- 相关推荐
高中物理选修3-5重要知识点
上学的时候,大家都背过不少知识点,肯定对知识点非常熟悉吧!知识点就是一些常考的内容,或者考试经常出题的地方。那么,都有哪些知识点呢?以下是小编为大家收集的高中物理选修3-5重要知识点,希望对大家有所帮助。
高中物理选修3-5重要知识点
光电效应
1.光电效应在光(包括不可见光)的照射下,从物体发射出电子的现象称为光电效应。
⑵光电效应的实验规律:装置如下图
①任何一种金属都有一个极限频率,入射光的频率必须大于这个极限频率才能发生光电效应,低于极限频率的光不能发生光电效应。
②光电子的最大初动能与入射光的强度无关,光随入射光频率的增大而增大。
③大于极限频率的光照射金属时,光电流强度(反映单位时间发射出的光电子数的多少),与入射光强度成正比。
④ 金属受到光照,光电子的发射一般不超过10-9秒。
2.波动说在光电效应上遇到的困难
波动说认为:光的能量即光的强度是由光波的振幅决定的与光的频率无关,所以波动说对解释上述实验规律中的①②④条都遇到困难。
3.光子说
⑴量子论:1900年德国物理学家普朗克提出:电磁波的发射和吸收是不连续的,而是一份一份的,每一份电磁波的能量。
⑵光子论:1905年爱因斯坦提出:空间传播的光也是不连续的,而是一份一份的,每一份称为一个光子,光子具有的能量与光的频率成正比。即:。
其中v是电磁波的频率,h为普朗克恒量:
4.光子论对光电效应的解释
金属中的自由电子,获得光子后其动能增大,当功能大于脱出功时,电子即可脱离金属表面,入射光的频率越大,光子能量越大,电子获得的能量才能越大,飞出时最大初功能也越大。
高中物理选修3-5重要知识点
电场
1.库仑定律电荷力,万有引力引场力,好像是孪生兄弟,kQq与r平方比。
2.电荷周围有电场,F比q定义场强。KQ比r2点电荷,U比d是匀强电场。
电场强度是矢量,正电荷受力定方向。描绘电场用场线,疏密表示弱和强。
场能性质是电势,场线方向电势降。 场力做功是qU ,动能定理不能忘。
4.电场中有等势面,与它垂直画场线。方向由高指向低,面密线密是特点。
恒定电流
1.电荷定向移动时,电流等于q比 t。自由电荷是内因,两端电压是条件。
正荷流向定方向,串电流表来计量。电源外部正流负,从负到正经内部。
2.电阻定律三因素,温度不变才得出,控制变量来论述,r l比s 等电阻。
电流做功U I t , 电热I平方R t 。电功率,W比t,电压乘电流也是。
3.基本电路联串并,分压分流要分明。复杂电路动脑筋,等效电路是关键。
4.闭合电路部分路,外电路和内电路,遵循定律属欧姆。
路端电压内压降,和就等电动势,除于总阻电流是。
磁场
1.磁体周围有磁场,N极受力定方向;电流周围有磁场,安培定则定方向。
2.F比I l是场强,φ等B S 磁通量,磁通密度φ比S,磁场强度之名异。
3.BIL安培力,相互垂直要注意。
4.洛仑兹力安培力,力往左甩别忘记。
电磁感应
1.电磁感应磁生电,磁通变化是条件。回路闭合有电流,回路断开是电源。感应电动势大小,磁通变化率知晓。
2.楞次定律定方向,阻碍变化是关键。导体切割磁感线,右手定则更方便。
3.楞次定律是抽象,真正理解从三方,阻碍磁通增和减,相对运动受反抗,自感电流想阻挡,能量守恒理应当。楞次先看原磁场,感生磁场将何向,全看磁通增或减,安培定则知i 向。
交流电
1.匀强磁场有线圈,旋转产生交流电。电流电压电动势,变化规律是弦线。
中性面计时是正弦,平行面计时是余弦。
2.NBSω是最大值,有效值用热量来计算。
3.变压器供交流用,恒定电流不能用。
理想变压器,初级U I值,次级U I值,相等是原理。
电压之比值,正比匝数比;电流之比值,反比匝数比。
运用变压比,若求某匝数,化为匝伏比,方便地算出。
远距输电用,升压降流送,否则耗损大,用户后降压。
高中物理选修3-5重要知识点
磁场
1.磁场的基本性质:磁场对方入其中的磁极、电流有磁场力的作用;
2.磁铁、电流都能能产生磁场;
3.磁极和磁极之间,磁极和电流之间,电流和电流之间都通过磁场发生相互作用;
4.磁场的方向:磁场中小磁针北极的指向就是该点磁场的方向;
磁感线
在磁场中画一条有向的曲线,在这些曲线中每点切线方向就是该点的磁场方向。
1.磁感线是人们为了描述磁场而人为假设的线;
2.磁铁的磁感线,在外部从北极到南极,内部从南极到北极;
3.磁感线是封闭曲线;
安培定则
1.通电直导线的磁感线:用右手握住通电导线,让伸直的大拇指所指方向跟电流方向一致,弯曲的四指所指的方向就是磁感线的环绕方向;
2.环形电流的磁感线:让右手弯曲的四指和环形电流方向一致,伸直的大拇指所指的方向就是环形导线中心轴上磁感线的方向;
3.通电螺旋管的磁场:用右手握住螺旋管,让弯曲的四指方向和电流方向一致,大拇指所指的方向就是螺旋管内部磁感线的方向;
地磁场
地球本身产生的磁场;从地磁北极(地理南极)到地磁南极(地理北极)。
磁感应强度
磁感应强度是描述磁场强弱的物理量。
1.磁感应强度的大小:在磁场中垂直于磁场方向的通电导线,所受的安培力F跟电流I和导线长度L的乘积的比值,叫磁感应强度。B=F/IL
2.磁感应强度的方向就是该点磁场的方向(放在该点的小磁针北极的指向)
3.磁感应强度的国际单位:特斯拉 T, 1T=1N/A。m
安培力
磁场对电流的作用力。
1.大小:在匀强磁场中,当通电导线与磁场垂直时,电流所受安培力F等于磁感应强度B、电流I和导线长度L三者的乘积。
2.定义式:F=BIL(适用于匀强电场、导线很短时)
3.安培力的方向:左手定则:伸开左手,使大拇指根其余四个手指垂直,并且跟手掌在同一个平面内,把手放入磁场中,让磁感线垂直穿过手心,并使伸开四指指向电流的方向,那么大拇指所指的方向就是通电导线所受安培力的方向。
高中物理选修3-5重要知识点
第一章电磁感应
1.两个人物:
a.法拉第:磁生电
b.奥期特:电生磁
2.产生条件:
a.闭合电路
b.磁通量发生变化注意:
①产生感应电动势的条件是只具备b
②产生感应电动势的那部分导体相当于电源。
③电源内部的电流从负极流向正极。
3.感应电流方向的叛定:
(1).方法一:右手定则
(2).方法二:楞次定律:(理解四种阻碍)
①阻碍原磁通量的变化(增反减同)
②阻碍导体间的相对运动(来拒去留)
③阻碍原电流的变化(增反减同)
④面积有扩大与缩小的趋势(增缩减扩)
4.感应电动势大小的计算:
(1).法拉第电磁感应定律:
a.内容:
b.表达式:Ent
(2).计算感应电动势的公式x
①求平均值:Ent
②求瞬时值:E=BLV(导线切割类)
③法拉第电机:E12BL2
④闭合电路殴姆定律:EI感(Rr)
5.感应电流的计算:x平均电流:IERr(Rr)t瞬时电流:IERrBLVRr
6.安培力计算:
(1)平均值:
FxBIxLBLBLq(Rr)tt
(2).瞬时值:FBILB2L2VRr
7.通过的电荷量:qItRr注意:求电荷量只能用平均值,而不能用瞬时值。
8.互感:由于线圈A中电流的变化,它产生的磁通量发生变化,磁通量的变化在线圈B中激发了感应电动势。这种现象叫互感。
9.自感现象:
(1)定义:是指由于导体本身的电流发生变化而产生的电磁感应现象。
(2)决定因素:线圈越长,单位长度上的匝数越多,截面积越大,它的自感系数就越大。另外,有铁心的线圈的自感系数比没有铁心时要大得多。
(3)类型:通电自感和断电自感
(4)单位:亨利(H)、毫亨(mH),微亨(H)。
10.涡流及其应用
(1)定义:变压器在工作时,除了在原、副线圈产生感应电动势外,变化的磁通量也会在铁芯中产生感应电流。一般来说,只要空间有变化的磁通量,其中的导体就会产生感应电流,我们把这种感应电流叫做涡流
(2)应用:
a.新型炉灶电磁炉。
b.金属探测器:飞机场、火车站安全检查、扫雷、探矿。
第二章交变电流
一.正弦交变电流
1.两个特殊的位置
a.中性面位置:磁通量ф最大,磁通量的变化率为零,即感应电动势零。
b.垂直中性面位置磁通量ф为零,磁通量的变化率最大,即感应电动势最大。
2.正弦交变电流的表达式:
a.从中性面位置记时:
瞬时电动势:e=Emsinωt
瞬时电流:iImsintb.从垂直中性面位置记时
瞬时电动势:e=Emcosωt
瞬时电流:iImcost
3.正弦交变电流的四值:
a.最大值:Em=nBSω=nΦmω
b.瞬时值:
①中性面位置记时:e=Emsinωt
②垂直中性面位置记时:e=Emcosωtx
c.平均值:Entd.有效值:根据电流的热效应规定。注意:
⑴只有正弦交变电流的有效值才一定是最大值的22倍。
a.动势有效值:m20.707m
b,电压有效值:Uum20.707Um
c.电流有效值:IIm20.707Im。
(2)通常所说的交变电流的电流、电压;交流电表的读数;交流电器的额定电压、额定电流;保险丝的熔断电流等都指有效值。(电容器的耐压值是交流的最大值。)
(3)生活中用的市电电压为220V,其最大值为Um=2202V=311V,频率为50HZ,所以其电压瞬时值的表达式为u=311sin314tV。
4、表征交流电的物理量:
(1)瞬时值、最大值和有效值:
(2)周期、频率
a.周期:交流电完成一次周期性变化所需的时间叫周期。以T表示,单位是秒。
b.频率:交流电在1秒内完成周期性变化的次数叫频率。以f表示,单位是Hz。
c.二者关系:周期和频率互为倒数,即T1f。
d.我国市电频率为50Hz,周期为0.02s5.交流电的图象:emsint图象如图53所示。emcost图象如图54所示。
二.变压器
1.理想变压器:
2.原理:互感
3.类型:
⑴升压变器:副线圈用细线绕
⑵降压变器:副线圈用粗线绕
⑶1:1隔离变压器:两边一样
4.基本公式:
⑴电压:(原决定副)U1Un1正比
2n2(2)电流:(副决定原)
一个副线圈:I1n2In反比21多个副线圈:U1I1=U2I2+U3I3
(3)功率:(输出决定输入)P出=P入
5.互感器
⑴电压互感器:降压变压器、并联⑵电流互感器:升压变压器、火线串联
三.远距离输电
1.高压输电的原因:
在输送的电功率和送电导线电阻一定的条件下,提高送电电压,减小送电电流强度可以达到减少线路上电能损失的目的。
2.远距离输电的结构图:
表示电容对交变电流的阻碍作用
(2)特点:
“通交流,隔直流”、“通高频,阻
D1r
低频”。
I1D2I1IrI2I2五.传感器的及其工作原理Ⅰ
1.定义:~n1n1n2n2
(1)功率之间的关系是:
a.P1=P1
b.P2=P2
c.P1=Pr+P2;
(2)电压之间的关系是:
a.U1Un1
1n1b.U2Un22n2c.U1UrU2
(3)电流之间的关系是:
a.I1nI11n1b.I2In22n
2c.I1IrI23.输电电流I的计算式:
"IP输Up1U"
出14.损失功率、损失电压的计算:
(1)Pr=Ir2r,
(2)Ur=Irr,
四.感抗和容抗(统称电抗)
1.感抗:
(1)意义:表示电感对交变电流的阻碍作用
(2)特点:“通直流,阻交流”、“通低频,阻高频”。
2.容抗:
(1)意义:有一些元件它能够感受诸如力、温度、光、声、化学成分等非电学量,并能把它们按照一定的规律转换为电压、电流等电学量,或转换为电路的通断。我们把这种元件叫做传感器。
2.优点是:把非电学量转换为电学量以后,就可以很方便地进行测量、传输、处理和控制了。
3.应用:
(1).几种特殊的电阻
a.光敏电阻:光照越强,光敏电阻阻值越小。
b热敏电阻:阻值随温度的升高而减小,且阻值随温度变化非常明显。
c.金属导体的电阻:随温度的升高而增大
d.霍尔元件:是将电磁感应这个磁学量转化为电压这个电学量的元件。
(2).传感器应用:
a.力传感器的应用电子秤
b.声传感器的应用话筒
c.温度传感器的应用电熨斗、电饭锅、测温仪
d.光传感器的应用鼠标器、火灾报警器
(3).传感器的应用实例:
a.光控开关
b.温度报警器
高中物理选修3-5重要知识点
一、动量;动量守恒定律
1、动量:可以从两个侧面对动量进行定义或解释:
①物体的质量跟其速度的乘积,叫做物体的动量。
②动量是物体机械运动的一种量度。
动量的表达式P=mv。单位是。动量是矢量,其方向就是瞬时速度的方向。因为速度是相对的,所以动量也是相对的。
2、动量守恒定律:当系统不受外力作用或所受合外力为零,则系统的总动量守恒。动量守恒定律根据实际情况有多种表达式,一般常用等号左右分别表示系统作用前后的总动量。
运用动量守恒定律要注意以下几个问题:
①动量守恒定律一般是针对物体系的,对单个物体谈动量守恒没有意义。
②对于某些特定的问题,例如碰撞、爆炸等,系统在一个非常短的时间内,系统内部各物体相互作用力,远比它们所受到外界作用力大,就可以把这些物体看作一个所受合外力为零的系统处理,在这一短暂时间内遵循动量守恒定律。
③计算动量时要涉及速度,这时一个物体系内各物体的速度必须是相对于同一惯性参照系的,一般取地面为参照物。
④动量是矢量,因此“系统总动量”是指系统中所有物体动量的矢量和,而不是代数和。
⑤动量守恒定律也可以应用于分动量守恒的情况。有时虽然系统所受合外力不等于零,但只要在某一方面上的合外力分量为零,那么在这个方向上系统总动量的分量是守恒的。
⑥动量守恒定律有广泛的应用范围。只要系统不受外力或所受的合外力为零,那么系统内部各物体的相互作用,不论是万有引力、弹力、摩擦力,还是电力、磁力,动量守恒定律都适用。
系统内部各物体相互作用时,不论具有相同或相反的运动方向;在相互作用时不论是否直接接触;在相互作用后不论是粘在一起,还是分裂成碎块,动量守恒定律也都适用。
3、动量与动能、动量守恒定律与机械能守恒定律的比较。
动量与动能的比较:
①动量是矢量,动能是标量。
②动量是用来描述机械运动互相转移的物理量,而动能往往用来描述机械运动与其他运动(比如热、光、电等)相互转化的物理量。
比如完全非弹性碰撞过程研究机械运动转移——速度的变化可以用动量守恒,若要研究碰撞过程改变成内能的机械能则要用动能为损失去计算了。所以动量和动能是从不同侧面反映和描述机械运动的物理量。
动量守恒定律与机械能守恒定律比较:前者是矢量式,有广泛的适用范围,而后者是标量式其适用范围则要窄得多。这些区别在使用中一定要注意。
4、碰撞:两个物体相互作用时间极短,作用力又很大,其他作用相对很小,运动状态发生显著化的现象叫做碰撞。
以物体间碰撞形式区分,可以分为“对心碰撞”(正碰),而物体碰前速度沿它们质心的连线;“非对心碰撞”——中学阶段不研究。
以物体碰撞前后两物体总动能是否变化区分,可以分为:“弹性碰撞”。碰撞前后物体系总动能守恒;“非弹性碰撞”,完全非弹性碰撞是非弹性碰撞的特例,这种碰撞,物体在相碰后粘合在一起,动能损失最大。
各类碰撞都遵守动量守恒定律和能量守恒定律,不过在非弹性碰撞中,有一部分动能转变成了其他形式能量,因此动能不守恒了。
高中物理选修3-5重要知识点
一、量子论
1、创立标志:1900年普朗克在德国的《物理年刊》上发表《论正常光谱能量分布定律》的论文,标志着量子论的诞生。
2、量子论的主要内容
①普朗克认为物质的辐射能量并不是无限可分的,其最小的、不可分的能量单元即“能量子”或称“量子”,也就是说组成能量的单元是量子。
②物质的辐射能量不是连续的,而是以量子的整数倍跳跃式变化的。
3、量子论的发展
①1905年,爱因斯坦奖量子概念推广到光的传播中,提出了光量子论。
②1913年,英国物理学家玻尔把量子概念推广到原子内部的能量状态,提出了一种量子化的原子结构模型,丰富了量子论。
③到1925年左右,量子力学最终建立。
二、黑体和黑体辐射
1、热辐射现象
任何物体在任何温度下都要发射各种波长的电磁波,并且其辐射能量的大小及辐射能量按波长的分布都与温度有关。这种由于物质中的分子、原子受到热激发而发射电磁波的现象称为热辐射。
①物体在任何温度下都会辐射能量。
②物体既会辐射能量,也会吸收能量。物体在某个频率范围内发射电磁波能力越大,则它吸收该频率范围内电磁波能力也越大。
辐射和吸收的能量恰相等时称为热平衡。此时温度恒定不变。
实验表明:物体辐射能多少决定于物体的温度(T)、辐射的波长、时间的长短和发射的面积。
2、黑体
物体具有向四周辐射能量的本领,又有吸收外界辐射来的能量的本领。黑体是指在任何温度下,全部吸收任何波长的辐射的物体。
3、实验规律:
①随着温度的升高,黑体的辐射强度都有增加;
②随着温度的升高,辐射强度的极大值向波长较短方向移动。
三、光电效应
1、光电效应在光(包括不可见光)的照射下,从物体发射出电子的现象称为光电效应。
①任何一种金属都有一个极限频率,入射光的频率必须大于这个极限频率才能发生光电效应,低于极限频率的光不能发生光电效应。
②光电子的最大初动能与入射光的强度无关,光随入射光频率的增大而增大。
③大于极限频率的光照射金属时,光电流强度(反映单位时间发射出的光电子数的多少),与入射光强度成正比。
④金属受到光照,光电子的发射一般不超过10—9秒。
2、波动说在光电效应上遇到的困难
波动说认为:光的能量即光的强度是由光波的振幅决定的与光的频率无关,所以波动说对解释上述实验规律中的①②④条都遇到困难。
【高中物理选修3-5重要知识点】相关文章:
高中物理选修知识点01-22
高中物理选修3-5重点知识归纳06-11
高中物理选修教案04-02
物理选修3-5知识要点整理07-03
关于高中化学选修3重要知识点总结05-11
高中生物选修一重要知识点11-27
高中物理知识点11-09
高中化学选修一知识点06-02
重要的物理知识点11-11
高三政治选修1知识点汇总06-13