物理 百文网手机站

电磁的物理知识点

时间:2021-07-31 15:03:51 物理 我要投稿

电磁的物理知识点3篇

电磁的物理知识点1

  一、磁通量:设在匀强磁场中有一个与磁场方向垂直的平面,磁场的磁感应强度B和平面面积S的乘积叫磁通量;

电磁的物理知识点3篇

  1、计算式:=BS(BS)

  2、推论:B不垂直S时,=BSsin

  3、磁通量的国际单位:韦伯,wb;

  4、磁通量与穿过闭合回路的磁感线条数成正比;

  5磁通量是标量,但有正负之分;

  二、电磁感应:穿过闭合回路的磁通量发生变化,闭合回路中就有感应电流产生,这种现象叫电磁感应现象,产生的电流叫感应电流;

  注:判断有无感应电流的方法:

  1、闭合回路;2、磁通量发生变化;

  三、感应电动势:在电磁感应现象中产生的电动势;

  四、磁通量的变化率:等于磁通量的变化量和所用时间的比值;△/t

  1、磁通量的变化率是表示磁通量的变化快慢的物理量;

  2、磁通量的变化率由磁通量的变化量和时间共同决定;

  3、磁通量变化率大,感应电动势就大;

  五、法拉第电磁感应定律:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比;

  1、定义式:E=n△/△t(只能求平均感应电动势);

  2、推论;E=BLVsina(适用导体切割磁感线,求瞬时感应电动势,平均感应电动势)

  (1)VL,LB,为V与B间的夹角;

  (2)VB,LB,为V与L间的夹角

  (3)VB,LV,为B与L间的夹角

  3、穿过线圈的磁通量大,感应电动势不一定大;

  4、磁通量的变化量大,感应电动势不一定大;

  5、有感应电流就一定有感应电动势;有感应电动势,不一定有感应电流;

  六、右手定则(判断感应电流的方向):伸开右手,让大拇指和其余四指共面、且相互垂直,把右手放入磁场中,让磁感线垂直穿过手心,大拇指指向导体运动方向,四指指向感应电流的方向;

电磁的物理知识点2

  一、电磁感应现象:

  1、只要穿过闭合回路中的磁通量发生变化,闭合回路中就会产生感应电流,如果电路不闭合只会产生感应电动势。

  这种利用磁场产生电流的现象叫电磁感应,是1831年法拉第发现的。

  回路中产生感应电动势和感应电流的条件是回路所围面积中的磁通量变化,因此研究磁通量的变化是关键,由磁通量的广义公式中(是B与S的夹角)看,磁通量的变化可由面积的变化引起;可由磁感应强度B的变化引起;可由B与S的夹角的变化引起;也可由B、S、中的两个量的变化,或三个量的同时变化引起。

  下列各图中,回路中的磁通量是怎么的变化,我们把回路中磁场方向定为磁通量方向(只是为了叙述方便),则各图中磁通量在原方向是增强还是减弱。

  (1)图:由弹簧或导线组成回路,在匀强磁场B中,先把它撑开,而后放手,到恢复原状的过程中。

  (2)图:裸铜线在裸金属导轨上向右匀速运动过程中。

  (3)图:条形磁铁插入线圈的过程中。

  (4)图:闭合线框远离与它在同一平面内通电直导线的过程中。

  (5)图:同一平面内的两个金属环A、B,B中通入电流,电流强度I在逐渐减小的过程中。

  (6)图:同一平面内的A、B回路,在接通K的瞬时。

  (7)图:同一铁芯上两个线圈,在滑动变阻器的滑键P向右滑动过程中。

  (8)图:水平放置的条形磁铁旁有一闭合的水平放置线框从上向下落的过程中。

  2、闭合回路中的一部分导体在磁场中作切割磁感线运动时,可以产生感应电动势,感应电流,这是初中学过的,其本质也是闭合回路中磁通量发生变化。

  3、产生感应电动势、感应电流的条件:导体在磁场里做切割磁感线运动时,导体内就产生感应电动势;穿过线圈的磁量发生变化时,线圈里就产生感应电动势。如果导体是闭合电路的一部分,或者线圈是闭合的,就产生感应电流。从本质上讲,上述两种说法是一致的,所以产生感应电流的条件可归结为:穿过闭合电路的磁通量发生变化。

  二、楞次定律:

  1、1834年德国物理学家楞次通过实验总结出:感应电流的方向总是要使感应电流的磁场阻碍引起感应电流的磁通量的变化。

  即磁通量变化感应电流感应电流磁场磁通量变化。

  2、当闭合电路中的磁通量发生变化引起感应电流时,用楞次定律判断感应电流的方向。

  楞次定律的内容:感应电流的磁场总是阻碍引起感应电流为磁通量变化。

  楞次定律是判断感应电动势方向的定律,但它是通过感应电流方向来表述的。按照这个定律,感应电流只能采取这样一个方向,在这个方向下的感应电流所产生的磁场一定是阻碍引起这个感应电流的那个变化的磁通量的变化。我们把“引起感应电流的那个变化的磁通量”叫做“原磁道”。因此楞次定律可以简单表达为:感应电流的磁场总是阻碍原磁通的变化。所谓阻碍原磁通的变化是指:当原磁通增加时,感应电流的磁场(或磁通)与原磁通方向相反,阻碍它的增加;当原磁通减少时,感应电流的磁场与原磁通方向相同,阻碍它的减少。从这里可以看出,正确理解感应电流的磁场和原磁通的关系是理解楞次定律的关键。要注意理解“阻碍”和“变化”这四个字,不能把“阻碍”理解为“阻止”,原磁通如果增加,感应电流的磁场只能阻碍它的`增加,而不能阻止它的增加,而原磁通还是要增加的。更不能感应电流的“磁场”阻碍“原磁通”,尤其不能把阻碍理解为感应电流的磁场和原磁道方向相反。正确的理解应该是:通过感应电流的磁场方向和原磁通的方向的相同或相反,来达到“阻碍”原磁通的“变化”即减或增。楞次定律所反映提这样一个物理过程:原磁通变化时(原变),产生感应电流(I感),这是属于电磁感应的条件问题;感应电流一经产生就在其周围空间激发磁场(感),这就是电流的磁效应问题;而且I感的方向就决定了感的方向(用安培右手螺旋定则判定);感阻碍原的变化--这正是楞次定律所解决的问题。这样一个复杂的过程,可以用图表理顺如下:

  楞次定律也可以理解为:感应电流的效果总是要反抗(或阻碍)产生感应电流的原因,即只要有某种可能的过程使磁通量的变化受到阻碍,闭合电路就会努力实现这种过程:

  (1)阻碍原磁通的变化(原始表速);

  (2)阻碍相对运动,可理解为“来拒去留”,具体表现为:若产生感应电流的回路或其某些部分可以自由运动,则它会以它的运动来阻碍穿过路的磁通的变化;若引起原磁通变化为磁体与产生感应电流的可动回路发生相对运动,而回路的面积又不可变,则回路得以它的运动来阻碍磁体与回路的相对运动,而回路将发生与磁体同方向的运动;

  (3)使线圈面积有扩大或缩小的趋势;

  (4)阻碍原电流的变化(自感现象)。

  利用上述规律分析问题可独辟蹊径,达到快速准确的效果。如图1所示,在O点悬挂一轻质导线环,拿一条形磁铁沿导线环的轴线方向突然向环内插入,判断在插入过程中导环如何运动。若按常规方法,应先由楞次定律 判断出环内感应电流的方向,再由安培定则确定环形电流对应的磁极,由磁极的相互作用确定导线环的运动方向。若直接从感应电流的效果来分析:条形磁铁向环内插入过程中,环内磁通量增加,环内感应电流的效果将阻碍磁通量的增加,由磁通量减小的方向运动。因此环将向右摆动。显然,用第二种方法判断更简捷。

  应用楞次定律判断感应电流方向的具体步骤:

  (1)查明原磁场的方向及磁通量的变化情况;

  (2)根据楞次定律中的“阻碍”确定感应电流产生的磁场方向;

  (3)由感应电流产生的磁场方向用安培表判断出感应电流的方向。

  3、当闭合电路中的一部分导体做切割磁感线运动时,用右手定则可判定感应电流的方向。

  运动切割产生感应电流是磁通量发生变化引起感应电流的特例,所以判定电流方向的右手定则也是楞次定律的特例。用右手定则能判定的,一定也能用楞次定律判定,只是不少情况下,不如用右手定则判定的方便简单。反过来,用楞次定律能判定的,并不是用右手定则都能判定出来。如图2所示,闭合图形导线中的磁场逐渐增强,因为看不到切割,用右手定则就难以判定感应电流的方向,而用楞次定律就很容易判定。

  要注意左手定则与右手定则应用的区别,两个定则的应用可简单总结为:“因电而动”用右手,“因动而电”用右手,因果关系不可混淆。

电磁的物理知识点3

  电磁,物理概念之一,是物质所表现的电性和磁性的统称。

  1、磁感线:描述磁场的强弱,方向的假想曲线。不存在且不相交。

  2、在磁体周围,磁感线从磁体的北极出来回到磁体的南极。

  3、地磁的北极在地理位置的南极附近;而地磁的南极则在地理的北极附近。但并不重合,它们的交角称磁偏角,我国学者沈括最早记述这一现象。

  4、奥斯特实验证明:通电导线周围存在磁场。其磁场方向跟电流方向有关。

  5、安培定则:用右手握螺线管,让四指弯向螺线管中电流方向,则大拇指所指的那端就是螺线管的北极(N极)。

  6、影响电磁铁磁性强弱的因素:电流的大小,铁芯的有无,线圈的匝数。

【电磁的物理知识点3篇】相关文章:

电磁的物理知识点07-30

物理电磁继电器知识点11-16

大学物理电磁学知识点08-21

电磁感应高考物理知识点07-13

初三物理电磁感应现象知识点09-24

初三物理第二学期电磁感应的知识点09-17

《电磁波》初三下册物理知识点08-12

有关电磁铁的物理教学反思06-27

九年级下册物理电磁感应现象知识点12-11