高中物理知识点

时间:2024-04-13 16:02:20 物理 我要投稿

高中物理知识点汇编【15篇】

  在日常的学习中,说到知识点,大家是不是都习惯性的重视?知识点是传递信息的基本单位,知识点对提高学习导航具有重要的作用。哪些才是我们真正需要的知识点呢?下面是小编收集整理的高中物理知识点,供大家参考借鉴,希望可以帮助到有需要的朋友。

高中物理知识点汇编【15篇】

高中物理知识点1

  一、磁场:

  1、磁场的基本性质:磁场对方入其中的磁极、电流有磁场力的作用;

  2、磁铁、电流都能能产生磁场;

  3、磁极和磁极之间,磁极和电流之间,电流和电流之间都通过磁场发生相互作用;

  4、磁场的方向:磁场中小磁针北极的指向就是该点磁场的方向;

  二、磁感线:

  在磁场中画一条有向的曲线,在这些曲线中每点的切线方向就是该点的磁场方向;

  1、磁感线是人们为了描述磁场而人为假设的线;

  2、磁铁的磁感线,在外部从北极到南极,内部从南极到北极;3、磁感线是封闭曲线;

  三、安培定则:

  1、通电直导线的磁感线:用右手握住通电导线,让伸直的大拇指所指方向跟电流方向一致,弯曲的四指所指的方向就是磁感线的环绕方向;

  2、环形电流的磁感线:让右手弯曲的四指和环形电流方向一致,伸直的大拇指所指的方向就是环形导线中心轴上磁感线的方向;

  3、通电螺旋管的磁场:用右手握住螺旋管,让弯曲的四指方向和电流方向一致,大拇指所指的方向就是螺旋管内部磁感线的方向;

  四、地磁场:

  地球本身产生的.磁场;从地磁北极(地理南极)到地磁南极(地理北极);

  五、磁感应强度:

  磁感应强度是描述磁场强弱的物理量。1、磁感应强度的大小:在磁场中垂直于磁场方向的通电导线,所受的安培力F跟电流I和导线长度L的乘积的比值,叫磁感应强度。B=F/IL2、磁感应强度的方向就是该点磁场的方向(放在该点的小磁针北极的指向)3、磁感应强度的国际单位:特斯拉T,1T=1N/A。m

  六、安培力:

  磁场对电流的作用力;1、大小:在匀强磁场中,当通电导线与磁场垂直时,电流所受安培力F等于磁感应强度B、电流I和导线长度L三者的乘积。2、定义式F=BIL(适用于匀强电场、导线很短时)3、安培力的方向:左手定则:伸开左手,使大拇指根其余四个手指垂直,并且跟手掌在同一个平面内,把手放入磁场中,让磁感线垂直穿过手心,并使伸开四指指向电流的方向,那么大拇指所指的方向就是通电导线所受安培力的方向。七、磁铁和电流都可产生磁场;

  八、磁场对电流有力的作用;

  九、电流和电流之间亦有力的作用;

  (1)同向电流产生引力;(2)异向电流产生斥力;

  十、分子电流假说:

  所有磁场都是由电流产生的;

  十一、磁性材料:能够被强烈磁化的物质叫磁性材料:

  (1)软磁材料:磁化后容易去磁的材料;例:软铁;硅钢;应用:制造电磁铁、变压器、(2)硬磁材料:磁化后不容易去磁的材料;例:碳钢、钨钢、制造:永久磁铁;

  十二、磁场对运动电荷的作用力,叫做洛伦兹力

  1、洛仑兹力的方向由左手定则判断:伸开左手让大拇指和其余四指共面且垂直,把左手放入磁场中,让磁感线垂直穿过手心,四指为正电荷运动方向(与负电荷运动方向相反)大拇指所指方向就是洛仑兹力的方向;

  (1)洛仑兹力F一定和B、V决定的平面垂直。

  (2)洛仑兹力只改变速度的方向而不改变其大小

  (3)洛伦兹力永远不做功。

  2、洛伦兹力的大小

  (1)当v平行于B时:F=0

  (2)当v垂直于B时:F=qvB

高中物理知识点2

  一、波的干涉和衍射:

  1、干涉:两列频率相同的波相互叠加,在某些地方振动加强,某些地方振动减弱,这种现象叫波的干涉;

  (1)、发生干涉的条件:两列波的频率相同;

  (2)、波峰与波峰重叠、波谷与波谷重叠振动加强;波峰与波谷重叠振动减弱;

  (3)、振动加强的区域的振动位移并不是一致最大;

  2、衍射:波绕过障碍物,传到障碍物后方的现象,叫波的衍射;(隔墙有耳)

  能观察到明显衍射现象的条件是:障碍物或小孔的尺寸比波长小,或差不多;

  3、衍射和干涉是波的特性,只有某物资具有这两种性质时,才能说该物资是波;

  二、光的电磁说:

  1、光是电磁波:

  (1)、光在真空中的传播速度是3.0108m/s;

  (2)、光的传播不需要介质;

  (3)光能发生衍射、干涉现象;

  2、电磁波谱:无线电波、红外线、可见光、紫外线、伦琴射线、射线;

  (1)从左向右,频率逐渐变大,波长逐渐减小;

  (2)从左到右,衍射现象逐渐减弱;

  (3)红外线:热效应强,可加热,一切物体都能发射红外线;

  (4)、紫外线:有荧光效应、化学效应能,能辨比细小差别,消毒杀菌;

  3、光的衍射:特例:萡松亮斑;

  4、光的干涉:

  (1)双缝(双孔)干涉:波长越长、双孔距离越小、光屏间距离越大,相邻亮条纹间的距离越大;

  (2)薄膜干涉:特例:肥皂泡上的彩色条纹;检测工件的平整性,夏天油路上油滴成彩色;

  三、光电效效应:在光的照射下,从物体向外发射出电子的现象叫光电效应,发射出的电子叫光电子;

  1、现象:

  (1)、任何金属都有一个极限频率,只有当入射光的频率大于极限频率时,才能发生光电效应;

  (2)、光电子的最大初动能与入射光的强度无光,只随入射光的频率的增大而增大;

  (3)入射光照射在金属上光电子的发射几乎是瞬时的,一般不超过10-9s

  (4)当入射光的'频率大于极限频率时,光电流的强度与入射光的强度成正比;

  2、在空间传播的光是不连续的而是一份一份的,每一份叫做光子;光子的能量:E=h(光的频率越大光子的能量越大)

  3、光电效应证明了光具有粒子性;

  4、光具有波、粒二象性:光既具有波动性又具有粒子性;

  四、激光具有:相干性(作为干涉光源);平行度好(作光盘、测量);亮度高(加热、光刀)

  五、物质波:(自然界中的物质可分为:场和实物)

  1、自然界中一切物体都有波动性;

  2、物质波的波长:=h/p;

高中物理知识点3

  力和运动学:

  力是物体之间的相互作用。运动学研究物体位置随时间的变化。

  牛顿运动定律是高中物理的核心内容:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态为止。

  机械能守恒定律和能量守恒定律:

  能量守恒定律是指能量既不会凭空产生,也不会凭空消失,它只会从一种形式转化为另一种形式,或者从一个物体转移到其他物体,而能量的总玳保持不变。

  机械能守恒定律是指在一个只有保守力(见保守力与耗散力)做功的物理系{(见牛顿运动定律;亦称“势力学”)}中,动能和势能相互转化,但机械能的总量保持不变。

  振动和波动:

  振动是指物体沿直线或曲线并经过其平衡位置所作的往复运动。

  波动是指振动在介质中的传播。

  热力学定律:

  热力学第一定律(能量守恒定律)世间万物总能量不会变,但能源可由一种形式转为另一种形式。

  热力学第二定律(熵增定律)不可能把热从低温物体传到高温物体而不产生其他影响;不可能从单一热源取热使之完全转换为有用的功而不产生其他影响;不可逆热力过程中熵的微增量总是大于零。

  总的来说,高中物理知识点需要掌握基本的物理概念、原理和数学方法,注重理解和应用,掌握物理实验技能,并通过练习加深对知识点的理解和运用能力。

  高中物理知识点

  1.气体的状态参量:

  温度:宏观上,物体的冷热程度 高一;微观上,物体内部分子无规则运动的剧烈程度的标志,热力学温度与摄氏温度关系:T=t+273 {T:热力学温度(K),t:摄氏温度(℃)}

  体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL

  压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)

  2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大

  3.理想气体的状态方程:p1V1/T1=p2V2/T2 {PV/T=恒量,T为热力学温度(K)}

  注:

  (1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关;

  (2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度(K)。

  高中物理重要知识点

  1.光本性学说的发展简史

  (1)牛顿的微粒说:认为光是高速粒子流.它能解释光的直进现象,光的反射现象.

  (2)惠更斯的波动说:认为光是某种振动,以波的形式向周围传播.它能解释光的干涉和衍射现象.

  2、光的干涉

  光的干涉的条件是:有两个振动情况总是相同的波源,即相干波源。(相干波源的频率必须相同)。形成相干波源的方法有两种:⑴利用激光(因为激光发出的是单色性极好的光)。⑵设法将同一束光分为两束(这样两束光都来源于同一个光源,因此频率必然相等)。下面4个图分别是利用双缝、利用楔形薄膜、利用空气膜、利用平面镜形成相干光源的示意图。

  2.干涉区域内产生的亮、暗纹

  ⑴亮纹:屏上某点到双缝的光程差等于波长的整数倍,即δ=nλ(n=0,1,2,……)

  ⑵暗纹:屏上某点到双缝的'光程差等于半波长的奇数倍,即δ=(n=0,1,2,……)

  相邻亮纹(暗纹)间的距离。用此公式可以测定单色光的波长。用白光作双缝干涉实验时,由于白光内各种色光的波长不同,干涉条纹间距不同,所以屏的中央是白色亮纹,两边出现彩色条纹。

  3.衍射----光通过很小的孔、缝或障碍物时,会在屏上出现明暗相间的条纹,且中央条纹很亮,越向边缘越暗。

  ⑴各种不同形状的障碍物都能使光发生衍射。

  ⑵发生明显衍射的条件是:障碍物(或孔)的尺寸可以跟波长相比,甚至比波长还小。(当障碍物或孔的尺寸小于0.5mm时,有明显衍射现象。)

  ⑶在发生明显衍射的条件下当窄缝变窄时亮斑的范围变大条纹间距离变大,而亮度变暗。

  4、光的偏振现象:通过偏振片的光波,在垂直于传播方向的平面上,只沿着一个特定的.方向振动,称为偏振光。光的偏振说明光是横波。

  5.光的电磁说

  ⑴光是电磁波(麦克斯韦预言、赫兹用实验证明了正确性。)

  ⑵电磁波谱。波长从大到小排列顺序为:无线电波、红外线、可见光、紫外线、X射线、γ射线。各种电磁波中,除可见光以外,相邻两个波段间都有重叠。

  各种电磁波的产生机理分别是:无线电波是振荡电路中自由电子的周期性运动产生的;红外线、可见光、紫外线是原子的外层电子受到激发后产生的;伦琴射线是原子的内层电子受到激发后产生的;γ射线是原子核受到激发后产生的。

  ⑶红外线、紫外线、X射线的主要性质及其应用举例。

  种类产生主要性质应用举例

  红外线一切物体都能发出热效应遥感、遥控、加热

  紫外线一切高温物体能发出化学效应荧光、杀菌、合成VD2

  X射线阴极射线射到固体表面穿透能力强人体透视、金属探伤

  高中物理知识点归纳

  1.同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)

  2.互成角度力的合成:

  F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2

  3.合力大小范围:|F1-F2|≤F≤|F1+F2|

  4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)

  注:

  (1)力(矢量)的合成与分解遵循平行四边形定则;

  (2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;

  (3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;

  (4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;

  (5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。

高中物理知识点4

  考点一:关于弹力的问题

  1.弹力的产出

  条件:(1)物体间是否直接接触

  (2)接触处是否有相互挤压或拉伸

  2.弹力方向的判断

  弹力的方向总是与物体形变方向相反,指向物体恢复原状的方向。弹力的作用线总是通过两物体的接触点并沿其接触点公共切面的垂直方向。

  (1)压力的方向总是垂直于支持面指向被压的物体(受力物体)。

  (2)支持力的方向总是垂直于支持面指向被支持的物体(受力物体)。

  (3)绳的拉力是绳对所拉物体的弹力,方向总是沿绳指向绳收缩的方向(沿绳背离受力物体)。

  补充:物体间点面接触时其弹力方向过点垂直于面,点线接触时其弹力方向过点垂直于线,两物体球面接触时其弹力的方向沿两球心的连线指向受力物体。

  3.弹力的大小

  (1)弹簧的弹力满足胡克定律:。其中k代表弹簧的劲度系数,仅与弹簧的材料有关,x代表形变量。

  (2)弹力的大小与弹性形变的大小有关。在弹性限度内,弹性形变越大,弹力越大。

  考点二:关于摩擦力的问题

  1.对摩擦力认识的四个不一定

  (1)摩擦力不一定是阻力

  (2)静摩擦力不一定比滑动摩擦力小

  (3)静摩擦力的方向不一定与运动方向共线,但一定沿接触面的切线方向

  (4)摩擦力不一定越小越好,因为摩擦力既可用作阻力,也可以作动力

  2.静摩擦力用二力平衡来求解,滑动摩擦力用公式来求解

  3.静摩擦力存在及其方向的判断

  存在判断:假设接触面光滑,看物体是否发生相当运动,若发生相对运动,则说明物体间有相对运动趋势,物体间存在静摩擦力;若不发生相对运动,则不存在静摩擦力。

  方向判断:静摩擦力的方向与相对运动趋势的方向相反;滑动摩擦力的方向与相对运动的方向相反。

  考点三:物体的受力分析

  1.物体受力分析的.方法

  (1)方法

  (2)选择

  2.受力分析的顺序

  先重力,再接触力,最后分析其他外力

  3.受力分析时应注意的问题

  (1)分析物体受力时,只分析周围物体对研究对象所施加的力

  (2)受力分析时,不要多力或漏力,注意确定每个力的实力物体和受力物体,在力的合成和分解中,不要把实际不存在的合力或分力当做是物体受到的力

  (3)如果一个力的方向难以确定,可用假设法分析

  (4)物体的受力情况会随运动状态的改变而改变,必要时根据学过的知识通过计算确定

  (5)受力分析外部作用看整体,互相作用要隔离

  考点四:正交分解法在力的合成与分解中的应用

  1.正交分解时建立坐标轴的原则

  (1)以少分解力和容易分解力为原则,一般情况下应使尽可能多的力分布在坐标轴上

  (2)一般使所要求的力落在坐标轴上

  力的相互作用高中物理知识点

高中物理知识点5

  电势

  电场中某点的电势,等于单位正电荷由该点移到参考点(零势点)时电场力作的功;

  1、电势具有相对性,和零势面的选择有关;

  2、电势是标量,单位是伏特V;

  3、电势差和电势间的关系:UAB=φA—φB;

  4、电势沿电场线的方向降低;

  5、相同电荷在同一等势面的任意位置,电势能相同;原因:电荷从一点移到另一点时,电场力不作功,所以电势能不变;

  6、电场线总是由电势高的地方指向电势低的地方;

  7、等势面的画法:相临等势面间的距离相等。

  电场线

  电场线是人们为了形象的描述电场特性而人为假设的线。

  1、电场线不是客观存在的线;

  2、电场线的形状:电场线起于正电荷终于负电荷;G:用锯木屑观测电场线

  (1)只有一个正电荷:电场线起于正电荷终于无穷远;

  (2)只有一个负电荷:起于无穷远,终于负电荷;

  (3)既有正电荷又有负电荷:起于正电荷终于负电荷;

  3、电场线的作用:

  ①表示电场的强弱:电场线密则电场强(电场强度大);电场线疏则电场弱电场强度小);

  ②表示电场强度的方向:电场线上某点的切线方向就是该点的场强方向;

  4、电场线的特点:

  ①电场线不是封闭曲线;

  ②同一电场中的.电场线不向交。

  自由落体运动

  1、初速度Vo=0

  2、末速度Vt=gt

  3、下落高度h=gt2/2(从Vo位置向下计算)

  4、推论Vt2=2gh

  注:

  (1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;

  (2)a=g=9。8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。

  竖直上抛运动

  1、位移s=Vot—gt2/22。末速度Vt=Vo—gt(g=9。8m/s2≈10m/s2)

  2、有用推论Vt2—Vo2=—2gs4。上升高度Hm=Vo2/2g(抛出点算起)

  3、往返时间t=2Vo/g(从抛出落回原位置的时间)

  注:

  (1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;

  (2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;

  (3)上升与下落过程具有对称性,如在同点速度等值反向等。

  三种产生电荷的方式

  1、摩擦起电:

  (1)正点荷:用绸子摩擦过的玻璃棒所带电荷;

  (2)负电荷:用毛皮摩擦过的橡胶棒所带电荷;

  (3)实质:电子从一物体转移到另一物体;

  2、接触起电:

  (1)实质:电荷从一物体移到另一物体;

  (2)两个完全相同的物体相互接触后电荷平分;

  (3)电荷的中和:等量的异种电荷相互接触,电荷相合抵消而对外不显电性,这种现象叫电荷的中和;

  3、感应起电:把电荷移近不带电的导体,可以使导体带电;

  (1)电荷的基本性质:同种电荷相互排斥、异种电荷相互吸引;

  (2)实质:使导体的电荷从一部分移到另一部分;

  (3)感应起电时,导体离电荷近的一端带异种电荷,远端带同种电荷

高中物理知识点6

  一、电流:电荷的定向移动行成电流。1、产生电流的条件:(1)自由电荷;(2)电场;2、电流是标量,但有方向:我们规定:正电荷定向移动的方向是电流的方向;

  注:在电源外部,电流从电源的正极流向负极;在电源的内部,电流从负极流向正极;3、电流的大小:通过导体横截面的电荷量Q跟通过这些电量所用时间t的比值叫电流I表示;(1)数学表达式:I=Q/t;(2)电流的国际单位:安培A

  (3)常用单位:毫安mA、微安uA;(4)1A=103mA=106uA

  二、欧姆定律:导体中的电流跟导体两端的电压U成正比,跟导体的电阻R成反比;1、定义式:I=U/R;2、推论:R=U/I;3、电阻的国际单位时欧姆,用表示;

  1k=103,1M=1064、伏安特性曲线:

  三、闭合电路:由电源、导线、用电器、电键组成;1、电动势:电源的电动势等于电源没接入电路时两极间的`电压;用E表示;

  2、外电路:电源外部的电路叫外电路;外电路的电阻叫外电阻;用R表示;其两端电压叫外电压;3、内电路:电源内部的电路叫内电阻,内点路的电阻叫内电阻;用r表示;其两端电压叫内电压;如:发电机的线圈、干电池内的溶液是内电路,其电阻是内电阻;4、电源的电动势等于内、外电压之和;

  E=U内+U外;U外=RI;E=(R+r)I

  四、闭合电路的欧姆定律:闭合电路里的电流跟电源的电动势成正比,跟内、外电路的电阻之和成反比;1、数学表达式:I=E/(R+r)2、当外电路断开时,外电阻无穷大,电源电动势等于路端电压;就是电源电动势的定义;3、当外电阻为零(短路)时,因内阻很小,电流很大,会烧坏电路;

  五、半导体:导电能力在导体和绝缘体之间;半导体的电阻随温升越高而减小;

  六:导体的电阻随温度的升高而升高,当温度降低到某一值时电阻消失,成为超导;

高中物理知识点7

  怎样判断系统动量是否守衡?

  动量守衡条件是系统不受外力,或合外力为零。一般研究问题,如果相互作用的内力比外力大很多,则可认为系统动量守衡;根据力的独立作用原理,如果在某方向上合外力为零,则在该方向上动量守衡。

  注意守衡条件对内力的性质没有任何限制,可以是电场力、磁场力、核力等等。对系统状态没有任何限制,可以是微观、高速系统,也可以是宏观、低速系统。而力的作用过程可以是连续的作用,可以是间断的作用,如二人在光滑平面上的抛接球过程。综上有:

  物体运动状态是否变化取决于--物体所受的合外力。

  物体运动状态变化得快慢取决于--物体所受到的合外力和质量大小。物体到底做什么形式的运动取决于--物体所受到的合外力和初始状态。物体运动状态变化了多少取决于--

  (1)力的大小和方向;

  (2)力作用时间的长短。实验表明只要力与其作用时间的乘积一定,它引起同一个物体的速度变化相同,力与力作用时间的乘积,可以决定和量度力的某种作用效果--冲量。系统的内力改变了系统内物体的动量,但系统外力才是改变系统总动量的原因。

  (三)能量和能量守恒

  知识结构

  功是一个过程量,与力在空间的作用过程相关。恒力功的'计算公式与物体运动过程无关;重力功、弹力功与路径无关。功是一个标量,但有正负之分。

  2.功率P:功率是表征力做功快慢的物理量、是标量:P=W/t 。若做功快慢程度不同,上式为平均功率。注意恒力的功率不一定恒定,如初速为零的匀加速运动,第一秒、第二秒、第三秒内合力的平均功率之比为1:3:5。已知功率可以求力在一段时间内所做的功W=Pt,这时可能是变力再做功。

  上式常常用于分析解决机车牵引功率问题,常设有以下两种约束条件:

  1)发动机功率一定:牵引力与速度成反比,只要速度改变,牵引力F=P/v将改变,这时的运动一定是变加速运动。

  2)机车以恒力启动:牵引力F恒定,由P=Fv可知,若车做匀加速运动,则功率P将增加,这种过程直到P达到机车的额定功率为止(注意不是达到最大速度为止)。

  3.能:自然界有多种运动形式,与不同运动形式相应的存在不同形式的能量:机械运动--机械能;热运动--内能;电磁运动--电磁能;化学运动--化学能;生物运动--生物能;原子及原子核运动--原子能、核能。

  动能:物体由于有机械运动速度而具有的能量Ek=mv2/2

  能,包括动能和势能,都是标量。都是状态量,如动能由速度决定,重力势能由高度决定,弹性势能由形变状态决定。都具有相对性,物体速度相对于不同的参照物有不同的结果,相应的动能相对于不同的参照物有不同的动能。势能相对于不同的零势能参考面有不同的结果,势能有可能取负值,它意味着此时物体的势能比零势能低。

  4.动能定理:研究对象:质点,数学表达公式:W=mv2/2-mv02/2。公式中W为质点受到的所有的作用力在所研究的过程中做的总功,它可以是恒力功,可以是变力功,可以是分阶段由不同的力做功累积(代数和)而得到的结果。动能定理对力的性质没有任何限制,

  可以是重力、弹力、摩擦力、也可以是电场力、磁场力或其它力。等式右边为所研究的过程(初、末状态)中质点的动能的变化。动能定理表明,力对物体所做的总功,是物体动能变化的原因,力对物体所做的总功量度了物体动能的变化大小。

  5.机械能守恒定律:在只有重力或弹力做功的情况下,物体的动能和势能发生相互转化,但机械能的总量保持不变。机械能守恒定律的研究对象是系统,一般简化为物体;守恒是指系统在满足守恒条件下,机械能--动能和势能之和,在状态变化过程中总保持不变。怎样判断机械能是否守衡?

  (1)根据守恒条件:是否只有重力或弹力做功

  (2)考察状态:比较、确定不同状态的机械能,看它们是否相同

  (3)考察系统是否发生机械能与其它形式的能量的转化

高中物理知识点8

  1、滑动摩擦力:一个物体在另一个物体表面上存在相对滑动的时候,要受到另一个物体阻碍它们相对滑动的力,这种力叫做滑动摩擦力.

  (1)产生条件:

  ①接触面是粗糙;

  ②两物体接触面上有压力;

  ③两物体间有相对滑动.

  (2)方向:总是沿着接触面的切线方向与相对运动方向相反.

  (3)大小-滑动摩擦定律

  滑动摩擦力跟正压力成正比,也就跟一个物体对另一个物体表面的垂直作用力成正比。即其中的FN表示正压力,不一定等于重力G。为动摩擦因数,取决于两个物体的材料和接触面的粗糙程度,与接触面的面积无关。

  2、静摩擦力:当一个物体在另一个物体表面上有相对运动趋势时,所受到的另一个物体对它的力,叫做静摩擦力.

  (1)产生条件:①接触面是粗糙的;②两物体有相对运动的趋势;③两物体接触面上有压力.

  (2)方向:沿着接触面的切线方向与相对运动趋势方向相反.

  (3)大小:静摩擦力的大小与相对运动趋势的'强弱有关,趋势越强,静摩擦力越大,但不能超过最大静摩擦力,即0ffm,具体大小可由物体的运动状态结合动力学规律求解。

  必须明确,静摩擦力大小不能用滑动摩擦定律F=FN计算,只有当静摩擦力达到最大值时,其最大值一般可认为等于滑动摩擦力,既Fm=FN

  3、摩擦力与物体运动的关系

  ①摩擦力的方向总是与物体间相对运动(或相对运动的趋势)的方向相反。而不一定与物体的运动方向相反。

  如:课本上的皮带传动图。物体向上运动,但物体相对于皮带有向下滑动的趋势,故摩擦力向上。

  ②摩擦力总是阻碍物体间的相对运动的。而不一定是阻碍物体的运动的。

  如上例,摩擦力阻碍了物体相对于皮带向下滑,但恰恰是摩擦力使物体向上运动。

  注意:以上两种情况中,相对两个字一定不能少。

  这牵涉到参照物的选择。一般情况下,我们说物体运动或静止,是以地面为参照物的。而牵涉到相对运动,实际上是规定了参照物。如A相对于B,则必须以B为参照物,而不能以地面或其它物体为参照物。

  ③摩擦力不一定是阻力,也可以是动力。摩擦力不一定使物体减速,也可能使物体加速。

  ④受静摩擦力的物体不一定静止,但一定保持相对静止。

  ⑤滑动摩擦力的方向不一定与运动方向相反

高中物理知识点9

  第一个提高物理成绩的方法就是去参加课外培训机构的物理辅导班,当然最好找一对一的老师,这样对学生不懂的地方才比较有针对性

  第二个提高物理成绩的方法就是自己上网下载物理教学视频,要求学生的自学能力和自控能力都要比较好,然后自学,把不懂的地方反复看

  第三个提高物理成绩的方法就是把有问题的难题和自己经常犯错的题目摘抄到另外笔记本上,平时还要经常复习

  第四个提高物理成绩的方法就是买一些有针对性的物理试题丛书或者练习册,多看多做物理相关题目

  第五个提高物理成绩的方法就是每年参加一些高中物理竞赛培训,当然要求基础比较好了,这样可以提前接触到一些最新最前沿的知识,也能丰富自己的物理实验动手能力,还能认识到一批优秀的物理学霸,平时可以互相交流题目和学习经验

  第六个提高物理成绩的`方法就是不懂的题目多向老师请教,这种方法是免费的,对于很多贫困或者一般的家庭来说,应该是最划算也是最简单的方式了

高中物理知识点10

  力和作用在力的方向上通过的位移的乘积叫做功,功是描述力对空间积累效应的物理量,是过程量。动能和势能统称为机械能。

  1功

  定义式:W=F·s·cosθ,其中F是力,s是力的作用点位移(对地),θ是力与位移间的夹角。

  1.力学里所说的功包括两个必要因素:一是作用在物体上的力;二是物体在力的方向上通过的距离。

  (2)功的大小的计算方法:

  ①恒力的功可根据W=F·S·cosθ进行计算,本公式只适用于恒力做功。②根据W=P·t,计算一段时间内平均做功。③利用动能定理计算力的功,特别是变力所做的功。④根据功是能量转化的量度反过来可求功。

  2.不做功的三种情况:有力无距离、有距离无力、力和距离垂直。

  巩固:某同学踢足球,球离脚后飞出10m远,足球飞出10m的过程中人不做功。(原因是足球靠惯性飞出)。

  3.力学里规定:功等于力跟物体在力的方向上通过的距离的乘积。公式:W=FS。

  (3)摩擦力、空气阻力做功的计算:功的大小等于力和路程的乘积。

  发生相对运动的两物体的这一对相互摩擦力做的总功:W=fd(d是两物体间的相对路程),且W=Q(摩擦生热)

  4.功的单位:焦耳,1J=1N·m。把一个鸡蛋举高1m,做的功大约是0.5J。

  5.应用功的公式注意:①分清哪个力对物体做功,计算时F就是这个力;②公式中S一定是在力的方向上通过的距离,强调对应。③功的单位“焦”(牛·米=焦),不要和力和力臂的乘积(牛·米,不能写成“焦”)单位搞混。

  2功的原理

  1.内容:使用机械时,人们所做的功,都不会少于直接用手所做的功;即:使用任何机械都不省功。

  2.说明:(请注意理想情况功的原理可以如何表述?)

  ①功的'原理是一个普遍的结论,对于任何机械都适用。

  ②功的原理告诉我们:使用机械要省力必须费距离,要省距离必须费力,既省力又省距离的机械是没有的。

  ③使用机械虽然不能省功,但人类仍然使用,是因为使用机械或者可以省力、或者可以省距离、也可以改变力的方向,给人类工作带来很多方便。

  ④我们做题遇到的多是理想机械(忽略摩擦和机械本身的重力)理想机械:使用机械时,人们所做的功(FS)=直接用手对重物所做的功(Gh)。

  3.应用:斜面

  ①理想斜面:斜面光滑;

  ②理想斜面遵从功的原理;

  ③理想斜面公式:FL=Gh,其中:F:沿斜面方向的推力;L:斜面长;G:物重;h:斜面高度。

  如果斜面与物体间的摩擦为f,则:FL=fL+Gh;这样F做功就大于直接对物体做功Gh。

  3机械效率

  (1)功率的概念:功率是表示力做功快慢的物理量,是标量。求功率时一定要分清是求哪个力的功率,还要分清是求平均功率还是瞬时功率。

  1.有用功:定义:对人们有用的功。

  公式:W有用=Gh(提升重物)=W总-W额=ηW总

  斜面:W有用=Gh

  2.额外功:定义:并非我们需要但又不得不做的功。

  公式:W额=W总-W有用=G动h(忽略轮轴摩擦的动滑轮、滑轮组)

  斜面:W额=fL

  (2)功率的计算①平均功率:P=W/t(定义式)表示时间t内的平均功率,不管是恒力做功,还是变力做功,都适用。②瞬时功率:P=F·v·cosα P和v分别表示t时刻的功率和速度,α为两者间的夹角。

  4总功:

  定义:有用功加额外功或动力所做的功

  公式:W总=W有用+W额=FS= W有用/η

  斜面:W总= fL+Gh=FL

  (3)额定功率与实际功率:额定功率:发动机正常工作时的最大功率。实际功率:发动机实际输出的功率,它可以小于额定功率,但不能长时间超过额定功率。

  (4)交通工具的启动问题通常说的机车的功率或发动机的功率实际是指其牵引力的功率。

  ①以恒定功率P启动:机车的运动过程是先作加速度减小的加速运动,后以最大速度vm=P/f作匀速直线运动。

  ②以恒定牵引力F启动:机车先作匀加速运动,当功率增大到额定功率时速度为v1=P/F,而后开始作加速度减小的加速运动,最后以最大速度vm=P/f作匀速直线运动。

  5机械效率:

  ①定义:有用功跟总功的比值。

  ②公式:

  斜 面:

  定滑轮:

  动滑轮:

  滑轮组:

  ③有用功总小于总功,所以机械效率总小于1。通常用百分数表示。某滑轮机械效率为60%表示有用功占总功的60%。

  ④提高机械效率的方法:减小机械自重、减小机件间的摩擦。

  6.机械效率的测量:

  ①原理:

  ②应测物理量:钩码重力G、钩码提升的高度h、拉力F、绳的自由端移动的距离S。

  ③器材:除钩码、铁架台、滑轮、细线外还需刻度尺、弹簧测力计。

  ④步骤:必须匀速拉动弹簧测力计使钩码升高,目的:保证测力计示数大小不变。

  ⑤结论:影响滑轮组机械效率高低的主要因素有:

  A、动滑轮越重,个数越多则额外功相对就多。

  B、提升重物越重,做的有用功相对就多。

  C、摩擦,若各种摩擦越大做的额外功就多。

高中物理知识点11

  全反射和临界角

  (1)全反射:光从光密介质射入光疏介质,或光从介质射入真空(或空气)时,当入射角增大到某一角度,使折射角达到90°时,折射光线完全消失,只剩下反射光线,这种现象叫做全反射。

  (2)全反射的条件

  ①光从光密介质射入光疏介质,或光从介质射入真空(或空气)。

  ②入射角大于或等于临界角

  (3)临界角:折射角等于90°时的入射角叫临界角,用C表示sinC=1/n

  光的直线传播

  (1)光在同一种均匀介质中沿直线传播,小孔成像,影的形成,日食和月食都是光直线传播的例证。

  (2)影是光被不透光的物体挡住所形成的暗区,影可分为本影和半影,在本影区域内完全看不到光源发出的光,在半影区域内只能看到光源的某部分发出的光,点光源只形成本影,非点光源一般会形成本影和半影,本影区域的大小与光源的面积有关,发光面越大,本影区越小。

  (3)日食和月食:

  人位于月球的本影内能看到日全食,位于月球的半影内能看到日偏食,位于月球本影的延伸区域(即"伪本影")能看到日环食;当月球全部进入地球的本影区域时,人可看到月全食,月球部分进入地球的本影区域时,看到的是月偏食。

  三种产生电荷的方式:

  1、摩擦起电:

  (1)正点荷:用绸子摩擦过的玻璃棒所带电荷;

  (2)负电荷:用毛皮摩擦过的橡胶棒所带电荷;

  (3)实质:电子从一物体转移到另一物体;

  2、接触起电:

  (1)实质:电荷从一物体移到另一物体;

  (2)两个完全相同的物体相互接触后电荷平分;

  (3)、电荷的中和:等量的异种电荷相互接触,电荷相合抵消而对外不显电性,这种现象叫电荷的中和;

  3、感应起电:把电荷移近不带电的导体,可以使导体带电;

  (1)电荷的基本性质:同种电荷相互排斥、异种电荷相互吸引;

  (2)实质:使导体的电荷从一部分移到另一部分;

  (3)感应起电时,导体离电荷近的一端带异种电荷,远端带同种电荷;

  4、电荷的基本性质:能吸引轻小物体。

  牛顿第二定律的六个性质

  (1)因果性:力是产生加速度的原因。若不存在力,则没有加速度。

  (2)矢量性:力和加速度都是矢量,物体加速度方向由物体所受合外力的方向决定。牛顿第二定律数学表达式∑F=ma中,等号不仅表示左右两边数值相等,也表示方向一致,即物体加速度方向与所受合外力方向相同。根据他的矢量性可以用正交分解法讲力合成或分解。

  (3)瞬时性:当物体(质量一定)所受外力发生突然变化时,作为由力决定的加速度的大小或方向也要同时发生突变;当合外力为零时,加速度同时为零,加速度与合外力保持一一对应关系。牛顿第二定律是一个瞬时对应的规律,表明了力的瞬间效应。

  (4)相对性:自然界中存在着一种坐标系,在这种坐标系中,当物体不受力时将保持匀速直线运动或静止状态,这样的坐标系叫惯性参照系。地面和相对于地面静止或作匀速直线运动的物体可以看作是惯性参照系,牛顿定律只在惯性参照系中才成立。

  (5)独立性:物体所受各力产生的加速度,互不干扰,而物体的实际加速度则是每一个力产生加速度的矢量和,分力和分加速度在各个方向上的分量关系,也遵循牛顿第二定律。

  (6)同一性:a与F与同一物体某一状态相对应。

  物理概念是学好物理的关键

  会表述:能熟记并正确地叙述概念、规律的内容。

  会表达:明确概念、规律的表达公式及公式中每个符号的物理意义。

  会理解:能掌握公式的应用范围和使用条件。

  会变形:会对公式进行正确变形,并理解变形后的含义。

  会应用:会用概念和公式进行简单的判断、推理和计算。

  物理考试答题技巧分别有哪些

  第一、要保持良好的心态。

  物理与生活联系非常密切,很多知识是生活中常见的,大部分中考物理题考得很实用,是同学们熟悉的。所以做题时不要有不必要的担心,应该保持沉着冷静自信,保持良好的心态是成功的一半。

  第二、先易后难,合理安排时间。

  做题时要先做会做的、有把握得分的题,遇到少数难题,如果两三分钟内还没有较好思路,就要先做其他容易题,等到最后再回过头来攻坚。在一两个题上消耗大量时间导致会做的题拿不到分数是最愚蠢的.做法。总的原则是“稳中求快,准确第一”。

  第三、缜密审题、紧扣题意。(审题慢、准;计算要快、稳)

  在物理做题过程中,审题的重要性是第一位的,审题要细致认真,快速抓住关键字眼,准确找到显性条件,充分挖掘蕴含条件,只有在审题的过程中“慢”下来,做题的过程中才能“快”。所以这里“慢”就是“快”,“快”反而因为出错导致“慢”。同学们都有这样的经验,有不少题不是不会,而是因为看错题、主观歪曲题意而出错,然后轻易的归结为“粗心、马虎”,其实,仔细审题是一种良好的习惯和能力体现,也是一个人综合素质的细微体现。而能力和习惯不是一天两天能养成的,所以在平时就应该养成良好的审题习惯。在关键时刻注意提醒自己,记住:做题过程中思路一旦遇到阻碍、或者疑问就应该回过头来重新审查题意!

  第五、思路受阻时注意理论联系实际。

  初中物理的最大特点是与生活联系非常紧密,当做题时看到理论问题想不出答案时,应该多想想生活现象;当做题中看到生活现象问题时,应该立刻想到物理定理定律或者公式。如此物理好多难题迎刃而解。

  第六、重视检查,有漏必补,有错必纠确保准确率。

  最后做完题,对于心存疑虑的问题,换种思路重新快速解答一遍,当然如果没有充分证据的情况下就要“相信第一感觉”。 要检查有无漏题,有无笔误,是否切题,力争解答的内容乃至标点、符号、文字、图表都准确无误(如U与v,P与p,W与w等等不要写错)。特别注意检查以下几点:

  一是单位,检查单位换算是否正确,是否忘记书写或者写错;

  二是公式,是否写错,结合公式的成立条件思考一下是否引用出错,三是结果,重算一下看是否计算出错,思考一下生活看是否符合常理和生活实际。

  总之,在物理中考过程中要始终保持坚定的信心,要一心一意放在解题上,解题要力求“稳、准、狠”,发挥出最佳水平,做到考后无悔。既要有“我难他更难,新题当作陈题解”的灵活性;也要有“我易他也易。但我更仔细,陈题当作新题解”的警惕性。在有实力的基础上采取得当的策略和方法必能取得理想的成绩。

  学好物理的“四字诀”是什么

  1.“恒”,高中物理知识一环紧扣一环,整体性很强,前后都有联系,任何一章出问题都会影响到整体,所以在学习过程中一定要持之以恒,坚持不懈。

  2.“勤”,高中物理中有着丰富的物理现象、物理概念和物理模型,了解这些现象,掌握这些物理模型,和物理概念,需要勤思多练不断积累。

  3.“钻”,高中物理有些内容是只可意会不可言传的。深入钻研细心领会是不可缺少的,对学习中有疑问的地方一定要想办法弄个水落石出。

  4.“活”,物理学得好坏关键在于是否能灵活运用所学的知识,这需要多思、多想、多总结。

高中物理知识点12

  中性面线圈平面与磁感线垂直的位置,或瞬时感应电动势为零的位置。

  中性面的特点:a.线圈处于中性面位置时,穿过线圈的磁通量Φ最大,但=0;

  产生:矩形线圈在匀强磁场中绕与磁场垂直的轴匀速转动。

  变化规律e=NBSωsinωt=Emsinωt;i=Imsinωt;(中性面位置开始计时),最大值Em=NBSω

  四值:①瞬时值 ②最大值③有效值电流的热效应规定的;对于正弦式交流U==0.707Um ④平均值不对称方波:不对称的正弦波

  求某段时间内通过导线横截面的电荷量Q=IΔt=εΔt/R=ΔΦ/R

  我国用的交变电流,周期是0.02s,频率是50Hz,电流方向每秒改变100次。

  表达式:e=e=220sin100πt=311sin100πt=311sin314t

  线圈作用是“通直流,阻交流;通低频,阻高频”.

  电容的作用是“通交流、隔直流;通高频、阻低频”.

  变压器两个基本公式:①

  ②P入=P出,输入功率由输出功率决定,

  远距离输电:一定要画出远距离输电的示意图来,

  包括发电机、两台变压器、输电线等效电阻和负载电阻。并按照规范在图中标出相应的物理量符号。一般设两个变压器的初、次级线圈的匝数分别为、n1、n1/ n2、n2/,相应的电压、电流、功率也应该采用相应的.符号来表示。

  功率之间的关系是:P1=P1/,P2=P2/,P1/=Pr=P2。

  电压之间的关系是:。

  电流之间的关系是:

  求输电线上的电流往往是这类问题的突破口。

  输电线上的功率损失和电压损失也是需要特别注意的。

  分析和计算时都必须用,而不能用。

  特别重要的是要会分析输电线上的功率损失。

高中物理知识点13

  第一节声音的产生和传播

  一、声音的产生

  1、声音是由物体的振动产生的。一切正在发生的物体都在振动。

  2、将物体发声振动的规律记录下来就可保存物体所发出的声音。

  3、产生声音的物体称为发声体,也叫声源。发声体可以是固体、液体,也可以是气体。

  二、声音的传播

  1、声音是以波的形式在物质中传播的,所以也把声音叫做声波。

  2、声音的传播需要物质,物理学中把这样的物质叫做介质。固体、液体和气体都是传播声音的介质。真空不能传声。

  三、声速及回声

  1、声速是描述声音传播快慢的物理量。

  2、声速的大小等于声音在单位时间内传播的距离。公式为v=S/t。

  3、回声是声音在传播的过程中,遇障碍物,反射回来的声音。回声与原声时间间隔大于0.1秒时,人们才能把他们区分开。

  四、影响声速的因素

  1、声速的大小跟介质的种类有关。一般是在固体中最快,在液体中次之,在气体中最慢。

  2、声速的大小跟介质的温度有关。一般是在同种介质中,温度越高传播越快。

  五、人耳听到声音的过程

  1、人感知声音的基本过程:外界传来的声音引起鼓膜的振动,这种振动产生的信号经过听小骨及其他组织传给听觉神经,听觉神经再把信号传给大脑,这样人就听到声音了。

  2、人耳能听到声音的基本条件:一是声音的传递组织(如鼓膜、听小骨)正常;二是听觉神经正常。

  3、耳聋的两种类型:一种是由于声音的传递组织出现障碍造成的'耳聋称为传导性耳聋;另一种是由于听觉神经出现障碍造成的耳聋称为神经性耳聋。

  六、骨传导

  1、声音通过头骨、颌骨传到听觉神经,引起听觉的传声方式叫做骨传导。

  2、骨传导的实质是声音能在固体中传播。

  第二节声音的特性

  一、音调

  1、音调指声音的高低。音调的高低取决于物体振动的快慢(即振动频率),振动越快(即频率越高)音调就越高;

  2、频率是指物体每秒内振动的次数,单位是赫兹,简称赫,符号Hz。

  3、人的听觉频率范围大约是20—20000Hz。

  高于20000Hz(人类听觉上限)的声叫超声波。

  低于20Hz(人类听觉下限)的声叫次声波。

  通常人们将人类能听到的声叫做声音,将声音、超声波、次声波统称为声。

  二、响度

  1、响度指声音的强弱,即大小。

  2、物体振动的幅度叫做振幅。物体振幅越大,响度越大。离发声体越远,响度越小。

  三、音色

  1、音色反映声音的品质和特色。音色又叫音品。

  2、音色是由发声体的材料和结构决定的。

  3、不同的发声体发出声音的音色不同。

  四、乐音

  1、悠扬、悦耳,听到时感觉非常舒服的声音叫乐音。

  2、乐音是物体有规律的振动发出来的,波形是有规则的。

  五、乐器

  1、为了欣赏音乐,人们制造了各种能产生乐音的器具,称为乐器。

  2、乐器可以分为三种主要的类型:打击乐器、弦乐器你、管乐器。

  3、所有的乐器的物理原理都一样,都是通过振动发声的。

  六、常见的乐器

  1、打击乐器:像鼓、锣等受到打击发生振动而产生声音的乐器叫打击乐器。以鼓为例,鼓皮绷得越紧,振动得越快,音调就越高。击鼓的力量越大,鼓皮振动的幅度就越大,声音的响度就越大。

  2、弦乐器:像二胡、小提琴、钢琴和吉他等通过弦的振动而发声的乐器叫弦乐器。长而粗的弦发声的音调低,短而细的弦发声的音调高。绷得越紧的弦发声的音调越高。弦的振幅越大,响度越大。

  3、管乐器:像长笛、箫等乐器属于管乐器。管乐器中有一段空气柱,吹奏时空气柱振动发声。抬起不同的手指,就会改变空气柱的长度,从而改变音调。空气柱越长产生的音调越低。

  第三节声的利用

  一、声与信息

  1、声音可以传递信息。例如,大象利用次声波进行交流等。

  2、利用回声可以定位。例如,蝙蝠利用超声波的回波确定目标的位置。

  3、利用回声可以定位成像。例如,利用B超诊断人体病情,探视胎儿的生长发育情况等。

  二、声与能力

  1、声波可以传递能量。例如,发声的扬声器旁的烛焰摇曳。

  2、用超声波清洗物品。例如,利用超声波清洗精密器件、清洗牙齿等。

  3、用超声波除尘。例如,在冒黑烟的烟筒里放一个超声波除尘器除尘。

  4、用超声波动手术。例如,医生用超声波除去人体内的结石,治疗癌症等。

  第四节噪声的危害和控制

  一、噪声及其来源

  1、从物理学的角度讲,噪声是发声体做无规则振动时发出的声音。

  2、从环保角度讲,凡是妨碍人们正常休息、学习和工作的声音,以及对人们要听的声音产生干扰的声音,都属于噪声。

  3、噪声主要来源于人类自身和人类发明的各种机器。

  二、噪声强弱的等级和噪声的危害

  1、人们以分贝(dB)为单位来表示声音强弱的等级。0dB是人刚能听到的最微弱的声音——听觉下限。

  2、为了保护听力,声音不能超过90dB;为了保证工作和学习,声音不能超过70dB;为了保证休息和睡眠,声音不能超过50dB。

  3、如果突然暴露在150dB的噪声环境中,鼓膜会破裂出血,双耳完全失去听力。

  三、控制噪声

  1、在声源处减弱。例如,可以更换或改造噪声大的机器或部件,在噪声源的周围加吸声、隔声的罩子等。

  2、在传播过程中减弱噪声。例如,使有噪声源的厂房门窗背向居民区,植树造林,建立隔声屏障来反射或吸收部分传来的噪声等。

  3、在人耳处减弱。例如,戴耳罩或用棉球塞住人耳等?

高中物理知识点14

  1.v-t图上两图线相交的点,不是相遇点,只是在这一时刻相等。

  2.人们得出“重的物体下落快”的错误结论主要是由于空气阻力的影响。

  3.严格地讲自由落体运动的物体只受重力作用,在空气阻力影响较小时,可忽略空气阻力的影响,近似视为自由落体运动。

  4.自由落体实验实验记录自由落体轨迹时,对重物的要求是“质量大、体积小”,只强调“质量大”或“体积小”都是不确切的。

  5.自由落体运动中,加速度g是已知的,但有时题目中不点明这一点,我们解题时要充分利用这一隐含条件。

  6.自由落体运动是无空气阻力的理想情况,实际物体的运动有时受空气阻力的影响过大,这时就不能忽略空气阻力了,如雨滴下落的最后阶段,阻力很大,不能视为自由落体运动。

  7.自由落体加速度通常可取9.8m/s2或10m/s2,但并不是不变的,它随纬度和海拔高度的变化而变化。

  8.四个重要比例式都是从自由落体运动开始时,即初速度v0=0是成立条件,如果v0≠0则这四个比例式不成立。

  9.匀变速运动的各公式都是矢量式,列方程解题时要注意各物理量的方向。

  10.常取初速度v0的'方向为正方向,但这并不是一定的,也可取与v0相反的方向为正方向。

  11.汽车刹车问题应先判断汽车何时停止运动,不要盲目套用匀减速直线运动公式求解。

  12.找准追及问题的临界条件,如位移关系、速度相等等。

  13.用速度图象解题时要注意图线相交的点是速度相等的点而不是相遇处。

  14.产生弹力的条件之一是两物体相互接触,但相互接触的物体间不一定存在弹力。

高中物理知识点15

  基本要求:

  1、知道静摩擦力的产生条件,会判断静摩擦力的方向、

  2、通过实验探究静摩擦力的大小,掌握静摩擦力的值及变化范围、

  3、知道滑动摩擦力的产生条件,会判断滑动摩擦力的方向、

  4、会运用公式F=μFN计算滑动摩擦力的大小、

  5、知道动摩擦因数无单位,了解动摩擦因数与哪些因素有关、

  6、能用二力平衡条件判断静摩擦力的大小和方向、

  1、摩擦力方向的判断

  (1)滑动摩擦力方向的判断方法

  滑动摩擦力的方向总跟接触面相切,并且跟物体的相对运动方向相反、不难看出,判断滑动摩擦力方向的关键是判断“相对运动的方向”、要做到这一点不是很难,因为物体的运动是比较直观的,但千万不要认为“相对运动的方向”是物体相对于地面的运动方向,这是初学者容易犯的一个错误、所谓的“相对运动的方向”是指“受力物体”相对于“施力物体”的运动方向、例如,你在运动的汽车上推动箱子时,箱子受到的滑动摩擦力的方向与箱子相对于汽车的运动方向相反、

  (2)静摩擦力方向的判断方法

  静摩擦力的方向总跟接触面相切,并且跟物体相对运动趋势的方向相反、当然这里的关键也是判断“相对运动趋势的方向”,而相对运动趋势的方向又难以判断,这就使静摩擦力方向的判定成为一个难点、同学们可以采用下列方法判断静摩擦力的方向:

  ①用假设法判断静摩擦力的方向,我们可以假设接触面是光滑的,判断物体将向哪滑动,从而确定相对运动趋势的方向,进而判断出静摩擦力的方向、②根据物体的运动状态判断静摩擦力的方向

  2、摩擦力大小的确定

  (1)滑动摩擦力的大小

  滑动摩擦力的大小遵循关系式F=μFN,式中的FN是两个物体表面间的压力,称为正压力(垂直于接触面的力),性质上属于弹力,它不是物体的重力,许多情况下需结合物体的平衡条件加以确定;

  式中的μ为动摩擦因数,它的数值跟相互接触的两个物体的材料和接触面的粗糙程度有关,与两物体间的正压力及是否发生相对滑动无关,μ没有单位、

  滑动摩擦力的大小与物体间接触面积的大小无关,与物体的运动性质无关,与相对运动的速度大小无关,只要出现相对滑动,滑动摩擦力恒为F=μFN、

  (2)静摩擦力的大小静摩擦力的大小随推力的增大而增大,所以静摩擦力的大小由外部因素决定,一般应根据物体的运动状态来确定其大小、目前可根据初中二力平衡知识求解静摩擦力、当人的水平推力增大到某一值时,物体就要滑动,此时静摩擦力达到值,我们把它叫做静摩擦力(Fm)、故静摩擦力的取值范围是0

  3、正确理解摩擦力产生的'条件及效果

  (1)两物体间产生摩擦力必须同时满足以下三个条件:

  ①两个物体的接触面粗糙;

  ②两物体间存在弹力;

  ③两物体有相对运动或相对运动趋势、

  因此,若两物体间有弹力产生,不一定产生摩擦力,但若两个物体间有摩擦力产生必有弹力产生、

  (2)静摩擦力中的“静”指的是相对静止,滑动摩擦力中的“滑动”指的也是相对滑动,其中应以摩擦力的施力物体为参考系、静摩擦力产生在相对静止(有相对运动趋势)的两物体间,但这两个物体不一定静止,它们可能一起运动,所以,受静摩擦力作用的物体不一定静止、滑动摩擦力产生在相对滑动的两物体之间,但受到滑动摩擦力作用的物体可能是静止的

  (3)在两种摩擦力的定义中都出现了“阻碍”一词,所以有些同学就认为,摩擦力总是与物体的运动方向相反,总是阻碍物体的运动、其实不然,摩擦力的方向只是与相对施力物体的运动方向相反,阻碍的只是物体相对于施力物体的运动,对于物体的实际运动(通常以地面作为参考系),摩擦力可以是阻力,也可以是动力、例如:人跑步时地面给人的摩擦力就是动力;传送带上的物体随传送带一起向上运动时,摩擦力也是动力、

  压强知识

  1、水的密度:ρ水=1.0×103kg/m3=1 g/ cm3

  2、 1m3水的质量是1t,1cm3水的质量是1g。

  3、利用天平测量质量时应"左物右码"。

  4、同种物质的密度还和状态有关(水和冰同种物质,状态不同,密度不同)。

  5、增大压强的方法:

  ①增大压力

  ②减小受力面积

  6、液体的密度越大,深度越深液体内部压强越大。

  7、连通器两侧液面相平的条件:

  ①同一液体

  ②液体静止

  8、利用连通器原理:(船闸、茶壶、回水管、水位计、自动饮水器、过水涵洞等)。

  9、大气压现象:(用吸管吸汽水、覆杯试验、钢笔吸水、抽水机等)。

  10、马德保半球试验证明了大气压强的存在,托里拆利试验证明了大气压强的值。

  11、浮力产生的原因:液体对物体向上和向下压力的合力。

  12、物体在液体中的三种状态:漂浮、悬浮、沉底。

  13、物体在漂浮和悬浮状态下:浮力=重力

  14、物体在悬浮和沉底状态下:V排= V物

  15、阿基米德原理F浮= G排也适用于气体(浮力的计算公式:F浮= ρ气gV排也适用于气体)

  电动势的方向知识点

  电动势的方向可以通过楞次定律来判定。高中物理楞次定律指出:感应电流的磁场要阻碍原磁通的变化。对于动生电动势,同学们也可用右手定则判断感应电流的方向,也就找出了感应电动势的方向。需要注意的是,楞次定律的应用更广,其核心在”阻碍”二字上。

  (1)E=n_ΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ,Δt磁通量的变化率}

  (2)E=BLVsinA(切割磁感线运动)E=BLV中的v和L不可以和磁感线平行,但可以不和磁感线垂直,其中sinA为v或L与磁感线的夹角。{L:有效长度(m)}

  (3)Em=nBSω(交流发电机最大的感应电动势){Em:感应电动势峰值}

  (4)E=B(L2)ω/2(导体一端固定以ω旋转切割)其中ω:角速度(rad/s),V:速度(m/s)

  电磁感应现象是电磁学中最重大的发现之一,它显示了电、磁现象之间的相互联系和转化,对其本质的深入研究所揭示的电、磁场之间的联系,对麦克斯韦电磁场理论的建立具有重大意义。电磁感应现象在电工技术、电技术以及电磁测量等方面都有广泛的应用。

【高中物理知识点】相关文章:

高中物理知识点11-09

高中物理选修知识点01-22

高中物理变阻器知识点01-06

高中物理力学知识点12-18

北京高中物理知识点02-07

高中物理知识点归纳05-21

高中物理知识点与公式总结11-09

高中物理会考知识点04-26

高中物理受力分析知识点10-14

高中物理会考知识点02-24