物理下册知识点归纳(11篇)
物理下册知识点归纳1
1.力
力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因。力是矢量。
2.重力
(1)重力是由于地球对物体的吸引而产生的。
[注意]重力是由于地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力。
但在地球表面附近,可以认为重力近似等于万有引力
(2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g
(3)重力的方向:竖直向下(不一定指向地心)。
(4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上。
3.弹力
(1)产生原因:由于发生弹性形变的物体有恢复形变的趋势而产生的。
(2)产生条件:①直接接触;②有弹性形变。
(3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体。在点面接触的情况下,垂直于面;
在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面。
①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等。
②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆。
(4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解。弹簧弹力可由胡克定律来求解。
★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx。k为弹簧的劲度系数,它只与弹簧本身因素有关,单位是N/m。
4.摩擦力
(1)产生的条件:
1、相互接触的物体间存在压力;
2、接触面不光滑;
3、接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可。
(2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向可以相同也可以相反。
(3)判断静摩擦力方向的方法:
1、假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同。然后根据静摩擦力的方向跟物体相对运动趋势的方向相反确定静摩擦力方向。
2、平衡法:根据二力平衡条件可以判断静摩擦力的方向。
(4)大小:先判明是何种摩擦力,然后再根据各自的规律去分析求解。
1、滑动摩擦力大小:利用公式f=μFN进行计算,其中FN是物体的正压力,不一定等于物体的重力,甚至可能和重力无关。或者根据物体的运动状态,利用平衡条件或牛顿定律来求解。
2、静摩擦力大小:静摩擦力大小可在0与fmax之间变化,一般应根据物体的运动状态由平衡条件或牛顿定律来求解。
5.物体的受力分析
1、确定所研究的物体,分析周围物体对它产生的作用,不要分析该物体施于其他物体上的力,也不要把作用在其他物体上的力错误地认为通过“力的传递”作用在研究对象上。
2、按“性质力”的顺序分析。即按重力、弹力、摩擦力、其他力顺序分析,不要把“效果力”与“性质力”混淆重复分析。
3、如果有一个力的方向难以确定,可用假设法分析。先假设此力不存在,想像所研究的物体会发生怎样的运动,然后审查这个力应在什么方向,对象才能满足给定的运动状态。
6.力的合成与分解
1、合力与分力:如果一个力作用在物体上,它产生的效果跟几个力共同作用产生的效果相同,这个力就叫做那几个力的合力,而那几个力就叫做这个力的分力。
2、力合成与分解的根本方法:平行四边形定则。
3、力的合成:求几个已知力的合力,叫做力的合成。
共点的两个力(F1和F2)合力大小F的取值范围为:|F1-F2|≤F≤F1+F2。
4、力的分解:求一个已知力的分力,叫做力的分解(力的分解与力的合成互为逆运算)。
在实际问题中,通常将已知力按力产生的实际作用效果分解;为方便某些问题的研究,在很多问题中都采用正交分解法。
7.共点力的平衡
1、共点力:作用在物体的同一点,或作用线相交于一点的几个力。
2、平衡状态:物体保持匀速直线运动或静止叫平衡状态,是加速度等于零的状态。
3、★共点力作用下的物体的平衡条件:物体所受的合外力为零,即∑F=0,若采用正交分解法求解平衡问题,则平衡条件应为:∑Fx=0,∑Fy=0。
4、解决平衡问题的常用方法:隔离法、整体法、图解法、三角形相似法、正交分解法等等。
(1)极性分子之间
极性分子的正负电荷的重心不重合,分子的一端带正电荷,另一端带负电荷。当极性分子相互接近时,由于同极相斥,异极相吸,使分子在空间定向排列,相互吸引而更加接近,当接近到一定程度时,排斥力同吸引力达到相对平衡。极性分子之间按异极相邻的状态取向。
(2)极性分子与非极性分子之间
非极性分子的正负电荷重心是重合的,当非极性分子与极性分子相互接近时,由于极性分子电场的影响,使非极性分子的电子云发生“变形”,从而使原来的非极性分子产生极性。这样,非极性分子与极性分子之间也就产生了相互作用力。极性分子对非极性分子有诱导作用。
(3)非极性分子之间
非极性分子间不可能产生上述两种作用力,那又是怎样产生作用力的呢?
我们说非极性分子的正负电荷重心重合是从整体上讲的。但由于核外电子是绕核高速运动的,原子核也在不断振动之中,原子核外的电子对原子核的相对位置会经常出现瞬间的不对称,正负电荷重心经常出现瞬间的不重合,也就是说非极性分子经常产生瞬时极性,从而使非极性分子间也产生了相互吸引力。
从上述的分析可以看出,无论什么分子之间都存在着相互吸引力,即范德华力。范德华力从本质上看,是一种电性吸引力。
1.冲量
物体所受外力和外力作用时间的乘积;矢量;过程量;I=Ft;单位是N·s。
2.动量
物体的质量与速度的乘积;矢量;状态量;p=mv;单位是kg·m/s;1kg·m/s=1N·s。
3.动量守恒定律
一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变。
4.动量守恒定律成立的条件
系统不受外力或者所受外力的矢量和为零;内力远大于外力;如果在某一方向上合外力为零,那么在该方向上系统的动量守恒。
5.动量定理
系统所受合外力的冲量等于动量的变化;I=mv-mv。
6.反冲
在系统内力作用下,系统内一部分物体向某方向发生动量变化时,系统内其余部分物体向相反的方向发生动量变化;系统动量守恒。
7.碰撞
物体间相互作用持续时间很短,而物体间相互作用力很大;系统动量守恒。
8.弹性碰撞
如果碰撞过程中系统的动能损失很小,可以略去不计,这种碰撞叫做弹性碰撞。
9.非弹性碰撞
碰撞过程中需要计算损失的动能的碰撞;如果两物体碰撞后黏合在一起,这种碰撞损失的动能最多,叫做完全非弹性碰撞。
物理下册知识点归纳2
1、电荷:电荷也叫电,是物质的一种属性。
①电荷只有正、负两种。与丝绸摩擦过的玻璃棒所带电荷相同的电荷叫正电荷;而与毛皮摩擦过的橡胶棒所带电荷相同的电荷叫负电荷。
②同种电荷互相排斥,异种电荷互相吸引。
③带电体具有吸引轻小物体的性质
④电荷的多少称为电量。
⑤验电器:用来检验物体是否带电的仪器,是依据同种电荷相互排斥的原理工作的。
2、导体和绝缘体容易导电的物体叫导体,金属、人体、大地、酸碱盐的水溶液等都是是常见的导体。不容易导电的物体叫绝缘体,橡胶、塑料、玻璃、陶瓷等是常见的绝缘体。
理解:导体和绝缘体的划分并不是绝对的,当条件改变时绝缘体也能变成导体,例如在常温下是很好的绝缘体的玻璃在高温下就变成了导体。又如常态下,气体中可以自由移动的带电微粒(自由电子和正、负离子)极少,因此气体是很好的绝缘体,但在很强的电场力作用下,或者当温度升高到一定程度的时候,由于气体的电离而产生气体放电,这时气体由绝缘体转化为导体。所以,导体和绝缘体没有绝对界限。在条件改变时,绝缘体和导体之间可以相互转化。
3、电路将用电器、电源、开关用导线连接起来的电流通路
电路的三种状态:处处连通的电路叫通路也叫闭合电路,此时有电流通过;断开的电路叫断路也叫开路,此时电路中没有电流;用导线把电源两极直接连起来的电路叫短路。
4、电路连接方式串联电路、并联电路是电路连接的基本方式。
理解:识别电路的基本方法是电流法,即当电流通过电路上各元件时不出现分流现象,这几个元件的连接关系是串联,若出现分流现象,则分别在几个分流支路上的元件之间的连接关系是并联。
5、电路图用符号表示电路连接情况的图形。
十五、电流电压电阻欧姆定律
1、电流的产生:由于电荷的定向移动形成电流。
电流的方向:①正电荷定向移动的方向为电流的方向
理解:在金属导体中形成的电流是带电的自由电子的定向移动,因此金属中的电流方向跟自由电子定向移动的方向相反。而在导电溶液中形成的电流是由带正、负电荷的离子定向移动所形成的,因此导电溶液中的电流方向跟正离子定向移动的方向相同,而跟负离子定向移动的方向相反。
②电路中电流是从电源的正极出发,流经用电器、开关、导线等流回电源的负极的。
电流的三效应:热效应、磁效应和化学效应,其中热效应和磁效应必然发生。
2、电流强度:表示电流大小的物理量,简称电流。
①定义:每秒通过导体任一横截面的电荷叫电流强度,简称电流。I=Q/t
②单位:安(A)常用单位有毫安(mA)微安(μA)
它们之间的换算:1A=103mA=106μA
③测量:电流表
要测量某部分电路中的电流强度,必须把安培表串联在这部分电路里。在把安培表串联到电路里的时候,必须使电流从“+”接线柱流进安培表,并且从“-”接线柱流出来。
在测量前后先估算一下电流强度的大小,然后再将量程合适的安培表接入电路。在闭合电键时,先必须试着触接电键,若安培表的指针急骤摆动并超过满刻度,则必须换用更大量程的安培表。
使用安培表时,绝对不允许经过用电器而将安培表的两个接线柱直接连在电源的两极上,以防过大电流通过安培表将表烧坏。因为安培表的电阻很小,所以千万不能把安培表并联在用电器两端或电源两极上,否则将造成短路烧毁安培表。
读数时,一定要先看清相应的量程及该量程的最小刻度值,再读出指针所示数值。
3、串联电路电流的特点:串联电路中各处的电流相等。I=I1=I2
并联电路电流的特点:并联电路干路中的电流等于各支路中的电流之和I=I1+I2
4、电压是形成电流的原因,电源是提供电压的装置
5、①电压的单位:伏特,简称伏,符号是V。
常用单位有:兆伏(MV)千伏(KV)毫伏(mV)微伏(μV)
它们之间的换算:1MV=103KV1KV=103V1V=103mV1mV=103μV
②一些常见电压值:一节干电池1.5伏一节铅蓄电池2伏人体的安全电压不高于36伏照明电路的电压220伏动力电路的电压380伏
③测量:电压表
要测量某部分电路或用电器两端电压时,必须把伏特表跟这部分电路或用电器并联,并且必须把伏特表的“+”接线柱接在电路流入电流的那端。
每个伏特表都有一定的测量范围即量程,使用时必须注意所测的电压不得超出伏特表的量程。如若被测的那部分电路或用电器的电压数值估计的不够准,可在闭合电键时采取试触的方法,如果发现电压表的指针很快地摆动并超出量程范围,则必须选用更大量程的电压表才能进行测量。在用伏特表测量电压之前,先要仔细观察所用的伏特表,看看它有几个量程,各是多少,并弄清刻度盘上每一个格的数值。
6、串联电路电压的特点:串联电路的总电压等于各部分电压之和。U=U1+U2
并联电路电压的特点:并联电路各支路两端的电压相等。U=U1=U2
7、电阻:电阻是导体本身的一种性质,是表示导体对电流阻碍作用大小的物理量。与导体两端的电压及通过导体的电流都无关。
电阻的单位:欧姆,简称欧,代表符号Ω。
常用单位有:兆欧(MΩ)千欧(KΩ)它们的换算:1MΩ=106Ω1KΩ=103Ω
8、决定电阻大小的因素:导体的电阻跟它的长度有关,跟横截面积有关,跟组成导体的材料有关,还跟导体的温度有关。
9、滑动变阻器:通过改变接入电路导线长度改变电阻值的仪器。
接法:一上一下作用:改变电路中的电流
铭牌含义:“100Ω2A”表示阻值为100Ω允许通过的电流为2A
注意点:滑动变阻器在接入电路时,应把滑片P移到变阻器电阻值的位置,从而限制电路中电流的大小,以保护电路。
10、变阻箱:通过改变接入电路定值电阻个数和阻值改变电阻大小的仪器。变阻箱有旋钮式和插入式两种。它们都是由一组阻值不同的电阻线装配而成的。调节变阻箱上的旋钮或拔出铜塞,可以不连续地改变电阻的大小,它可以直接读出电阻的数值。
11、欧姆定律
内容:一段导体中的电流,跟这段导体两端的电压成正比,跟这段导体的电阻成反比。公式:I=U/R
12、电阻的串联:串联电路的总电阻,等于各串联电阻之和。R总=R1+R2
13、电阻的并联:并联电路的总电阻的倒数,等于各并联电阻的倒数之和。1/R总=1/R1+1/R2
14、串联分压,分压与电阻成正比;并联分流,分流与电阻成反比。
【方法介绍】
识别串联电路与并联电路的方法
(1)元件连接法分析电路中电路元件的连接方法,逐个顺次连接的是串联电路,并列接在两点间的是并联电路。
(2)电流路径法从电源正极开始,沿电流的方向分析电流的路径,直到电源的负极。如果只有一条回路,则是串联;如果电流路径有若干条分支,则是并联电路。
(3)元件消除法若去掉电路中的某个元件时,出现开路的话则是串联;若去掉电路中的某个元件后,其他元件仍能正常工作则是并联。
十六、电功电能生活用电
1、电功:电流做的功叫电功。电流做功的过程是电能转化为其它形式能的过程。
计算式:W=UIt=Pt=t=I2Rt=UQ(其中W=t=I2Rt只适用于纯电阻电路)
单位:焦耳(J)常用单位千瓦时(KWh)1KWh=3.6×106J
测量:电能表(测家庭电路中用电器消耗电能多少的仪表)
接法:①串联在家庭电路的干路中②“1、3”进“2、4”出;“1、2”火“3、4”零
参数:“220V10A(20A)”表示该电能表应该在220V的电路中使用;电能表的额定电流为10A,在短时间内电流不能超过20A;电路中用电器的总功率不能超过2200W;“50Hz”表示电能表应在交流电频率为50Hz的电路中使用;“3000R/KWh”表示工作电路每消耗1KWh的电能,电能表的表盘转动3000转。
电能表间接测量电功率的计算式:P=×3.6×106(W)
2、电功率:电功率是电流在单位时间内做的功。等于电流与电压的乘积。电功率的单位是瓦。计算式:P=W/t=UI==I2R(其中P==I2R只适用于纯电阻电路)
3、额定功率与实际功率的区别与联系:额定功率是由用电器本身所决定的,实际功率是由实际电路所决定的。联系:P实=()2P额,可理解为用电器两端的电压变为原来的1/n时,功率就变为原来功率的1/n2。
4、小灯泡的明暗是由灯泡的实际功率决定的。
5、焦耳定律:电流通过导体产生的热量Q跟电流I的平方成正比,跟导体的电阻R成正比,跟通电的时间t成正。计算式:Q=I2Rt=UIt=t(其中Q=UIt=t只适用于纯电阻电路)
6、电热器:主要部件是发热体,是由电阻较大、熔点较高的材料制成的。其原理是电流的热效应。
7、家庭电路:由电源线、电能表、开关、保险丝、用电器、插座等元件组成。
①家庭电路的进户线相当于家庭电路的电源,由两根线组成,一根是火线,一根是零线,火线与零线之间有220V的电压。
②开关及保险丝必须与电路的火线相连。开关接在火线上,当拉开开关切断电路时,电路上各部分都脱离了火线,这样人体碰到这些部分就不会触电,检修电路也比较方便。能使整个电路更安全。
③电灯的开关应该接在火线和灯座(或灯头)之间,利用测电笔可以检查开关安装是否正确。拧下灯泡,将开关闭合,把测电笔笔尖分别触灯座两接线柱,其中有一个氖管发光,再将开关断开,再用测电笔分别触两接线柱,如果两个都不发光,说明开关安装正确;如果仍有一个发光,说明开关接在零线和灯座之间,应予以纠正。
④一般照明电路里使用的保险丝由电阻率比较大而熔点较低的铅锑合金制成。在电路中的电流超过保险丝熔断电流时,保险丝立即熔断,使电路断开,从而保护用电器,避免引起火灾。
选用保险丝的原则,应该使用它的额定电流稍大于或等于电路的正常工作电流。
在照明电路中如果用铜丝代替保险丝,当电流超过额定电流时,铜丝不会熔断,起不到保险的作用。
8、触电:一定强度的电流通过人体时所引起的伤害事故。
9、安全用电常识:不接触电压高于36伏的带电体,不靠近高压带电体。明插座的安装应高于地面1.8m,电风扇、洗衣机等家用电器应接地。
九年级下册物理学习方法
1、理象记忆法:如当车起步和刹车时,人向后、前倾倒的现象,来记忆惯性概念。
2、浓缩记忆法:如光的反射定律可浓缩成"三线共面、两角相等,平面镜成像规律可浓缩为“物象对称、左右相反”。
3、口诀记忆法:如“物体有惯性,惯性物属性,大小看质量,不论动与静。”
4、比较记忆法:如惯性与惯性定律、像与影、蒸发与沸腾、压力与压强、串联与并联等,比较区别与联系,找出异同。
5、推导记忆法:如推导液体内部压强的计算公式。即p=F/S=G/S=mg/s=pvg/s=pshg/=pgh。
6、归类记忆法:如单位时间通过的路程叫速度,单位时间里做功的多少叫功率,单位体积的某种物质的质量叫密度,单位面积的压力叫压强等,都可以归纳为“单位……的……叫……”类。
7、顾名思义法:如根据“浮力”、“拉力”、“支持力”等名称,易记住这些力的方向。
8、因果(条件记忆法):如判定使用左、右手定则的条件时,可根据由于在磁场中有电流,而产生力,就用左手定则;若是电力在磁场中运动,而产生电流,就用右手定则。
9、图表记忆法:可采用小卡片、转动纸板、列表格等方式,将知识内容分类归纳小结编成图表记忆。
10、实践记忆法:如制作测力计,可以帮助同学们记在弹簧的伸长与外力成正比的知识。
九年级下册物理学习技巧
一、认真预习,画出疑难。在这个环节中,必须先行学习教程(提前任课教师两个课时),画出自己理解不清,理解不了的部分。预习教材后,如果“没有”疑难,那么马上做教材所配置的练习,帮助画出重点和难点。预习中,自己画出重点和难点,这是非常重要的,是为提高听课效率所应该准备的一个环节。
二、带着问题,进入课堂。带着问题进课堂,通过教师讲解,解决预习中的疑难问题;若课堂中没有听懂,尽量利用课间时间,当场解决。
三、回顾教材,再做练习。力争在头脑中回顾教材内容和课堂教学内容,若记忆模糊,则把教材复习一遍;然后做教材配套练习,练习不必太多,一本足矣。
四、参照答案,检验练习。如果作业完成很好,则新课学习可以到此结束;如果做错(或者根本没有思路,没有完成作业),则回归教材,再仔细认真的阅读一遍,接着完成未完成的练习,如果已经得以完成,新课学习到此结束,如果还是无法完成,进入第五步。
五、勤于反思,分析原因。如果参考答案有分析说明,则此时比照分析说明,反思自己为什么做错(或跟本没有思路),找到原因,去除疑点。如果没有分析说明(或分析说明看不懂),则自己不要太费神,寻找外援帮助(例如与同学交流、咨询任课教师或家庭教师)。这里最重要的是,反思为什么做错,找到原因。
物理学习,需要养成良好的学习习惯:
一、勤于想象。一般需要经过联想,合理推想,大胆猜想。例如:联想“为什么“难以”感觉地球在运动?坐在火车或飞机上,闭着眼睛,感觉火车或飞机不再行驶或飞行,为什么?”;推想“描写物体的运动,需要参照物”;猜想“没有参照物,‘位置’或‘方向’等概念失去意义。”
二、咬文嚼字。学习物理概念、规律,须紧扣文字表述。比如“力是物体间的相互作用。”这里关键字有“物体”、“间”和“相互”。
三、詹前顾后。物理成为一门学科,具有很强的逻辑系统性。前面接触的概念、规律或重要结论与后面新学习的概念、规律或重要结论总是相互联系的,绝不会相互“抵触”。所以学习中需要瞻前顾后,分析这种其中逻辑关系。
四、多作比较。比较可以“同中求异”,也可“异中求同”。例如“速度”和“加速度”之间比较,相同之处,都是比值定义法。不同之处,物理意义差别“巨大”。这里,可能需要一个较为长期的过程,才能较为彻底地理解。
五、做好实验。
六、使用好数学工具。比如“代数法”、“函数图像法”(包括“三角函数”)“向量法”和“不等式法”等等。
物理下册知识点归纳3
理解: 1.W有:与工作目的相关的功
2.W总:动力所做的功
3.机械效率总小于1,且无单位,结果使用百分数表示 三类常考机械效率问题: 1.斜面:??
注意:1、 做功:W=Fs 正确理解物理学中“功”的意义(做功的必要条件,三种不做功的情况)
2、知道功的原理是一切机械都遵守的普遍规律。使用任何机械都不省功,功的原理是对所有机
械都普遍适用的原理。(理想情况:所有方式做功均相等,实际用机械做功都比直接做功多)
3、理解机械效率的意义
(1)机械效率是反映机械性能优劣的主要标志之一,有用功在总功中所占的比例越大,机械对总功的利用率就越高,机械的性能就越好。
(2)在计算机械效率时,要注意各物理量名称所表示的意义。
(3)因为有用功只占总功的一部分,有用功总小于总功,所以机械效率总小于1。
4. 理解功率的物理意义(P=W/t=Fv)
功率是表示做功快慢的物理量,它跟功和时间两个因素有关,并由它们的比值决定。
5. 注意机械效率跟功率的区别
机械效率和功率是从不同的方面反映机械性能的物理量,它们之间没有必然的联系。功率大的机器不一定效率高。
物理下册知识点归纳4
1、首先发现电流的磁效应的科学家:丹麦的奥斯特
2、磁场(磁感应强度B)方向:与小磁针北极受力方向相同,也是磁感线的切线方向。
3、安培定则(右手螺旋定则):判定电流产生的磁场方向
4、安培力:通电导体(电流)在磁场中所受的力通常叫安培力
(1)方向:用左手定则判定(2)大小:F=BIL(B⊥I),F=0(B‖I)
通电直导线所受安培力的方向和磁场方向、电流方向之间的关系,可以用左手定则来判定:伸开左手,使大拇指跟其余四个手指垂直,并且都和手掌在一个平面内,把手放入磁场中,让磁感线垂直穿入手心,并使伸开的四指指向电流的方向,那么,大拇指所指的方向就是通电导线在磁场中所受安培力的方向。注意:F安⊥B
5、洛仑兹力:磁场对运动电荷的作用力。
(1)F络=0(B‖v)(2)方向:用左手定则
洛仑兹力方向用左手定则来判定:伸开左手,使大拇指跟其余四个手指垂直,并且都和手掌在一个平面内,把手放入磁场中,让磁感线垂直穿入手心,并使伸开的四指指向正电荷的运动方向(负电荷,四指指向负电荷的运动的反方向),那么,大拇指所指的方向就是运动电荷在磁场中所受洛仑兹力力的方向。
物理下册知识点归纳5
一.气体的性质公式总结
1.气体的.状态参量:
温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志
热力学温度与摄氏温度关系:T=t+273 {T:热力学温度(K),t:摄氏温度(℃)}
体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL
压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:
1.atm=1.013×105Pa=76cmHg(1Pa=1N/m2)
2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大
3.理想气体的状态方程:p1V1/T1=p2V2/T2 {PV/T=恒量,T为热力学温度(K)}
注:
(1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关;
(2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度(K)。
二.运动和力公式总结
1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止
2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}
3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}
4.共点力的平衡:F合=0,推广 {正交分解法、三力汇交原理}
5.超重:FN>G,失重:FN
6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子〔见第一册P67〕
注:
平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。
三.力的合成与分解公式总结
1.同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)
2.互成角度力的合成:
F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2
3.合力大小范围:|F1-F2|≤F≤|F1+F2|
4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)
注:
(1)力(矢量)的合成与分解遵循平行四边形定则;
(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;
(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;
(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;
(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。
四.常见的力公式总结
1.重力:G=mg (方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)
2.胡克定律:F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}
3.滑动摩擦力:F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}
4.静摩擦力:0≤f静≤fm (与物体相对运动趋势方向相反,fm为最大静摩擦力)
5.万有引力:F=Gm1m2/r2 (G=6.67×10-11N m2/kg2,方向在它们的连线上)
6.静电力:F=kQ1Q2/r2 (k=9.0×109N m2/C2,方向在它们的连线上)
7.电场力:F=Eq (E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)
8.安培力:F=BILsinθ (θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)
9.洛仑兹力:f=qVBsinθ (θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)
注:
(1)劲度系数k由弹簧自身决定;
(2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定;
(3)fm略大于μFN,一般视为fm≈μFN;
(4)其它相关内容:静摩擦力(大小、方向)〔见第一册P8〕;
(5)物理量符号及单位B:磁感强度(T),L:有效长度(m),I:电流强度(A),V:带电粒子速度(m/s),q:带电粒子(带电体)电量(C);
(6)安培力与洛仑兹力方向均用左手定则判定。
五.万有引力公式总结
1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}
2.万有引力定律:F=Gm1m2/r2 (GG=6.67×10-11N m2/kg2,方向在它们的连线上)
3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}
4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}
5.第一(二、三)宇宙速度:V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s
6.地球同步卫星:GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}
注:
(1)天体运动所需的向心力由万有引力提供,F向=F万;
(2)应用万有引力定律可估算天体的质量密度等;
(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;
(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);
(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。
六.匀速圆周运动公式总结
1.线速度V=s/t=2πr/T
2.角速度ω=/t=2π/T=2πf
3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合
5.周期与频率:T=1/f
6.角速度与线速度的关系:V=ωr
7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)
8.主要物理量及单位:弧长(s):米(m);角度():弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。
注:
(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;
(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大
七.平抛运动公式总结
1.水平方向速度:Vx=Vo
2.竖直方向速度:Vy=gt
3.水平方向位移:x=Vot
4.竖直方向位移:y=gt2/25.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)
6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2,合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0
7.合位移:s=(x2+y2)1/2,位移方向与水平夹角α:tgα=y/x=gt/2Vo
8.水平方向加速度:ax=0;竖直方向加速度:ay=g
注:
(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;
(2)运动时间由下落高度h(y)决定与水平抛出速度无关;
(3)θ与β的关系为tgβ=2tgα;
(4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。
八.竖直上抛运动公式总结
1.位移s=Vot-gt2/2
2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)
3.有用推论Vt2-Vo2=-2gs
4.上升最大高度Hm=Vo2/2g(抛出点算起)
5.往返时间t=2Vo/g (从抛出落回原位置的时间)
注:
(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;
(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;
(3)上升与下落过程具有对称性,如在同点速度等值反向等。
九.自由落体运动公式总结
1.初速度Vo=0
2.末速度Vt=gt
3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh
注:
(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;
(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。
十.匀变速直线运动公式总结
1.平均速度V平=s/t(定义式)
2.有用推论Vt2-Vo2=2as
3.中间时刻速度Vt/2=V平=(Vt+Vo)/2
4.末速度Vt=Vo+at
5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2
6.位移s=V平t=Vot+at2/2=Vt/2t
7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}
8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}
9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。
注:
(1)平均速度是矢量;
(2)物体速度大,加速度不一定大;
(3)a=(Vt-Vo)/t只是量度式,不是决定式。
十一.有关摩擦力的知识总结
1、摩擦力定义:当一个物体在另一个物体的表面上相对运动(或有相对运动的趋势)时,受到的阻碍相对运动(或阻碍相对运动趋势)的力,叫摩擦力,可分为静摩擦力和滑动摩擦力。
2、摩擦力产生条件:①接触面粗糙;②相互接触的物体间有弹力;③接触面间有相对运动(或相对运动趋势)。
说明:三个条件缺一不可,特别要注意“相对”的理解。
3、摩擦力的方向:
①静摩擦力的方向总跟接触面相切,并与相对运动趋势方向相反。
②滑动摩擦力的方向总跟接触面相切,并与相对运动方向相反。
说明:
(1)“与相对运动方向相反”不能等同于“与运动方向相反”。
滑动摩擦力方向可能与运动方向相同,可能与运动方向相反,可能与运动方向成一夹角。
(2)滑动摩擦力可能起动力作用,也可能起阻力作用。
4、摩擦力的大小:
(1)静摩擦力的大小:
①与相对运动趋势的强弱有关,趋势越强,静摩擦力越大,但不能超过最大静摩擦力,即0≤f≤fm 但跟接触面相互挤压力FN无直接关系。具体大小可由物体的运动状态结合动力学规律求解。
②最大静摩擦力略大于滑动摩擦力,在中学阶段讨论问题时,如无特殊说明,可认为它们数值相等。
③效果:阻碍物体的相对运动趋势,但不一定阻碍物体的运动,可以是动力,也可以是阻力。
(2)滑动摩擦力的大小:
滑动摩擦力跟压力成正比,也就是跟一个物体对另一个物体表面的垂直作用力成正比。
公式:F=μFN (F表示滑动摩擦力大小,FN表示正压力的大小,μ叫动摩擦因数)。
说明:
①FN表示两物体表面间的压力,性质上属于弹力,不是重力,更多的情况需结合运动情况与平衡条件加以确定。
②μ与接触面的材料、接触面的情况有关,无单位。
③滑动摩擦力大小,与相对运动的速度大小无关。
5、摩擦力的效果:总是阻碍物体间的相对运动(或相对运动趋势),但并不总是阻碍物体的运动,可能是动力,也可能是阻力。
说明:滑动摩擦力的大小与接触面的大小、物体运动的速度和加速度无关,只由动摩擦因数和正压力两个因素决定,而动摩擦因数由两接触面材料的性质和粗糙程度有关。
物理下册知识点归纳6
一、探究电阻上的电流根两端电压的关系 试验探究方法:控制变量法
电阻一定时,导体中的电流跟导体两端的电压成正比;电压一定时,导体中的电流跟导体的电阻成反比
二、欧姆定律及其应用
1、欧姆定律:导体中的电流,跟导体两端的电压成正比,跟导体的电阻成反比。
2、公式: (I= U/ R);式中单位:I→安(A);U→伏(V);R→欧(Ω)。1安=1伏/欧。
3、公式的理解:①公式中的I、U和R必须是在同一段电路中;②I、U和R中已知任意的两个量就可求另一个量;③计算时单位要统一。
4、欧姆定律的应用:
①、同一个电阻,阻值不变,与电流和电压无关 但加在这个电阻两端的电压增大时,通过的电流也增大。(R=U/I);②、当电压不变时,电阻越大,则通过的电流就越小。(I=U/R);③、当电流一定时,电阻越大,则电阻两端的电压就越大。(U=IR)
5、电阻的串联有以下几个特点:(指R1,R2串联)
①、电流:I=I1=I2(串联电路中各处的电流相等);②、电压:U=U1+U2(总电压等于各处电压之和);③、电阻:R=R1+R2(总电阻等于各电阻之和)如果n个阻值相同的电阻串联,则有R总=nR。(串联电路的总电阻的阻值比任何一个分电阻的阻值都大,原因是几个电阻串联相当于增加了导体的长度,所以总电阻比任何一个都要小)
④、分压作用:R1/ R2 = U1/U2,
⑤、电流之比为I1∶I2=1∶1 ;
6、电阻的并联有以下几个特点:(指R1,R2并联)
①、电流:I=I1+I2(干路电流等于各支路电流之和)
②、电压:U=U1=U2(干路电压等于各支路电压)
③、电阻:1/ R=1/ R1+1/R2(总电阻的倒数等于各并联电阻的倒数和)或R=( R1+R2)/ R1R2。如果n个阻值相同的电阻并联,则有R总=R/n(并联电路的总电阻的阻值比任何一个分电阻的阻值都小)
④、分流作用:计算I1:I2= R2: R1可用:;
⑤、比例关系:电压:U1∶U2=1∶1 ;
三、测量小灯泡的电阻
1、实验原理:欧姆定律或者R = U/ I。
物理下册知识点归纳7
一、匀速圆周运动
①.轨迹是圆周的运动叫圆周运动.在相等的时间内通过的_______都相等的圆周运动叫匀速(率)圆周运动。
②.描述匀速圆周运动的物理量:
【线速度】,计算公式 或。
线速度方向时刻在改变,匀速圆周运动是一般变速运动。
【角速度】定义式:(一定要用弧度用单位)。计算公式: 或ω=v/r 或。
【周期】做匀速圆周运动的物体运动一周所用的时间,T=1/n 。
③.在处理不打滑的皮带传问题时,要从"两个相等"入手。
皮带相连的两轮缘上各点的__________相等;同一轮上各点的________相等。
二、机械振动
【回复力】回复力是按力的________(性质、作用效果)命名的;
【简谐运动】
物体在跟振动位移大小成_____,方向总是指向________的回复力作用下的振动叫简谐运动.(即:F回=-Kx.)
"振动物体在某时刻的位移"是指从____位置指向___________位置的有向线段,振动位移X的方向与振动物体在该点的速度方向_______(有关、无关)
【简谐运动的规律】
10.简谐振动的加速度a=________.a总与X___(指向______位置).当振动物体向着平衡位置运动时,a与V___向,物体做加速度逐渐____的__速运动,__________能转化为___能(机械能守恒);当振动体远离平衡位置运动时,a与V___向,物体做加速度逐渐______的__速运动,__能转化为__能(机械能守恒).20.在位移大小相等的位置处(即关于平衡位置对称的两点)有大小相等的回复力、速率、加速度、动能、势能,即具有对称性.
【描述简谐运动的物理量】
10振幅(A):振动物体离开平衡位置的_________,即位移的最大值.是标量,是表示振动范围或_____的物理量.对简谐振动,振幅不随时间而变.
20周期(T):完成一次全振动所经历的时间.是表示振动快慢的物理量.
"完成一次全振动"是指振动物体的位移和速度大小和方向经历一定时间后又重复地回到了原来的值.
30频率(f):在单位时间内完成全振动的次数.也是表示振动快慢的物理量.f=1/T,单位:1Hz=1/秒.
固有周期:简谐运动的周期与_________无关,只由振动系统本身决定的
40做简谐振动的物体在t时间内通过的路程S=__________.
4、简谐振动的图象
①.简谐振动的图象X-t是一条正弦(余弦)曲线.它表示振动物体在各个时刻的位移.
②.由振动图象可求:
10任一时刻振动的位移X(t);20振幅A;
30周期T(频率f);
40任一时刻振动的速度方向及大小变化的趋势.
50任一时刻振动的加速度方向及大小变化的趋势.
三、机械波
1.定义:_________在介质中的传播,形成机械波.
【注意】①机械波向外传播_______,介质本身并不_______迁移.
②产生机械波的必要条件是:10产生_______的波源;20有传播_______的介质
③【横波与纵波】:振动方向与波的传播方向____的波叫横波.在横波中,最凸起处叫波峰,凹下的最低处叫波谷;振动方向与波的传播方向在___________的波叫纵波.有明显的质点分布最密集处(叫密部)和质点分布最疏处(叫疏部).
2.波长(λ)、波速(ν)和波的频率(f)
①波长:两个相邻的,在振动过程中对平衡位置的位移______相等的质点间的距离.在一个周期的时间内,振动在介质中传播的距离____波长.故有:v=S/t=_____.或v=______.
②波速:即 "__________________"传播的速度.(不是质点的振动速度)它由传播波的____决定,在同一均匀介质中波速恒定,____________随f和λ变化
③频率:就是_________的振动频率.同一列波从一种介质进入另一种介质,________保持不变.
3.波的图象
①定义:用横坐标(X)表示在波的传播方向上介质各质点的___位置,纵坐标(Y)表示________各质点偏离____位置的位移.简谐波的波形是正弦(或余弦)曲线.
②波形、某质点的振动方向、波的传播方向三者间的关系是:某质点的振动方向和波的传播方向位于波形图线的同一侧侧。三者知其二,可推知第三者.(同侧法)
③由波的图象可求:10、波长λ;20、波的振幅A;
30、推求再经Δt时间末或前Δt时间初时的波形(平移法);
40、判断波的传播方向或某质点的振动方向.
物理下册知识点归纳8
1、电能是一种能量。如:电灯发光:电能→光能;电动机转动:电能→动能;电饭锅工作:电能→热能。电能即电功(W):电流所做的功叫电功,
2、电能的单位:国际单位:焦耳。常用单位有:度(千瓦时),1度=1千瓦时=3.6×106焦耳。
3、电能表(电度表):测用户消耗的电能(电功)
几个重要参数:“220V”:这个电能表应接在220V的电路中使用。 10(20)A:标定电流为10A,短时间电流允许大些,但不能超过20A。(例子,不同电能表不同) 50HZ:电能表接在50HZ的电路中使用。 600revs/kwh:接在电能表上的用电器,每消耗1kwh的电能,电能表的转盘转600转。
4、电功计算公式:W=UIt(式中单位W→焦(J);U→伏(V);I→安(A);t→秒)。
5、利用W=UIt计算电功时注意:①式中的W.U.I和t是在同一段电路;②计算时单位要统一;③已知任意的三个量都可以求出第四个量。
6、计算电功还可用以下公式:W=I2Rt =Pt=U2 t /R;t
物理下册知识点归纳9
第九章 压强
液体具有流动性,对容器侧壁有压强。
2、液体压强的特点:
1)液体对容器的底部和侧壁有压强, 液体内部朝各个方向都有压强;
2)各个方向的压强随着深度增加而增大;
3)在同一深度,各个方向的压强是相等的;
4)在同一深度,液体的压强还与液体的密度有关,液体密度越大,压强越大。
3、液体压强的公式:P=gh
注意: 液体压强只与液体的密度和液体的深度有关,而与液体的体积、质量无关。与浸入液体中物体的密度无关(深度不是高度)
当固体的形状是柱体时,压强也可以用此公式进行推算
计算液体对容器的压力时,必须先由公式P=gh算出压强,再由公式 P=F/S,得到压力 F=PS 。
4、连通器:上端开口、下端连通的容器。
特点:连通器里的液体不流动时, 各容器中的液面总保持相平, 即各容器的液体深度总是相等。
应用举例: 船闸、茶壶、锅炉的水位计。
9.3、大气压强
1、大气对浸在其中的物体产生的压强叫大气压强,简称大气压。
2、产生原因:气体受到重力,且有流动性,故能向各个方向对浸于其中的物体产生压强。
3、著名的证明大气压存在的实验:马德堡半球实验
其它证明大气压存在的现象:吸盘挂衣钩能紧贴在墙上、利用吸管吸饮料。
4、首次准确测出大气压值的实验:托里拆利实验。
一标准大气压等于76c高水银柱产生的压强,即P0=1.013×105Pa,在粗略计算时,标准大气压可以取105帕斯卡,约支持10高的水柱。
5、大气压随高度的增加而减小,在海拔3000米内,每升高10,大气压就减小100Pa;大气压还受气候的影响。
6、气压计和种类:水银气压计、金属盒气压计(无液气压计)
7、大气压的应用实例:抽水机抽水、用吸管吸饮料、注射器吸药液。
8、液体的沸点随液体表面的气压增大而增大。(应用:高压锅)
9.4、流体压强与流速的关系
1、物理学中把具有流动性的液体和气体统称为流体。
2、在气体和液体中,流速越大的位置,压强越小。
3、应用:
1)乘客候车要站在安全线外;
2)飞机机翼做成流线型,上表面空气流动的速度比下表面快,因而上表面压强小,下表面压强大,在机翼上下表面就存在着压强差,从而获得向上的升力;
物理下册知识点归纳10
电场中两点的电势之差叫电势差,依教材要求,电势差都取绝对值,知道了电势差的绝对值,要比较哪个点的电势高,需根据电场力对电荷做功的正负判断,或者是由这两点在电场线上的位置判断。
场强方向处处相同,场强大小处处相等的区域称为匀强电场,匀强电场中的电场线是等距的平行线,平行正对的两金属板带等量异种电荷后,在两极之间除边缘外就是匀强电场。
在匀强电场中电势差与场强之间的关系是,公式中的是沿场强方向上的距离。
在匀强电场中平行线段上的电势差与线段长度成正比
带电粒子在匀强电场中的运动
(1)带电粒子在电场中的运动,综合了静电场和力学的知识,分析方法和力学的分析方法基本相同:先分析受力情况,再分析运动状态和运动过程(平衡、加速或减速,是直线还是曲线),然后选用恰当的规律解题。
(2)在对带电粒子进行受力分析时,要注意两点
a要掌握电场力的特点。如电场力的大小和方向不仅跟场强的大小和方向有关,还与带电粒子的电量和电性有关;在匀强电场中,带电粒子所受电场力处处是恒力;在非匀强电场中,同一带电粒子在不同位置所受电场力的大小和方向都可能不同。
b是否考虑重力要依据具体情况而定:基本粒子:如电子、质子、粒子、离子等除有要说明或明确的暗示以外,一般都不考虑重力(但并不忽略质量)。带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或明确的暗示以外,一般都不能忽略重力。
(3)、带电粒子的加速(含偏转过程中速度大小的变化)过程是其他形式的能和功能之间的转化过程。解决这类问题,可以用动能定理,也可以用能量守恒定律。
物理下册知识点归纳11
第六章 物质的物理属性
一、物体的质量
1、定义——物体所含物质的多少叫做物体的质量,通常用字母m表示。在国际单位制中,质量的单位是千克,符号为㎏。常用的质量单位还有克(g)、毫克(mg)和吨(t)。换算关系为:
1t=1000㎏1㎏=1000g1g=1000mg
测量工具:天平托盘天平使用说明
①、使用天平时,应将天平放在水平工作台上。
②、使用天平时,应先将游码移至标尺左端的“0”刻度线处,再调节横梁上的平衡螺母,使指针对准分度盘中央的刻度线。
③、测量物体质量时,应将物体放在天平的左盘;用镊子向右盘加减砝码;移动游码,使指针对准分度盘中央的刻度线。此时,右盘中砝码的总质量与游码所示质量之和等于所测物体的质量。
注意:
A、用天平测量物体的质量时,待测物体的总质量不能超过天平的测量值。向右盘里加减砝码时应轻拿轻放。
B、天平与砝码应保持干燥、清洁,不要把潮湿的物品或化学药品直接放在天平的托盘中,不要用手直接取砝码。
2、判断天平横梁是否平衡有2种方法:一种是等指针完全静止下来,使指针对准分度盘中央刻度线;另一种是指针在相对于分度盘中央刻度线左右摆动的幅度相等。
3、质量是物体的一种物理属性
当物体的状态、温度、形状、位置发生改变,但它们所含物质的多少并没有改变,质量不随物体的状态、温度、形状、位置的改变而改变。
二、用天平测物体的质量
测量方法:当被测物体的质量较小时,可以先测量多个物体的总质量,然后算出一个物体的质量。这种“测多算少”的方法能使测量的结果更精确。
三、物质的密度
1、定义——单位体积某种物质的质量叫做这种物质的密度。
密度=质量体积
通常,用ρ表示密度,m表示质量,V表示体积,则密度的公式可以写做:mρ=在国际单位制中,质量的单位是千克,体积的单位是米,则密度的单位是千克/米,符号为㎏/m,读作千克每立方米。密度的单位有时用克/厘米,符号为g/cm。
2、在常温、常压下,一些物质的密度(单位:㎏/m)
四、密度知识的应用
鉴别物质——密度是物质的一种物理属性,可以用测量密度的方法来鉴别物质。
除了用于鉴别物质外,还可以在已知密度和体积的情况下,利用密度公式计算该物体的质量;或者在已知密度和质量的情况下,计算形状不规则物体的体积。
五、物质的物理属性
物质的物理属性包括:状态、硬度、质量、密度、透光性、导热性、导电性、弹性、磁性等。
第七章 从粒子到宇宙
一、分子世界
1、物质是由大量分子组成的,分子间有空隙。分子处在永不停息的运动中。2、分子间不仅存在吸引力,而且还存在排斥力。固体和液体很难被压缩。
二、静电现象
1、用摩擦的方式使物体带电,叫做摩擦起电。
2、用丝绸摩擦过的玻璃棒所带的电荷称为正电荷;把皮毛摩擦过的橡胶棒所带的电荷称为负电荷。同种电荷相互排斥,异种电荷相互吸引。
3、失去电子的物体因缺少电子而带正电,得到电子的物体因为有多余电子而带等量的负电。
4、摩擦起电并不是创造了电荷,而只是将电子由一个物体转移到另一个物体。
三、更小的微粒
分子由原子构成。
原子是由带负电的核外电子和带正电的原子核构成的。
原子核是由质子和中子构成的,统称为核子。质子带正电荷,中子不带电。
第八章 力
一、力弹力
1、物体对物体的作用称为力。一个叫施力物体,一个叫受力物体。
2、形变的物体在撤去外力后能恢复原状,这种形变叫做弹性形变。使物体发生弹性形变的外力越大,物体的形变就越大。(在一定范围内,弹簧的伸长量与拉力成正比)。
3、国际单位制中,力的单位是牛顿,符号位“N”。
弹簧测力计主要由弹簧、秤钩、指针和刻度盘组成。弹簧测力计的使用方法:
⑴了解弹簧测力计的量程,使用时所测力的大小应在量程范围内。⑵观察弹簧测力计的分度值。
⑶将弹簧测力计按测量时所需的位置放好,检查指针是否在“0”刻度线处,若不在,应校正“0”点。
⑷测量时,要使弹簧测力计的受力方向沿着弹簧的轴线方向;观察时,视线必须与刻度盘垂直。
二、重力力的示意图
1、由于地球的吸引而使物体受到的力叫做重力。物体所受重力的大小与它的质量成正比。物体所受的重力的方向是竖直向下的。
G表示物体所受的重力,m表示物体的质量,公式G=mg表示物体所受的重力与质量的关系。公式G=mg中,g表示物体所受的重力与质量之比,约等于9.8N/㎏,在粗略计算中,可取g=10N/㎏。
2、力的大小、方向和作用点称为力的三要素。对于物体所受的任何力都可以用这种方法来表示,这种表示力的图称为力的示意图。
三、摩擦力
1、摩擦:静摩擦、滑动摩擦、滚动摩擦。摩擦力:静摩擦力、滑动摩擦力。
2、一个物体在另一个物体表面上滑动时,会受到阻碍它运动的力,这种力叫做滑动摩擦力。滑动摩擦力的大小与接触面的粗糙程度、压力的大小有关,接触面越粗糙、压力越大,滑动摩擦力越大。在一定范围内,滑动摩擦力的大小与接触面积的大小无关。
3、减小物体接触面间的压力和粗糙程度、在接触面间加润滑剂或用滚动代替滑动等可减小摩擦。
四、力的作用是相互的
一个物体对另一个物体有力的作用时,另一个物体也同时对这个物体有力的作用,即力的作用是相互的。
第九章 力与运动
一、二力平衡
1、物体在几个力的作用下保持静止或做匀速直线运动,那么该物体处于平衡状态。当物体在两个力的作用下处于平衡状态时,就称为这两个力相互平衡,简称二力平衡。
2、二力平衡的条件:当作用在同一个物体上的两个力大小相等、方向相反,且作用在同一直线上时,两个力才能平衡。
二、牛顿第一定律
1、牛顿第一定律:一切物体在没有受到力的作用时,总保持匀速直线运动或静止状态。
2、物体具有保持运动状态不变的性质称为惯性。一切物体都有惯性,惯性式物体的物理属性。
三、力与运动的关系
1、力是改变物体运动状态的原因。
2、物体在二力平衡的条件下,保持静止或匀速直线运动状态。
3、物体所受的力不平衡时,其运动状态会发生改变。
【物理下册知识点归纳(11篇)】相关文章:
物理下册知识点归纳09-19
物理下册知识点归纳11篇09-20
高三物理下册知识点归纳07-30
物理下册知识点归纳集锦11篇09-23
物理下册知识点归纳汇编11篇09-22
人教版九年级下册物理知识点归纳10-26
人教版物理知识点归纳02-17
高二下册物理知识点归纳12-07
八年级下册物理知识点归纳01-23