物理 百文网手机站

高中物理磁感应强度的知识点

时间:2022-10-14 11:48:07 物理 我要投稿

高中物理磁感应强度的知识点

  上学期间,不管我们学什么,都需要掌握一些知识点,知识点是知识中的最小单位,最具体的内容,有时候也叫“考点”。想要一份整理好的知识点吗?下面是小编精心整理的高中物理磁感应强度的知识点,希望对大家有所帮助。

高中物理磁感应强度的知识点

  高中物理磁感应强度的知识点 篇1

  磁感应强度(magnetic flux density),描述磁场强弱和方向的物理量,是矢量,常用符号B表示,国际通用单位为特斯拉(符号为T)。磁感应强度也被称为磁通量密度或磁通密度。在物理学中磁场的强弱使用磁感应强度来表示,磁感应强度越大表示磁感应越强;磁感应强度越小,表示磁感应越弱。

  磁感应强度的定义公式

  磁感应强度公式B=F/(IL)

  磁感应强度是由什么决定的?磁感应强度的大小并不是由F、I、L来决定的,而是由磁极产生体本身的属性。

  如果是一块磁铁,那么B的大小之和这块磁铁的大小和磁性强弱有关。

  如果是电磁铁,那么B与I、匝数及有无铁芯有关。

  建议同学们采用类比的方法来理解各个物理量。我们用电阻R来做个对比。

  R的计算公式是R=U/I;可一个导体的电阻R大小并不是由U或者I来决定的。而是由其导体自身属性决定的,包括电阻率、长度、横截面积。同样,磁感应强度B也不是由F、I、L来决定的,而是由磁极产生体本身的属性。

  如果同学们有时间,可以把静电场中电容的两个公式来对比着复习、巩固下。

  B为矢量,方向与磁场方向相同,并不是在该处电流的受力方向,运算时遵循矢量运算法则(左手定则)。

  描述磁感应强度的磁感线

  在磁场中画一些曲线,用(虚线或实线表示)使曲线上任何一点的切线方向都跟这一点的磁场方向相同(且磁感线互不交叉),这些曲线叫磁感线。

  磁感线是闭合曲线。规定小磁针的北极所指的方向为磁感线的方向。磁铁周围的磁感线都是从N极出来进入S极,在磁体内部磁感线从S极到N极。

  磁感线都有哪些性质呢?

  ⒈磁感线是徦想的,用来对磁场进行直观描述的曲线,它并不是客观存在的。

  ⒉磁感线是闭合曲线;磁铁的磁感线,外部从N指向S,内部从S指向N;

  ⒊磁感线的疏密表示磁感应强度的强弱,磁感线上某点的切线方向表示该点的磁场方向。

  ⒋任何两条磁感线都不会相交,也不能相切。

  磁感线(不是磁场线)的性质最好与电场线的性质对比来记忆。

  磁感应强度B的所有计算式

  磁感应强度B=F/IL

  磁感应强度B=F/qv

  磁感应强度B=ξ/Lv

  磁感应强度B=Φ/S

  磁感应强度B=E/v

  其中,F:洛伦兹力或者安培力

  q:电荷量

  v:速度

  ξ:感应电动势

  E:电场强度

  Φ:磁通量

  S:正对面积

  磁通量

  磁通量是闭合线圈中磁感应强度B的累积。

  ⒈定义一:φ=BS,S是与磁场方向垂直的面积,如果平面与磁场方向不垂直,应把面积投影到与磁场垂直的方向上,求出投影面积;

  ⒉定义二:表示穿过某一面积磁感线条数;此时,我们认为B代表的意义是单位面积内的磁感线密度。

  磁通量是标量,但有正、负,正、负号不代表方向,仅代表磁感线穿入或穿出。同学们能不能想到其他类似的物理量呢?比如,电流,也是有“运动方向”的标量。

  当一个面有两个方向的磁感线穿过时,磁通量的计算应算“纯收入”,即ф=ф -ф (ф 为正向磁感线条数,ф 为反向磁感线条数。)

  高中物理楞次定律的知识点

  楞次定律的内容

  感应电流产生的磁场,总是在阻碍引起感应电流的原磁场的磁通量的变化。

  楞次定律的核心,也是最需要大家记住的是“阻碍”二字。

  在高中物理利用楞次定律解题,我们可以用十二个字来形象记忆:“增反减同,来拒去留,增缩减扩”。

  楞次定律(Lenz law)是一条电磁学的定律,从电磁感应得出感应电动势的方向。其可确定由电磁感应而产生之电动势的方向。它是由俄国物理学家海因里希·楞次(Heinrich Friedrich Lenz)在1834年发现的。

  楞次定律是能量守恒定律在电磁感应现象中的具体体现。楞次定律还可表述为:感应电流的效果总是反抗引起感应电流的原因。

  对楞次定律的正确理解与使用分析:

  第一,电磁感应楞次定律的核心内容是“阻碍”二字,这恰恰表明楞次定律实质上就是能的转化和守恒定律在电磁感应现象中的特殊表达形式;

  第二,这里的“阻碍”,并非是阻碍引起感应电流的原磁场,而是阻碍(更确切来描述应该是“减缓”)原磁场磁通量的变化;

  第三,正因阻碍是的是“变化”,所以,当原磁场的磁通量增加(或减少)而引起感应电流时,则感应电流的磁场必与原磁场反向(或同向)而阻碍其磁通量的增加(或减少),概括起来就是,增加则反向,减少则同向。这就是老师总结的做题应用定律“增反减同”四字要领的由来。

  楞次定律阻碍的表现有哪些方式?

  (1)产生一个反变化的磁场。

  (2)导致物体运动。

  (3)导致围成闭合电路的边框发生形变。

  楞次定律的应用步骤

  具体应用包括以下四步:

  第一,明确引起感应电流的原磁场在被感应的回路上的方向;

  第二,搞清原磁场穿过被感应的回路中的磁通量增减情况;

  第三,根据楞次定律确定感应电流的磁场的方向;

  第四,运用安培定则判断出感生电流的方向。

  楞次定律要灵活运用,有些题可以通过“感应电流的磁场阻碍相对运动”出发来判断。

  在一些由于某种相对运动而引起感应电流的电磁感应现象中,如运用楞次定律从“感应电流的磁场总是阻碍引起感应电流的原磁场的磁通量变化”出发来判断感应电流方向,往往会比较困难。

  对于这样的问题,在运用楞次定律时,一般可以灵活处理,考虑到原磁场的磁通量变化又是由相对运动而引起的,于是可以从“感应电流的磁场阻碍相对运动”出发来判断。

  高中物理的公式E=BLV的详解

  公式E=Blv

  单独一根导体棒切割磁感线时,产生的电动势大小为E=Blv;这里的Blv三者垂直,如果不垂直,需要将l等效替换,将v投影。

  E=Blv与E=△Φ/△t的区别、联系

  联系

  由公式E=△Φ/△t推导E=Blv的过程。

  如图,在某个△t时间内容,导体棒运行的距离为v*△t,磁通量的变化量为△Φ=B*△S=B*l*v*△t,显然E=△Φ/△t=Blv;

  也就是说,当△Φ的变化,是由于单根导体棒切割引起的时,E=Blv与E=△Φ/△t是相通的。

  区别

  E=Blv仅仅使用与单根导体棒切割引起Φ的变化,其他情况(如B变化、面积S是圆周状且半径均匀增大等)只能用E=△Φ/△t。

  当没有闭合线圈时,不能用E=△Φ/△t;但可以用E=Blv来求解导体棒上电动势,这种情况是有感应电动势但无感应电流。下面我们来做一个解释。

  没有感应电流可以有感应电动势

  很多学生对此有疑问,高中物理网编辑在这里简单做个说明。虽然不产生感应电流,但可以产生感应电动势。

  在我们高中课本中,电动势的概念最早源于哪里?是恒定电路;不明白的同学去看物理选修3-1第二章内容。

  这里提到的.感应电动势,也是电动势(的一种),只不过是由感应(电磁感应)产生的而已;本质上不是有电源产生的,而是通过其他能量产生的。

  举个例子,感应电动势与电动势,就像是黑猫是猫一样的道理。

  因此,我们可以借助于电源的电动势与电流来理解感应电流与感应电动势之间的关系。物理网编辑给大家做一个简要说明,如下:

  有电源,在没有导线连接成电路的情况下,没有电流;此时有电压、没有电流。

  同样也可以适用于电磁感应。由于切割磁感线,进而产生感应电动势(电压),但在没有导线连接成电路的情况下,自然是没有电流的。

  大家想一想,是不是这个道理呢?

  用公式E=BLv求电动势应注意

  利用公式E=BLv求电动势这类习题在中学物理中是常见的,但利用此公式时应注意以下几点。

  1. 此公式的应用对象是一部分导体在磁场中做切割磁感线运动时产生感应电动势的计算,一般用于匀强磁场(或导体所在位置的各点的磁感应强度相同)。

  2. 此公式一般用于导体各部分切割磁感线速度相同的情况,如果导体各部分切割磁感线的速度不同,可取其平均速度求电动势。

  高中物理磁感应强度的知识点 篇2

  1.电磁感应现象

  利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。

  (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即Δ≠0。

  (2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。产生感应电动势的那部分导体相当于电源。

  (2)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。

  2.磁通量

  (1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:=BS。如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S′,即=BS′,国际单位:Wb

  求磁通量时应该是穿过某一面积的磁感线的净条数。任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正。反之,磁通量为负。所求磁通量为正、反两面穿入的磁感线的代数和。

  3.楞次定律

  (1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。

  (2)对楞次定律的理解

  ①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。

  ②阻碍什么---阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。

  ③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即“增反减同”。

  ④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。

  (3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种:

  ①阻碍原磁通量的变化;

  ②阻碍物体间的相对运动;

  ③阻碍原电流的变化(自感)。

  4.法拉第电磁感应定律

  电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。表达式E=nΔ/Δt

  当导体做切割磁感线运动时,其感应电动势的计算公式为E=BLvsinθ。当B、L、v三者两两垂直时,感应电动势E=BLv。

  (1)两个公式的选用方法E=nΔ/Δt计算的是在Δt时间内的平均电动势,只有当磁通量的变化率是恒定不变时,它算出的才是瞬时电动势。E=BLvsinθ中的v若为瞬时速度,则算出的就是瞬时电动势:若v为平均速度,算出的就是平均电动势。

  (2)公式的变形

  ①当线圈垂直磁场方向放置,线圈的面积S保持不变,只是磁场的磁感强度均匀变化时,感应电动势:E=nSΔB/Δt。

  ②如果磁感强度不变,而线圈面积均匀变化时,感应电动势E=Nbδs/Δt。

  5.自感现象

  (1)自感现象:由于导体本身的电流发生变化而产生的电磁感应现象。

  (2)自感电动势:在自感现象中产生的感应电动势叫自感电动势。自感电动势的大小取决于线圈自感系数和本身电流变化的快慢,自感电动势方向总是阻碍电流的变化。

  6.日光灯工作原理

  (1)起动器的作用:利用动触片和静触片的接通与断开起一个自动开关的作用,起动的关键就在于断开的瞬间。

  (2)镇流器的作用:日光灯点燃时,利用自感现象产生瞬时高压;日光灯正常发光时,利用自感现象,对灯管起到降压限流作用。

  7.电磁感应中的电路问题

  在电磁感应中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源,将它们接上电容器,便可使电容器充电;将它们接上电阻等用电器,便可对用电器供电,在回路中形成电流。因此,电磁感应问题往往与电路问题联系在一起。解决与电路相联系的电磁感应问题的基本方法是:

  (1)用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向。

  (2)画等效电路。

  (3)运用全电路欧姆定律,串并联电路性质,电功率等公式联立求解。

  8.电磁感应现象中的力学问题

  (1)通过导体的感应电流在磁场中将受到安培力作用,电磁感应问题往往和力学问题联系在一起,基本方法是:

  ①用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向。

  ②求回路中电流强度。

  ③分析研究导体受力情况(包含安培力,用左手定则确定其方向)。

  ④列动力学方程或平衡方程求解。

  (2)电磁感应力学问题中,要抓好受力情况,运动情况的动态分析,导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→周而复始地循环,循环结束时,加速度等于零,导体达稳定运动状态,抓住a=0时,速度v达最大值的特点。

  9.电磁感应中能量转化问题

  导体切割磁感线或闭合回路中磁通量发生变化,在回路中产生感应电流,机械能或其他形式能量便转化为电能,具有感应电流的导体在磁场中受安培力作用或通过电阻发热,又可使电能转化为机械能或电阻的内能,因此,电磁感应过程总是伴随着能量转化,用能量转化观点研究电磁感应问题常是导体的稳定运动(匀速直线运动或匀速转动),对应的受力特点是合外力为零,能量转化过程常常是机械能转化为内能,解决这类问题的基本方法是:

  (1)用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向。

  (2)画出等效电路,求出回路中电阻消耗电功率表达式。

  (3)分析导体机械能的变化,用能量守恒关系得到机械功率的改变与回路中电功率的改变所满足的方程。

  10.电磁感应中图像问题

  电磁感应现象中图像问题的分析,要抓住磁通量的变化是否均匀,从而推知感应电动势(电流)大小是否恒定。用楞次定律判断出感应电动势(或电流)的方向,从而确定其正负,以及在坐标中的范围。

  另外,要正确解决图像问题,必须能根据图像的意义把图像反映的规律对应到实际过程中去,又能根据实际过程的抽象规律对应到图像中去,最终根据实际过程的物理规律进行判断。

  高中物理磁感应强度的知识点 篇3

  一、电磁感应现象:

  1、只要穿过闭合回路中的磁通量发生变化,闭合回路中就会产生感应电流,如果电路不闭合只会产生感应电动势。

  这种利用磁场产生电流的现象叫电磁感应,是1831年法拉第发现的。

  回路中产生感应电动势和感应电流的条件是回路所围面积中的磁通量变化,因此研究磁通量的变化是关键,由磁通量的广义公式中(是B与S的夹角)看,磁通量的变化可由面积的变化引起;可由磁感应强度B的变化引起;可由B与S的夹角的变化引起;也可由B、S、中的两个量的变化,或三个量的同时变化引起。

  2、闭合回路中的一部分导体在磁场中作切割磁感线运动时,可以产生感应电动势,感应电流,这是初中学过的,其本质也是闭合回路中磁通量发生变化。

  3、产生感应电动势、感应电流的条件:导体在磁场里做切割磁感线运动时,导体内就产生感应电动势;穿过线圈的磁量发生变化时,线圈里就产生感应电动势。如果导体是闭合电路的一部分,或者线圈是闭合的,就产生感应电流。从本质上讲,上述两种说法是一致的,所以产生感应电流的条件可归结为:穿过闭合电路的磁通量发生变化。

  二、楞次定律:

  1、1834年德国物理学家楞次通过实验总结出:感应电流的方向总是要使感应电流的磁场阻碍引起感应电流的磁通量的变化。

  即磁通量变化感应电流感应电流磁场磁通量变化。

  2、当闭合电路中的磁通量发生变化引起感应电流时,用楞次定律判断感应电流的方向。

  楞次定律的内容:感应电流的磁场总是阻碍引起感应电流为磁通量变化。

  楞次定律是判断感应电动势方向的定律,但它是通过感应电流方向来表述的。按照这个定律,感应电流只能采取这样一个方向,在这个方向下的感应电流所产生的磁场一定是阻碍引起这个感应电流的那个变化的磁通量的变化。我们把“引起感应电流的那个变化的磁通量”叫做“原磁道”。因此楞次定律可以简单表达为:感应电流的磁场总是阻碍原磁通的变化。所谓阻碍原磁通的变化是指:当原磁通增加时,感应电流的磁场(或磁通)与原磁通方向相反,阻碍它的增加;当原磁通减少时,感应电流的磁场与原磁通方向相同,阻碍它的减少。从这里可以看出,正确理解感应电流的磁场和原磁通的关系是理解楞次定律的关键。要注意理解“阻碍”和“变化”这四个字,不能把“阻碍”理解为“阻止”,原磁通如果增加,感应电流的磁场只能阻碍它的增加,而不能阻止它的增加,而原磁通还是要增加的。更不能感应电流的“磁场”阻碍“原磁通”,尤其不能把阻碍理解为感应电流的磁场和原磁道方向相反。正确的理解应该是:通过感应电流的磁场方向和原磁通的方向的相同或相反,来达到“阻碍”原磁通的“变化”即减或增。楞次定律所反映提这样一个物理过程:原磁通变化时(原变),产生感应电流(I感),这是属于电磁感应的条件问题;感应电流一经产生就在其周围空间激发磁场(感),这就是电流的磁效应问题;而且I感的方向就决定了感的方向(用安培右手螺旋定则判定);感阻碍原的变化——这正是楞次定律所解决的问题。这样一个复杂的过程,可以用图表理顺如下:

  楞次定律也可以理解为:感应电流的效果总是要反抗(或阻碍)产生感应电流的原因,即只要有某种可能的过程使磁通量的变化受到阻碍,闭合电路就会努力实现这种过程:

  (1)阻碍原磁通的变化(原始表速);

  (2)阻碍相对运动,可理解为“来拒去留”,具体表现为:若产生感应电流的回路或其某些部分可以自由运动,则它会以它的运动来阻碍穿过路的磁通的变化;若引起原磁通变化为磁体与产生感应电流的可动回路发生相对运动,而回路的面积又不可变,则回路得以它的运动来阻碍磁体与回路的相对运动,而回路将发生与磁体同方向的运动;

  (3)使线圈面积有扩大或缩小的趋势;

  (4)阻碍原电流的变化(自感现象)。

  利用上述规律分析问题可独辟蹊径,达到快速准确的效果。如图1所示,在O点悬挂一轻质导线环,拿一条形磁铁沿导线环的轴线方向突然向环内插入,判断在插入过程中导环如何运动。若按常规方法,应先由楞次定律判断出环内感应电流的方向,再由安培定则确定环形电流对应的磁极,由磁极的相互作用确定导线环的运动方向。若直接从感应电流的效果来分析:条形磁铁向环内插入过程中,环内磁通量增加,环内感应电流的效果将阻碍磁通量的增加,由磁通量减小的方向运动。因此环将向右摆动。显然,用第二种方法判断更简捷。

  应用楞次定律判断感应电流方向的具体步骤:

  (1)查明原磁场的方向及磁通量的变化情况;

  (2)根据楞次定律中的“阻碍”确定感应电流产生的磁场方向;

  (3)由感应电流产生的磁场方向用安培表判断出感应电流的方向。

  3、当闭合电路中的一部分导体做切割磁感线运动时,用右手定则可判定感应电流的方向。

  运动切割产生感应电流是磁通量发生变化引起感应电流的特例,所以判定电流方向的右手定则也是楞次定律的特例。用右手定则能判定的,一定也能用楞次定律判定,只是不少情况下,不如用右手定则判定的方便简单。反过来,用楞次定律能判定的,并不是用右手定则都能判定出来。如图2所示,闭合图形导线中的磁场逐渐增强,因为看不到切割,用右手定则就难以判定感应电流的方向,而用楞次定律就很容易判定。

  要注意左手定则与右手定则应用的区别,两个定则的应用可简单总结为:“因电而动”用右手,“因动而电”用右手,因果关系不可混淆。

  物理学习方法

  步骤1、模型归类

  做过一定量的物理题目之后,会发现很多题目其实思考方法是一样的,我们需要按物理模型进行分类,用一套方法解一类题目。例如宏观的行星运动和微观的电荷在磁场中的偏转都属于匀速圆周运动,关键都是找出什么力_了向心力;此外还有杠杆类的题目,要想象出力矩平衡的特殊情况,还有关于汽车启动问题的考虑方法其实同样适用于起重机吊重物等等。物理不需要做很多题目,能够判断出物理模型,将方法对号入座,就已经成功了一半。

  步骤2、解题规范

  高考越来越重视解题规范,体现在物理学科中就是文字说明。解一道题不是列出公式,得出答案就可以的,必须标明步骤,说明用的是什么定理,为什么能用这个定理,有时还需要说明物体在特殊时刻的特殊状态。这样既让老师一目了然,又有利于理清自己的思路,还方便检查,最重要的是能帮助我们在分步骤评分的评分标准中少丢几分。

  步骤3、大胆猜想

  物理题目常常是假想出的理想情况,几乎都可以用我们学过的知识来解释,所以当看到一道题目的背景很陌生时,就像今年高考物理的压轴题,不要慌了手脚。在最后的20分钟左右的时间里要保持沉着冷静,根据给出的物理量和物理关系,把有关的公式都列出来,大胆地猜想磁场的势能与重力场的势能是怎样复合的,取最值的情况是怎样的,充分利用图像_的变化规律和数据,在没有完全理解题目的情况下多得几分是完全有可能的。

  物理学习技巧

  图象法

  应用图象描述规律、解决问题是物理学中重要的手段之一。因图象中包含丰富的语言、解决问题时简明快捷等特点,在高考中得到充分体现,且比重不断加大。

  涉及内容贯穿整个物理学。描述物理规律的最常用方法有公式法和图象法,所以在解决此类问题时要善于将公式与图象合一相长。

  对称法

  利用对称法分析解决物理问题,可以避免复杂的数学演算和推导,直接抓住问题的实质,出奇制胜,快速简便地求解问题。像课本中伽利略认为圆周运动最美(对称)为牛顿得到万有引力定律奠定基础。

  估算法

  有些物理问题本身的结果,并不一定需要有一个很准确的答案,但是,往往需要我们对事物有一个预测的估计值。像卢瑟福利用经典的粒子的散射实验根据功能原理估算出原子核的半径。

  采用“估算”的方法能忽略次要因素,抓住问题的主要本质,充分应用物理知识进行快速数量级的计算。

  微元法

  在研究某些物理问题时,需将其分解为众多微小的“元过程”,而且每个“元过程”所遵循的规律是相同的,这样,我们只需分析这些“元过程”,然后再将“元过程”进行必要的数学方法或物理思想处理,进而使问题求解。像课本中提到利用计算摩擦变力做功、导出电流强度的微观表达式等都属于利用微元思想的应用。

【高中物理磁感应强度的知识点】相关文章:

高中物理磁感应强度的知识点归纳03-24

磁感应强度的物理知识点01-21

磁感应强度物理知识点01-21

高中物理知识点03-05

高中物理知识点精选06-12

知识点高中物理06-24

高二物理磁感应强度必修知识点08-03

物理高二必修磁感应强度知识点07-15

高中物理磁场知识点02-24