物理必修二知识点15篇
漫长的学习生涯中,说起知识点,应该没有人不熟悉吧?知识点就是掌握某个问题/知识的学习要点。哪些知识点能够真正帮助到我们呢?下面是小编为大家整理的物理必修二知识点,希望能够帮助到大家。
物理必修二知识点 1
1、“绳模型”如上图所示,小球在竖直平面内做圆周运动过点情况。
(注意:绳对小球只能产生拉力)
(1)小球能过点的`临界条件:绳子和轨道对小球刚好没有力的作用
(2)小球能过点条件:v≥(当v>时,绳对球产生拉力,轨道对球产生压力)
(3)不能过点条件:v<(实际上球还没有到点时,就脱离了轨道)
2、“杆模型”,小球在竖直平面内做圆周运动过点情况
(注意:轻杆和细线不同,轻杆对小球既能产生拉力,又能产生推力。)
(1)小球能过点的临界条件:v=0,F=mg(F为支持力)
(2)当0F>0(F为支持力)
(3)当v=时,F=0
(4)当v>时,F随v增大而增大,且F>0(F为拉力)
物理必修二知识点 2
1、参考系:运动是绝对的,静止是相对的。一个物体是运动的还是静止的,都是相对于参考系在而言的。通常以地面为参考系。
2、质点:
(1)定义:用来代替物体的有质量的点。质点是一种理想化的模型,是科学的抽象。
(2)物体可看做质点的条件:研究物体的运动时,物体的大小和形状对研究结果的影响可以忽略。且物体能否看成质点,要具体问题具体分析。
(3)物体可被看做质点的几种情况:
①平动的物体通常可视为质点。
②有转动但相对平动而言可以忽略时,也可以把物体视为质点。
③同一物体,有时可看成质点,有时不能.当物体本身的大小对所研究问题的影响不能忽略时,不能把物体看做质点,反之,则可以。
注:质点并不是质量很小的点,要区别于几何学中的“点”。
3、时间和时刻:
时刻是指某一瞬间,用时间轴上的一个点来表示,它与状态量相对应;时间是指起始时刻到终止时刻之间的间隔,用时间轴上的一段线段来表示,它与过程量相对应。
4、位移和路程:
位移用来描述质点位置的变化,是质点的由初位置指向末位置的有向线段,是矢量;路程是质点运动轨迹的长度,是标量。
5、速度:
用来描述质点运动快慢和方向的物理量,是矢量。
(1)平均速度:是位移与通过这段位移所用时间的比值,其定义式为,方向与位移的'方向相同。平均速度对变速运动只能作粗略的描述。
(2)瞬时速度:是质点在某一时刻或通过某一位置的速度,瞬时速度简称速度,它可以精确变速运动。瞬时速度的大小简称速率,它是一个标量。
6、加速度:用量描述速度变化快慢的的物理量,其定义式为。
加速度是矢量,其方向与速度的变化量方向相同(注意与速度的方向没有关系),大小由两个因素决定。
补充:速度与加速度的关系
1、速度与加速度没有必然的关系,即:
(1)速度大,加速度不一定也大;
(2)加速度大,速度不一定也大;
(3)速度为零,加速度不一定也为零;
(4)加速度为零,速度不一定也为零。
2、当加速度a与速度V方向的关系确定时,则有:
(1)若a与V方向相同时,不管a如何变化,V都增大。
(2)若a与V方向相反时,不管a如何变化,V都减小。
物理必修二知识点 3
曲线运动
1.在曲线运动中,质点在某一时刻(某一位置)的速度方向是在曲线上这一点的切线方向。
2.物体做直线或曲线运动的条件:
(已知当物体受到合外力F作用下,在F方向上便产生加速度a)
(1)若F(或a)的方向与物体速度v的方向相同,则物体做直线运动;
(2)若F(或a)的方向与物体速度v的方向不同,则物体做曲线运动。
3.物体做曲线运动时合外力的方向总是指向轨迹的凹的一边。
4.平抛运动:将物体用一定的初速度沿水平方向抛出,不计空气阻力,物体只在重力作用下所做的运动。
分运动:
(1)在水平方向上由于不受力,将做匀速直线运动;
(2)在竖直方向上物体的初速度为零,且只受到重力作用,物体做自由落体运动。
5.以抛点为坐标原点,水平方向为x轴(正方向和初速度的方向相同),竖直方向为y轴,正方向向下.
6.①水平分速度: ②竖直分速度: ③t秒末的合速度
④任意时刻的运动方向可用该点速度方向与x轴的正方向的夹角 表示
7.匀速圆周运动:质点沿圆周运动,在相等的时间里通过的圆弧长度相同。
8.描述匀速圆周运动快慢的物理量
(1)线速度v:质点通过的弧长和通过该弧长所用时间的比值,即v=s/t,单位m/s;属于瞬时速度,既有大小,也有方向。方向为在圆周各点的切线方向上
9.匀速圆周运动是一种非匀速曲线运动,因而线速度的方向在时刻改变
(2)角速度 :ω=φ/t(φ指转过的角度,转一圈φ为 ),单位 rad/s或1/s;对某一确定的匀速圆周运动而言,角速度是恒定的
(3)周期T,频率:f=1/T
(4)线速度、角速度及周期之间的关系:
10.向心力: 向心力就是做匀速圆周运动的物体受到一个指向圆心的合力,向心力只改变运动物体的速度方向,不改变速度大小。
11.向心加速度: 描述线速度变化快慢,方向与向心力的方向相同,
12.注意:
(1)由于 方向时刻在变,所以匀速圆周运动是瞬时加速度的方向不断改变的变加速运动。
(2)做匀速圆周运动的物体,向心力方向总指向圆心,是一个变力。
(3)做匀速圆周运动的物体受到的合外力就是向心力。
13.离心运动:做匀速圆周运动的物体,在所受的合力突然消失或者不足以提供圆周运动所需的向心力的'情况下,就做逐渐远离圆心的运动
万有引力定律及其应用
1.万有引力定律: 引力常量G=6.67× Nm2/kg2
2.适用条件:可作质点的两个物体间的相互作用;若是两个均匀的球体,r应是两球心间距.(物体的尺寸比两物体的距离r小得多时,可以看成质点)
3.万有引力定律的应用:(中心天体质量M, 天体半径R, 天体表面重力加速度g )
(1)万有引力=向心力 (一个天体绕另一个天体作圆周运动时 )
(2)重力=万有引力
地面物体的重力加速度:mg = G g = G ≈9.8m/s2
高空物体的重力加速度:mg = G g = G 0,W>0.这表示力F对物体做正功。
如人用力推车前进时,人的推力F对车做做正功。
(3)当 α大于90度小于等于180度时,cosα[ 内 容 结 束 ]
物理必修二知识点 4
一、描述匀速圆周运动的快慢
1.线速度
(1)定义:线速度的大小等于质点通过的弧长s跟通过这段弧长所用时间t的比值。
(2)公式:v=s/t
(3)意义:描述做圆周运动的物体的运动快慢。
(4)方向:物体在某一时刻或某一位置的线速度方向就是圆弧上该点的切线方向。
2.角速度
(1)定义:在圆周运动中,质点所在半径转过的角度θ和所用时间t的比值,就是物体转动的角速度。
(2)公式:ω=θ/t
(3)意义:描述物体绕圆心转动的快慢。匀速圆周运动的角速度是不变的。
(4)单位:在国际单位制中,角速度的单位是弧度每秒,符号为rad/s。
3.周期
(1)定义:做匀速圆周运动的物体,运动一周所用的时间叫做周期。用T表示,单位是秒,符号是s。
(2)与频率的关系:T=1/f.
4.转速
(1)定义:做匀速圆周运动的物体,单位时间内转过的圈数称为转速n.
(2)单位:转/秒(r/s)或转/分(r/min)。
二、描述圆周运动的物理量及其关系
1.角速度、周期、转速之间的关系ω=2π/T=2nπ
即角速度与周期成反比,与转速成正比。
(1)转速n的单位为r/s.
(2)ω、T、n三个量中任意一个确定,其余两个也就确定。
2.线速度与角速度的关系v=rω
r一定时,v∝ω,如圆盘转动时,圆盘上某点的ω越大则v越大
ω一定时,v∝r,如时钟的分针转动时,分针上各质点的ω相同,但分针上离圆心越远的质点,r越大,v也越大
v一定时,ω∝1/r,如皮带传动装置中,两轮边缘上各点线速度大小相等,但大轮的r较大,ω较小
3.线速度与周期的关系v=2πr/T,即当半径r相同时,周期小的线速度大。
特别提醒:
(1)v、ω、r是瞬时对应关系,只有控制一个量不变,才能确定另外两个量是正比还是反比关系。
(2)描述匀速圆周运动的线速度大小不变,方向时刻变化,即线速度是变化的,而角速度、周期、转速是不变的。
物理怎么能学会
一、课前认真预习
预习是在课前,独立地阅读教材,自己去获取新知识的`一个重要环节。 课前预习未讲授的新课,首先把新课的内容都要仔细地阅读一遍,通过阅读、分析、思考,了解教材的知识体系,重点、难点、范围和要求。对于物理概念和规律则要抓住其核心,以及与其它物理概念和规律的区别与联系,把教材中自己不懂的疑难问题记录下来。
对已学过的知识,如果忘了,课前预习时可及时补上,这样,上课时就不会感到困难重重了。然后再纵观新课的内容,找出各知识点间的联系,掌握知识的脉络,绘出知识结构简图。同时还要阅读有关典型的例题并尝试解答,把解答书后习题作为阅读效果的检查,并从中总结出解题的一般思路和步骤。有能力的同学还可以适当阅读相关内容的课外书籍。
二、主动提高效率的听课
带着预习的问题听课,可以提高听课的效率,能使听课的重点更加突出。课堂上,当老师讲到自己预习时的不懂之处时,就非常主动、格外注意听,力求当堂弄懂。同时可以对比老师的讲解以检查自己对教材理解的深度和广度,学习教师对疑难问题的分析过程和思维方法,也可以作进一步的质疑、析疑、提出自己的见解。这样听完课,不仅能掌握知识的重点,突破难点,抓住关键,而且能更好地掌握老师分析问题、解决问题的思路和方法,进一步提高自己的学习能力。
物理公式:分子动理论、能量守恒定律
1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米
2.油膜法测分子直径d=V/s {V:单分子油膜的体积(m3),S:油膜表面积(m)2}
3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。
4.分子间的引力和斥力(1)r10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0
5.热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的),W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出〔见第二册P40〕}
6.热力学第二定律
克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性);
开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性){涉及到第二类永动机不可造出〔见第二册P44〕}
7.热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)}
注:(1)布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈;
(2)温度是分子平均动能的标志;
(3)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快;
(4)分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小;
(5)气体膨胀,外界对气体做负功W<0;温度升高,内能增大δu>0;吸收热量,Q>0
(6)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;
(7)r0为分子处于平衡状态时,分子间的距离;
物理必修二知识点 5
牛顿运动定律的应用
1、运用牛顿第二定律解题的基本思路
(1)通过认真审题,确定研究对象。
(2)采用隔离体法,正确受力分析。
(3)建立坐标系,正交分解力。
(4)根据牛顿第二定律列出方程。
(5)统一单位,求出答案。
2、解决连接体问题的基本方法是:
(1)选取的研究对象。选取研究对象时可采取“先整体,后隔离”或“分别隔离”等方法。一般当各部分加速度大小、方向相同时,可当作整体研究,当各部分的加速度大小、方向不相同时,要分别隔离研究。
(2)对选取的研究对象进行受力分析,依据牛顿第二定律列出方程式,求出答案。
3、解决临界问题的'基本方法是:
(1)要详细分析物理过程,根据条件变化或随着过程进行引起的受力情况和运动状态变化,找到临界状态和临界条件。
(2)在某些物理过程比较复杂的情况下,用极限分析的方法可以尽快找到临界状态和临界条件。
易错现象:
(1)加速系统中,有些同学错误地认为用拉力F直接拉物体与用一重力为F的物体拉该物体所产生的加速度是一样的。
(2)在加速系统中,有些同学错误地认为两物体组成的系统在竖直方向上有加速度时支持力等于重力。
(3)在加速系统中,有些同学错误地认为两物体要产生相对滑动拉力必须克服它们之间的静摩擦力。
物理必修二知识点 6
1、内容:在只有重力(和系统内弹簧或弹性绳弹力)做功的情况下,物体的动能和势能发生相互转化,但机械能的总量保持不变。
2、条件:
(1)对某一物体,若只有重力(或系统内弹力)做功,其他力不做功(或其他力做功的代数和为零),则该物体机械能守恒。
(2)对某一系统,物体间只有动能和重力势能及弹性势能的相互转化,系统和外界没有发生机械能的传递,机械能也没有转变为其他形式的能,则系统机械能守恒。
注:①竖直方向匀速直线运动和竖直方向匀速圆周运动机械能不守恒。
3、机械能守恒定律的各种表达形式
(1)E1E2 Ek1Ep1Ek2Ep2需要选择重力势能的零势能面
(2)EpEk Ep减Ek增
4、应用机械能守恒定律解题的基本步骤:
(1)根据题意选取研究对象(物体或系统),判断机械能是否守恒。
(2)明确研究对象的运动过程,分析对象在过程中的受力情况,弄清各力做功的情况。
(3)恰当地选取零势能面,确定研究对象在过程中的'始态和末态的机械能。
(4)根据机械能守恒定律的不同表达式列式方程。
能量转化和守恒定律
(1)某种形式的能的减少量,一定等于其他形式能的增加量。
(2)某物体能量的减少量,一定等于其他物体能量的增加量。
物理学习方法
有目的的做题
在高中物理学习的过程中,习题的作用千万不能忽视,做题不是说题海战术,而是要通过有目的的做题理解相关的物理知识;这就需要我们在学习中有选择性地做题,包括认真分析教科书上的例题,根据教学重点和难度选择课外习题。选题不能一味依靠老师,要品味出老师选题的思路和要求,逐步做到能自己选题;在解题时要保持思路清晰,围绕知识点加深学习效果。当然,在学习中多向老师请教,将自己的想法与老师沟通一直是我们的极佳选择。
多读课外参考书
对于学有余力的学生们来说,课后利用剩余时间可以阅读物理课外参考书以及其他读物。此过程是课堂学习的继续和延伸过程,可以培养学生们的自学能力和非智力优秀品质。
选择课外参考书一定注意:所选课外参考书的数量不要太多,太滥。要注意阅读参考书最好在学完一部分或这一章内容之后进行。阅读课外参考书时,要对重点内容深入钻研、领会内容。
高中物理公式大全:振动和波
1、简谐振动F=—kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}
2、单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}
3、受迫振动频率特点:f=f驱动力
4、发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕
5、机械波、横波、纵波〔见第二册P2〕
6、波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}
7、声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)
8、波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大
9、波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)
10、多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕}
注:(1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;
(2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处;
(3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式;
(4)干涉与衍射是波特有的;
(5)振动图象与波动图象;
物理必修二知识点 7
初速度为零的匀变速直线运动以下推论也成立:
(1)设T为单位时间,则有瞬时速度与运动时间成正比,位移与运动时间的'平方成正比连续相等的时间内的位移之比。
(2)设S为单位位移,则有瞬时速度与位移的平方根成正比,运动时间与位移的平方根成正比,通过连续相等的位移所需的时间之比。
物理必修二知识点 8
一、运动的'描述
1.物体模型用质点,忽略形状和大小;地球公转当质点,地球自转要大小。物体位置的变化,准确描述用位移,运动快慢S比t,a用Δv与t比。
2.运用一般公式法,平均速度是简法,中间时刻速度法,初速度零比例法,再加几何图像法,求解运动好方法。自由落体是实例,初速为零a等g.竖直上抛知初速,上升心有数,飞行时间上下回,整个过程匀减速。中心时刻的速度,平均速度相等数;求加速度有好方,ΔS等aT平方。
3.速度决定物体动,速度加速度方向中,同向加速反向减,垂直拐弯莫前冲。
二、力
1.解力学题堡垒坚,受力分析是关键;分析受力性质力,根据效果来处理。
2.分析受力要仔细,定量计算七种力;重力有无看提示,根据状态定弹力;先有弹力后摩擦,相对运动是依据;万有引力在万物,电场力存在定无疑;洛仑兹力安培力,二者实质是统一;相互垂直力,平行无力要切记。
3.同一直线定方向,计算结果只是“量”,某量方向若未定,计算结果给指明;两力合力小和大,两个力成q角夹,平行四边形定法;合力大小随q变,只在最小间,多力合力合另边。
多力问题状态揭,正交分解来解决,三角函数能化解。
4.力学问题方法多,整体隔离和假设;整体只需看外力,求解内力隔离做;状态相同用整体,否则隔离用得多;即使状态不相同,整体牛二也可做;假设某力有或无,根据计算来定夺;极限法抓临界态,程序法按顺序做;正交分解选坐标,轴上矢量尽量多。
三、牛顿运动定律
1.F等ma,牛顿二定律,产生加速度,原因就是力。
合力与a同方向,速度变量定a向,a变小则u可大,只要a与u同向。
2.N、T等力是视重,mg乘积是实重;超重失重视视重,其中不变是实重;加速上升是超重,减速下降也超重;失重由加降减升定,完全失重视重零
四、曲线运动、万有引力
1.运动轨迹为曲线,向心力存在是条件,曲线运动速度变,方向就是该点切线。
2.圆周运动向心力,供需关系在心里,径向合力提供足,需mu平方比R,mrw平方也需,供求平衡不心离。
3.万有引力因质量生,存在于世界万物中,皆因天体质量大,万有引力显神通。卫星绕着天体行,快慢运动的卫星,均由距离来决定,距离越近它越快,距离越远越慢行,同步卫星速度定,定点赤道上空行。
五、机械能与能量
1.确定状态找动能,分析过程找力功,正功负功加一起,动能增量与它同。
2.明确两态机械能,再看过程力做功,“重力”之外功为零,初态末态能量同。
3.确定状态找量能,再看过程力做功。有功就有能转变,初态末态能量同。
六、热力学定律
1.第一定律热力学,能量守恒好感觉。内能变化等多少,热量做功不能少。
正负符号要准确,收入支出来理解。对内做功和吸热,内能增加皆正值;对外做功和放热,内能减少皆负值。
2.热力学第二定律,热传递是不可逆,功转热和热转功,具有方向性不逆。
物理必修二知识点 9
一、牛顿第一定律
1、内容:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。——物体的运动并不需要力来维持。(揭示物体不受力或合力为零的情形)
2、两个概念:
①、力
②、惯性:(一切物体都具有惯性,质量是惯性大小的唯一量)
二、牛顿第二定律
1、内容:(不能从纯数学的角度表述)
2、公式:F=ma
3、理解牛顿第二定律的要点:
①、式中F是物体所受的一切外力的合力。
②、矢量性。
③、瞬时性。
④、独立性。
⑤、相对性。
三、牛顿第三定律
作用力和反作用力的概念
1、内容:一个物体对另一个物体有作用力时,同时也受到另一物体对它的作用力,这种相互作用力称为作用力和反作用力。
2、作用力和反作用力的特点:
①等值、反向、共线、两物体;
②瞬时对应;
③性质相同;
④各自产生其作用效果;
3、一对相互作用力与一对平衡力的异同点
同:等大,反向,共线
异:相互作用力具有同时性(产生、变化、消失),异体性(作用效果不同,不可抵消),二力同性质。平衡力不具备同时性,可相互抵消,二力性质可不同。
四、力学单位制
1、力学基本物理量:长度(l)质量(m)时间(t)
力学基本单位:米(m)千克(kg)秒(s)
2、应用:用单位判断结果表达式,能肯定错误(但不能肯定正确)
五、动力学的两类问题。
1、已知物体的受力情况,求物体的运动情况(v0 v t x )
2、已知物体的运动情况,求物体的受力情况( F合或某个分力)
3、应用牛顿第二定律解决问题的一般思路
(1)明确研究对象。
(2)对研究对象进行受力情况分析,画出受力示意图。
(3)建立直角坐标系,以初速度的方向或运动方向为正方向,与正方向相同的力为正,与正方向相反的力为负。在Y轴和X轴分别列牛顿第二定律的方程。
(4)解方程时,所有物理量都应统一单位,一般统一为国际单位。
4、分析两类问题的基本方法
(1)抓住受力情况和运动情况之间联系的桥梁——加速度。
(2)分析流程图
六、平衡状态、平衡条件、推论
1、处理方法:解三角形法(合成法、分解法、相似三角形法、封闭三角形法)和正交分解法
2、若物体受三力平衡,封闭三角形法最简捷。若物体受四力或四力以上平衡,用正交分解法
七、超重和失重
1、超重现象和失重现象
2、超重指加速度向上(加速上升和减速下降),超了F=ma大的弹力;失重指加速度向下(加速下降和减速上升),失了F=ma大的弹力。
自由落体运动、太空行走等现象时,弹力为0,处于完全失重状态。
物理题目该怎么解比较好
做物理题目时,大家的感受一般是简单题目会做,一旦出题人设陷阱,很多考生都会纷纷往里面跳。原因很简单,就是物理学的不透彻,不知道知识点的真正内涵及要注意的细节,只是学会了大概的解题步骤,所以一绕弯子就会难倒大家。
物理解题要回归教材,把例题看透了,学会举一反三,懂得万变不离其宗的道理。做物理题目每做一道综合题目都要完完全全做会,每一个步骤都要分析的很透彻,不要看懂答案就以外自己会了,要能够给别人讲出来才是真的'懂了,别人提问难不住你了才是真的会了。
学物理不要贪多,刷题是没有用的,只有理解了做题思路,能独立分析会每一道题目时,才能学好物理。物理会做的题目不必反复去做,而应以自己不会做的题目为主,突破重点和难点。
恒定电流知识点
1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}
2.欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}
3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω/m),L:导体的长度(m),S:导体横截面积(m2)}
4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}
5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}
6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}
7.纯电阻电路中:由于I=U/R,W=Q,因三此W=Q=UIt=I2Rt=U2t/R
8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}
9.电路的串/并联串联电路(P、U与R成正比)并联电路(P、I与R成反比)
电阻关系(串同并反) R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+
电流关系I总=I1=I2=I3 I并=I1+I2+I3+
电压关系U总=U1+U2+U3+ U总=U1=U2=U3
功率分配P总=P1+P2+P3+ P总=P1+P2+P3
物理必修二知识点 10
1、同步卫星轨道为什么是圆而不是椭圆。
地球同步卫星的特点是它绕地轴运转的角速度与地球自转的角速度相同,是静止0在赤道上空某处相对于地球不动的卫星,这一特点决定了它的轨道只能是圆。因为如果它的轨道是椭圆,则地球应处于椭圆的一个焦点上,卫星在绕地球运转的过程中就必然会出现近地点和远地点,当卫星向近地点运行时,卫星的轨道半径将减小,地球对它的万有引力就变大,卫星的角速度也变大;反之,当卫星向远地点运行时,卫星的轨道半径将变大,地球对它的万有引力就减小,卫星的角速度也减小,这与同步卫星的角速度恒定不变相矛盾,所以同步卫星轨道不是椭圆,而只能是圆。
2、为什么同步卫星的轨道与地球赤道共面。
假设卫星发射在北纬某地的上空的B点,其受力情况如图1所示,由于该卫星绕地轴做圆周运动所需的向心力只能由万有引力的一个分力F1提供,而万有引力的另一个分力F2就会使该卫星离开B点向赤道运动,除非另有一个力F恰好与F2平衡(但因F没有施力物体,所以F是不存在的),所以卫星若发射在赤道平面的上方(或下方)某处,则卫星在绕地轴做圆周运动的同时,也向赤道平面运动,它的运动就不会稳定,从而使卫星不能与地球同步,所以要使卫星与地球同步运行,必须要求卫星的轨道与地球赤道共面。
如果将卫星发射到赤道上空的A点,则地球对它的万有引力F全部用来提供卫星绕地轴做圆周运动所需要的向心力,此时卫星在该轨道上就能够以与地球相同的角速度绕地轴旋转,此时该卫星才能够“停留”在赤道上空的某点,实现与地球的自转同步,卫星就处于一种相对静止状态中。
3、为什么所有同步卫星的高度都是一样的。
在赤道上空的同步卫星,它受到的唯一的力,万有引力提供卫星绕地轴运转所需的向心力。当卫星的轨道半径r(或离地面的高度h)取某一定值时,卫星绕地轴运转就可以与地球自转同步,两者的周期均为T=24h。
设地球质量为M,地球半径为R0,卫星质量为m,离地面的高度为h,则有将R0=6400km,G=6.67×10—11N·m2/kg2,M=6.0×1024kg,T=24h=86400s代入上式得h=3.6×104km,即同步卫星距离地面的高度相同(均为h=3.6×104km),必然定位于赤“黄金圈”,是各国在太空主要争夺的领域之一。
4、各国发射的同步卫星会相撞吗。
由上述的分析可知:所有的同步卫星都在距地面的高度均为h=3.6×104km的大圆上,那么由v=ω(R0+h)=2π(R0+h)/T=3。1km/s,故它们的线速度都相同,这些卫星就如同在同一跑道上以相同速度跑步的运动员一样,它们之间处于相对静止,不会出现后者追上前者的现象。因此只要发射时未撞上,以后就不可能相撞。
5、同步卫星是如何发射和回收的。
同步卫星的发射,通常都采用变轨发射的方法。如图2所示,先是用运载火箭把卫星送入近地圆轨道1,待卫星运行状态稳定后,在近地点(a点),卫星的火箭开始点火加速,把卫星送入椭圆轨道2(称为转移轨道)上,椭圆轨道的远地点(b点)距地心距离等于同步轨道半径。以后再在地面测控站的控制下,利用遥控指令选择在远地点启动星载发动机点火加速,使卫星逐步调整至同步圆轨道3运行。
相反,对返回式卫星(或飞船)在回收时,应在远地点和近地点分别使卫星(或飞船)减速,使卫星从高轨道进入椭圆轨道,再回到近地轨道,最后进入大气层,落回地面。
6、同步卫星发射过程中的“4个速率”的大小关系。
如图2所示,设卫星在近地圆轨道1上a点的速率为v1,在椭圆轨道2经过a点的速率为v2,在椭圆轨道2经过b点的.速率为v3,在圆轨道3经过b点的速率为v4,比较这4个速率的大小关系。
(1)圆轨道上卫星速率的比较。
在圆轨道上卫星以地心为圆心做匀速圆周运动,设地球质量为M,卫星质量为m,由卫星所受的万有引力提供向心力,即GMm/r2=mv2/r。得v=(GM/r)1/2。
说明卫星离地面越高,速率越小,故v1>v4。
(2)椭圆轨道上近地点和远地点卫星速率的比较。
当卫星在椭圆轨道2上运行时,由机械能守恒定律可知,卫星在近地点的速率大于卫星在远地点的速度,即v2>v3。
(3)火箭点火前、后卫星速率的比较。
在近地点(a点),卫星的火箭开始点火加速,点火加速后卫星的速率大于点火前的速率。故在椭圆轨道2经过a点的速率为v2大于卫星在近地圆轨道1上a点的速率为v1,即v2>v1;同理,卫星在圆轨道3经过b点的速率为v4大于在椭圆轨道2上经过b点的速率为v3,即v4>v3;所以4个速率的关系为v2>v1>v4>v3。
7、为什么要至少发射三颗同步卫星且对称分布在同一轨道上,才能实现全球通信。
因地球同步卫星与地球的自转周期相同,其数值均为T=24h。同步卫星离地高度h一定,即h=3.6×104km。地球同步卫星发射的电磁波沿直线传播,所以一颗地球同步卫星所发出的电磁波能覆盖赤道上下方的范围是DE区。
cosθ=OE/OC=R0/R0+h=0.510。
则θ=81.30所以DOE对应的圆心角2θ=162.60,覆盖整个赤道至少需要的卫星个数为n=3600/162.20=2.2。因此,要实现全球通信,至少需发射三颗地球同步卫星且对称分布在同一轨道上。
物理必修二知识点 11
1、晶体
晶体:外观上有规则的几何外形,有确定的熔点,一些物理性质表现为各向异性。
非晶体:外观没有规则的几何外形,无确定的熔点,一些物理性质表现为各向同性。
①判断物质是晶体还是非晶体的主要依据是有无固定的熔点。
②晶体与非晶体并不是绝对的,有些晶体在一定的条件下可以转化为非晶体(石英→玻璃)。
2、单晶体多晶体
如果一个物体就是一个完整的晶体,如食盐小颗粒,这样的晶体就是单晶体(单晶硅、单晶锗)。
如果整个物体是由许多杂乱无章的小晶体排列而成,这样的物体叫做多晶体,多晶体没有规则的几何外形,但同单晶体一样,仍有确定的熔点。
3、晶体的微观结构:
固体内部,微粒的排列非常紧密,微粒之间的引力较大,绝大多数微粒只能在各自的平衡位置附近做小范围的无规则振动。
晶体内部,微粒按照一定的规律在空间周期性地排列(即晶体的点阵结构),不同方向上微粒的排列情况不同,正由于这个原因,晶体在不同方向上会表现出不同的物理性质(即晶体的各向异性)。
4、表面张力
当表面层的分子比液体内部稀疏时,分子间距比内部大,表面层的分子表现为引力,如露珠。
(1)作用:液体的表面张力使液面具有收缩的趋势。
(2)方向:表面张力跟液面相切,跟这部分液面的分界线垂直。
(3)大小:液体的温度越高,表面张力越小;液体中溶有杂质时,表面张力变小;液体的密度越大,表面张力越大。
5、液晶
分子排列有序,光学各向异性,可自由移动,位置无序,具有液体的流动性。
各向异性:分子的排列从某个方向上看液晶分子排列是整齐的,从另一方向看去则是杂乱无章的。
6、饱和汽;湿度
(1)饱和汽:与液体处于动态平衡的'蒸汽.
(2)未饱和汽:没有达到饱和状态的蒸汽.
(3)饱和汽压
①定义:饱和汽所具有的压强。
②特点:液体的饱和汽压与温度有关,温度越高,饱和汽压越大,且饱和汽压与饱和汽的体积无关。
(4)湿度
①定义:空气的干湿程度。
②描述湿度的物理量
a.绝对湿度:空气中所含水蒸气的压强。
b.相对湿度:空气的绝对湿度与同一温度下水的饱和汽压之比。
c.相对湿度公式:
7、改变系统内能的两种方式:做功和热传递
①热传递有三种不同的方式:热传导、热对流和热辐射。
②这两种方式改变系统的内能是等效的。
③区别:做功是系统内能和其他形式能之间发生转化;热传递是不同物体(或物体的不同部分)之间内能的转移。
物理必修二知识点 12
一、知识点
(一)能、势能、动能的概念
(二)功
1、功的定义、定义式及其计算
2、正功和负功的判断:力与位移夹角角度、动力学角度
(三)功率
1、功率的定义、定义式
2、额定功率、实际功率的概念
3、功率与速度的关系式:瞬时功率、平均功率
4、功率的计算:力与速度角度、功与时间角度
(四)重力势能
1、重力做功与路径无关
2、重力势能的表达式
3、重力做功与重力势能的关系式
4、重力势能的相对性:零势能参考平面
5、重力势能系统共有
(五)动能和动能定理
1、动能的表达式
2、动能定理的内容、表达式
(六)机械能守恒定律:内容、表达式
二、重点考察内容、要求及方式
1、正负功的判断:夹角角度、动力学角度:力对物体产生的加速度与物体运动方向一致或相反,导致物体加速或减速,动能增大或减小(选择、判断)
2、功的计算:重力做功、合外力做功(动能定理或功的定义角度)(填空、计算)
3、功率的计算:力与速度角度、功与时间角度(填空、计算)
4、机车启动模型:功率与速度、力的关系式;运动学规律(填空、计算)
5、动能定理与受力分析:求牵引力、阻力;要求正确受力分析、运动学规律(计算)
6、机械能守恒定律应用:机械能守恒定律表达式、设定零势能参考平面;求解动能、高度等。
必修二物理学习方法
重视物理概念
初中将学习大量的重要的物理概念、规律,而这些概念、规律,是解决各类问题的基础,因此要真正理解和掌握,应力求做到“五会”:
会表述:能熟记并正确地叙述概念、规律的'内容。
能表达:明确概念、规律的表达公式及公式中每个符号的科学意义。
会理解:能控制公式的利用范围和使用条件。
会变形:会对公式进行精确变形,并理解变形后的含义。
能应用:能应用概念和公式进行简单的判断、推理和计算。
必修二物理学习技巧
(1)立足课堂,夯实基础。课堂是学习物理基础知识和基本技能的主阵地,只有把握课堂,抓牢“双基”,学习必要的方法,才会有拓展、提高的可能。
(2)注重探究过程,学习研究方法。物理是一门实验科学,学习物理要注重科学探究的过程,对于每一个实验探究不仅要知道怎样做,而且要理解为什么要这样做,并能对探究过程和结果作出适当的评估;除了学习物理知识,还应学习相关的研究方法,如:转化法,控制变量法,对比法,理想实验推理法,归纳法、等效法、类比法、建立理想模型法等。(3)强化训练,提高知识的迁移应用能力。课外适当做一些补充练习是消化、巩固所学知识,拓展提高的一种较为有效的措施。在解题过程中注意培养、提高审题能力。
(4)优化学习方法,提高学习效率。如遇到学习的难点、疑点,由于初三阶段的学习较为紧张,不能花很多的时间去慢慢“磨”,应做好标记,跟同学讨论,最好求得老师的解答,理解过程,掌握方法。
(5)归纳概括、串前联后,形成综合能力。在平时的学习过程中,对所学的知识进行必要的归纳总结,并将新学的知识和前面的内容联系起来,注意它们的相同点与不同点,做到前后贯通。如学习功率的概念时可以对照已经学过的速度概念进行综合思考。
(6)规范解答,注意细节。“规范”在考试中主要体现在简答题、作图题、计算题中。历年中考中,因解答不规范而失分的情况屡见不鲜。
物理必修二知识点 13
一、固体
1、晶体:外观上有规则的几何外形,有确定的熔点,一些物理性质表现为各向异
2、非晶体:外观没有规则的几何外形,无确定的熔点,一些物理性质表现为各向同性
①判断物质是晶体还是非晶体的主要依据是有无固定的熔点
②晶体与非晶体并不是绝对的,有些晶体在一定的条件下可以转化为非晶体(石英→玻璃)
3、单晶体多晶体
如果一个物体就是一个完整的晶体,如食盐小颗粒,这样的晶体就是单晶体(单晶硅、单晶锗)
如果整个物体是由许多杂乱无章的小晶体排列而成,这样的物体叫做多晶体,多晶体没有规则的几何外形,但同单晶体一样,仍有确定的熔点。
二、液体
1、表面张力:当表面层的分子比液体内部稀疏时,分子间距比内部大,表面层的分子表现为引力。如露珠
2、液晶
分子排列有序,各向异性,可自由移动,位置无序,具有流动性
各向异性:分子的排列从某个方向上看液晶分子排列是整齐的,从另一方向看去则是杂乱无章的
三:饱和汽与饱和汽压
①汽化
汽化:物质由液态变成气态的过程叫汽化。
1、汽化有两种方式:蒸发和沸腾。
2、液体在沸腾过程中要不断吸热,但温度保持不变,这一温度叫沸点。不同物质的沸点是不同的。而且沸点与大气压有关,大气压越大,沸点也就越高。
②饱和汽与饱和汽压
饱和汽:与液体处于动态平衡的蒸汽叫做饱和汽。没有达到饱和状态的蒸汽叫做未饱和汽。
饱和汽压:在一定温度下,饱和汽的压强是一定的,叫做饱和汽压。未饱和汽的压强小于饱和汽压。
1、饱和汽压只是指空气中这种液体蒸汽的分气压,与其它气体的压强无关。
2、饱和汽压与温度和物质种类有关。
四:物态变化中的能量交换
①熔化热
1、熔化:物质从固态变成液态的过程叫熔化(而从液态变成固态的过程叫凝固)。
注意:晶体在熔化和凝固的过程中温度不变,同一种晶体的熔点和凝固点相同;而非晶体在熔化过程中温度不断升高,凝固的过程中温度不断降低。
2、熔化热:某种晶体熔化过程中所需的能量(Q)与其质量(m)之比叫做这种晶体的.熔化热。
I、用λ表示晶体的熔化热,则λ=Q/m,在国际单位中熔化热的单位是焦尔/千克(J/Kg)。
II、晶体在熔化过程中吸收热量增大分子势能,破坏晶体结构,变为液态。所以熔化热与晶体的质量无关,只取决于晶体的种类。
III、一定质量的晶体,熔化时吸收的热量与凝固时放出的热量相等。
注意:非晶体在熔化的过程中温度会不断变化,而不同温度下非晶体由固态变为液态时吸收的热量是不同的,所以非晶体没有确定的熔化热。
②汽化热
1、汽化:物质从液态变成气态的过程叫汽化(而从气态变成液态的过程叫液化)。
2、汽化热:某种液体汽化成同温度的气体时所需要的能量(Q)与其质量(m)之比叫这种物质在这一温度下的汽化热。用L表示汽化热,则L=Q/m,在国际单位制中汽化热的单位是焦尔/千克(J/Kg)。
I、液体汽化时,液体分子离开液体表面成为气体分子,要克服其它分子的吸引而做功,因此要吸收能量。
II、一定质量的物质,在一定的温度和压强下,汽化时吸收的热量与液化时放出的热量相等。
III、液体的汽化热与液体的物质种类、液体的温度、外界压强均有关。
物理大题答题方法
1.规范答题格式
做物理大题时,要慢审题快答题,有些学生题目还没有看清楚就急着答题,既浪费了时间又失了分。大题中包括实验题和计算题,作答时一定要按照各科的具体特点和要求规范书写,对于一些文字叙述的答案,写完后要读一下,看是否符合逻辑关系,是否简洁明了。
2.认真审题,不见句号不答题
审题时一定要通读全题,审出题干中的关键词和隐含的信息,准确找出答题的突破口和限制性条件。见到熟悉的内容和题型,不要盲目乐观,因为在高考试题中有原题的可能性很小,往往是材料熟悉,但出题的角度、方式会有很大变化,一定要认真分析,不要受原题的干扰,以避免失分;见到新题、难题,不要过分紧张,因为这些题对所有考生来说都新、都难,要相信材料再新,所考查的知识肯定是我们学过的,不要被新信息所蒙蔽。
交变电流(正弦式交变电流)公式
1.电压瞬时值e=Emsinωt电流瞬时值i=Imsinωt;(ω=2πf)
2.电动势峰值Em=nBSω=2BLv电流峰值(纯电阻电路中)Im=Em/R总
3.正(余)弦式交变电流有效值:E=Em/(2)1/2;U=Um/(2)1/2 ;I=Im/(2)1/2
4.理想变压器原副线圈中的电压与电流及功率关系
U1/U2=n1/n2; I1/I2=n2/n2; P入=P出
5.在远距离输电中,采用高压输送电能可以减少电能在输电线上的损失损′=(P/U)2R;(P损′:输电线上损失的功率,P:输送电能的总功率,U:输送电压,R:输电线电阻)〔见第二册P198〕;
6.公式1、2、3、4中物理量及单位:ω:角频率(rad/s);t:时间(s);n:线圈匝数;B:磁感强度(T);S:线圈的面积(m2);U输出)电压(V);I:电流强度(A);P:功率(W)。
注:(1)交变电流的变化频率与发电机中线圈的转动的频率相同即:ω电=ω线,f电=f线;
(2)发电机中,线圈在中性面位置磁通量最大,感应电动势为零,过中性面电流方向就改变;
(3)有效值是根据电流热效应定义的,没有特别说明的交流数值都指有效值;
(4)理想变压器的匝数比一定时,输出电压由输入电压决定,输入电流由输出电流决定,输入功率等于输出功率,当负载的消耗的功率增大时输入功率也增大,即P出决定P入;
(5)其它相关内容:正弦交流电图象/电阻、电感和电容对交变电流的作用。
物理必修二知识点 14
功、功率、机械能和能源
1.做功两要素:力和物体在力的方向上发生位移
2.功:功是标量,只有大小,没有方向,但有正功和负功之分,单位为焦耳(J)
3.物体做正功负功问题(将α理解为F与V所成的角,更为简单)
(1)当α=90度时,W=0.这表示力F的方向跟位移的方向垂直时,力F不做功,
如小球在水平桌面上滚动,桌面对球的支持力不做功。
(2)当α<90度时,cosα>0,W>0.这表示力F对物体做正功。
如人用力推车前进时,人的推力F对车做正功。
(3)当α大于90度小于等于180度时,cosα<0,W<0.这表示力F对物体做负功。
如人用力阻碍车前进时,人的推力F对车做负功。
一个力对物体做负功,经常说成物体克服这个力做功(取绝对值)。
例如,竖直向上抛出的球,在向上运动的过程中,重力对球做了-6J的.功,可以说成球克服重力做了6J的功。说了“克服”,就不能再说做了负功
4.动能是标量,只有大小,没有方向。表达式
5.重力势能是标量,表达式
(1)重力势能具有相对性,是相对于选取的参考面而言的。因此在计算重力势能时,应该明确选取零势面。
(2)重力势能可正可负,在零势面上方重力势能为正值,在零势面下方重力势能为负值。
6.动能定理:
W为外力对物体所做的总功,m为物体质量,v为末速度,为初速度
解答思路:
①选取研究对象,明确它的运动过程。
②分析研究对象的受力情况和各力做功情况,然后求各个外力做功的代数和。
③明确物体在过程始末状态的动能和。
④列出动能定理的方程。
7.机械能守恒定律:(只有重力或弹力做功,没有任何外力做功。)
解题思路:
①选取研究对象----物体系或物体
②根据研究对象所经历的物理过程,进行受力,做功分析,判断机械能是否守恒。
③恰当地选取参考平面,确定研究对象在过程的初、末态时的机械能。
④根据机械能守恒定律列方程,进行求解。
8.功率的表达式:,或者P=FV功率:描述力对物体做功快慢;是标量,有正负
9.额定功率指机器正常工作时的最大输出功率,也就是机器铭牌上的标称值。
实际功率是指机器工作中实际输出的功率。机器不一定都在额定功率下工作。实际功率总是小于或等于额定功率。
10、能量守恒定律及能量耗散
物理必修二知识点 15
1、多普勒效应:
由于波源和观察者之间有相对运动,使观察者感到频率变化的现象叫做多普勒效应。是奥地利物理学家多普勒在1842年发现的。
2、多普勒效应的成因:
声源完成一次全振动,向外发出一个波长的波,频率表示单位时间内完成的全振动的次数,因此波源的频率等于单位时间内波源发出的完全波的个数,而观察者听到的声音的.音调,是由观察者接受到的频率,即单位时间接收到的完全波的个数决定的。
3、多普勒效应是波动过程共有的特征:
不仅机械波,电磁波和光波也会发生多普勒效应。
4、多普勒效应的应用:
①现代医学上使用的胎心检测器、血流测定仪等有许多都是根据这种原理制成。
②根据汽笛声判断火车的运动方向和快慢,以炮弹飞行的尖叫声判断炮弹的飞行方向等。
③红移现象:在20世纪初,科学家们发现许多星系的谱线有“红移现象”,所谓“红移现象”,就是整个光谱结构向光谱红色的一端偏移,这种现象可以用多普勒效应加以解释:
由于星系远离我们运动,接收到的星光的频率变小,谱线就向频率变小(即波长变大)的红端移动。科学家从红移的大小还可以算出这种远离运动的速度。这种现象,是证明宇宙在膨胀的一个有力证据。
【物理必修二知识点】相关文章:
必修二物理知识点08-03
物理必修二知识点12-20
物理必修二知识点01-06
物理必修二知识点08-19
高二物理必修二知识点12-20
必修二物理知识点汇总12-20
物理必修二知识点归纳02-28
物理必修二功率知识点12-15
高二物理必修二知识点通用12-20
高二物理必修二知识点集锦12-20