任何不等于0的数的0次幂等于1,即,如,(-2。50=1),则00无意义。

  ③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即(a≠0,p是正整数),而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的;当a<0时,a-p的值可能是正也可能是负的,如,

  ④运算要注意运算顺序。

  7、整式的除法

  单项式除法单项式:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;

  多项式除以单项式:多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加。

  8、分解因式:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。

  分解因式的一般方法:1。提公共因式法2。运用公式法3。十字相乘法

  分解因式的步骤:

  (1)先看各项有没有公因式,若有,则先提取公因式;

  (2)再看能否使用公式法;

  (3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;

  (4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;

  (5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止。

  整式的乘除与分解因式这章内容知识点较多,表面看来零碎的概念和性质也较多,但实际上是密不可分的整体。在学习本章内容时,应多准备些小组合作与交流活动,培养学生推理能力、计算能力。在做题中体验数学法则、公式的简洁美、和谐美,提高做题效率。

  中考知识点归纳数学 15

  平方根表示法

  一个非负数a的平方根记作,读作正负根号a。a叫被开方数。

  中被开方数的取值范围

  被开方数a≥0

  平方根性质:

  ①一个正数的平方根有两个,它们互为相反数。

  ②0的平方根是它本身0。

  ③负数没有平方根开平方;求一个数的平方根的运算,叫做开平方。

  平方根与算术平方根区别:

  1、定义不同。

  2表示方法不同。

  3、个数不同。

  4、取值范围不同。

  联系:

  1、二者之间存在着从属关系。

  2、存在条件相同。

  3、0的算术平方根与平方根都是0

  含根号式子的意义

  表示a的平方根,表示a的算术平方根,表示a的负的平方根。

  求正数a的算术平方根的方法;

  完全平方数类型:

  ①想谁的平方是数a。

  ②所以a的平方根是多少。

  ③用式子表示。

  求正数a的算术平方根,只需找出平方后等于a的正数。

  中考知识点归纳数学 16

  一、平行线分线段成比例定理及其推论:

  1.定理:三条平行线截两条直线,所得的对应线段成比例。

  2.推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。

  3.推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条线段平行于三角形的第三边。

  二、相似预备定理:

  平行于三角形的一边,并且和其他两边相交的直线,截得的三角形的三边与原三角形三边对应成比例。

  三、相似三角形:

  1.定义:对应角相等,对应边成比例的三角形叫做相似三角形。

  2.性质:(1)相似三角形的对应角相等;

  (2)相似三角形的对应线段(边、高、中线、角平分线)成比例;

  (3)相似三角形的周长比等于相似比,面积比等于相似比的平方。

  说明:①等高三角形的面积比等于底之比,等底三角形的面积比等于高之比;②要注意两个图形元素的对应。

  3.判定定理:

  (1)两角对应相等,两三角形相似;

  (2)两边对应成比例,且夹角相等,两三角形相似;

  (3)三边对应成比例,两三角形相似;

  (4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角对应成比例,那么这两个直角三角形相似。

【2021中考知识点归纳数学大全】相关文章:

2021中考知识点归纳数学09-01

中考数学知识点归纳10-30

中考数学整式知识点归纳10-22

2021中考知识点归纳数学15篇09-03

2021中考知识点归纳数学合集15篇09-08

2021中考知识点归纳数学(集合15篇)09-05

初中数学中考椭圆的知识点归纳01-26

中考常用知识点归纳11-26

初中数学不等式的中考知识点归纳05-28