物理 百文网手机站

高中物理知识点及学习方法

时间:2022-01-20 09:35:44 物理 我要投稿

高中物理知识点汇总及学习方法

  物理学起始于伽利略和牛顿的年代,它已经成为一门有众多分支的基础科学。下面是小编精心整理的高中物理知识点汇总及学习方法,仅供参考,欢迎大家阅读。

高中物理知识点汇总及学习方法

  高中物理知识点:变压器电压、电流、电功率与匝数的关系

  变压器电压,电流,电功率与匝数的关系:

  1、理想变压器中的几个关系

  ①电压关系

  在同一铁芯上只有一组副线圈时:;有几组副线圈时:

  ②功率关系

  对于理想变压器不考虑能量损失,总有P入=P出

  ③电流关系

  由功率关系,当只有一组副线圈时,I1U1=I2U2,得;当有多组副线圈时:I1U1=I2U2+I3U3+……,得I1n1=I2n2+I3n3+……

  2、变压器的题型分析

  ①在同一铁芯上磁通量的变化率处处相同;

  ②电阻和原线圈串联时,电阻与原线圈上的电压分配遵循串联电路的分压原理;

  ③理想变压器的输入功率等于输出功率。

  3、解决变压器问题的常用方法

  ①思路1:电压思路。变压器原、副线圈的电压之比为U1/U2=n1/n2;当变压器有多个副绕组时U1/n1=U2/n2=U3/n3=……

  ②思路2:功率思路。理想变压器的输入、输出功率为P入=P出,即P1=P2;当变压器有多个副绕组时P1=P2+P3+……

  ③思路3:电流思路。由I=P/U知,对只有一个副绕组的变压器有I1/I2=n2/n1;当变压器有多个副绕组时n1I1=n2I2+n3I3+……

  ④思路4:(变压器动态问题)制约思路。

  Ⅰ、电压制约:当变压器原、副线圈的匝数比(n1/n2)一定时,输出电压U2由输入电压决定,即U2=n2U1/n1,可简述为“原制约副”;

  Ⅱ、电流制约:当变压器原、副线圈的匝数比(n1/n2)一定,且输入电压U1确定时,原线圈中的电流I1由副线圈中的输出电流I2决定,即I1=n2I2/n1,可简述为“副制约原”;

  Ⅲ、负载制约:⑴变压器副线圈中的功率P2由用户负载决定,P2=P负1+P负2+…;⑵变压器副线圈中的电流I2由用户负载及电压U2确定,I2=P2/U2;⑶总功率P总=P线+P2;

  动态分析问题的思路程序可表示为:

  ⑤思路5:原理思路。变压器原线圈中磁通量发生变化,铁芯中Δ/Δt相等;当遇到“”型变压器时有Δ1/Δt=Δ2/Δt+Δ3/Δt,此式适用于交流电或电压(电流)变化的直流电,但不适用于稳压或恒定电流的情况。

  利用制约关系处理变压器的动态问题:

  所谓变压器的动态问题,指的就是电路中某一部分或某一物理量的变化,引起电路其他部分或其他物理量的变化情况。理想变压器的动态问题大致有两种情况:一是负载电阻不变,原、副线圈的电压,电流,输入和输出功率随匝数比的变化而变化的情况;二是匝数比不变,电流和功率随负载电阻的变化而变化的情况。不论哪种情况,处理这类问题的关键在于分清变量和不变量,弄清楚“谁决定谁”的制约关系。

  理想变压器的制约关系如下(一原一副情况):

  (1)电压制约

  当变压器原、副线圈的匝数比一定时,输出电压由输入电压决定,即,可简述为“电压原制约电压副”。

  (2)电流制约

  当变压器原、副线圈的匝数比一定,且输入电压确定时,原线圈中的电流由副线圈中的输出电流决定,即,可简述为“电流副制约电流原”。

  (3)功率制约

  输出功率P2决定输入功率P1。理想变压器的输入功率P1等于输出功率P2。在输入电压U1、输出电压U2一定的条件下,当负载电阻R减小时,增大,输出功率增大,则输入功率也随之增大;反之,当负载电阻R增大时,减小,输出功率减小,则输入功率也随之减小。通俗地说就是“用多少,给多少,而不是给多少,用多少”。

  理想变压器中相关物理量间的制约关系的分析程序可表示为:

  涉及多组副线圈问题的解法:

  多组副线圈的理想变压器问题与只有一个副线圈的问题思路基本相同,但在多个副线圈同时工作时不再适用。所以抓住两个关系:

  (1)电压关系:

  (2)功率关系:即

  理想变压器:

  高考物理备考:高中物理公式

  一、质点的运动(1)——直线运动。

  1)匀变速直线运动。

  1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as

  3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at

  5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t

  7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}

  8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}

  9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。

  注:

  (1)平均速度是矢量;

  (2)物体速度大,加速度不一定大;

  (3)a=(Vt-Vo)/t只是量度式,不是决定式;

  (4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。

  2)自由落体运动。

  1.初速度Vo=0 2.末速度Vt=gt

  3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh

  注:

  (1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;

  (2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。

  3)竖直上抛运动。

  1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)

  3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起)

  5.往返时间t=2Vo/g (从抛出落回原位置的时间)

  注:

  (1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;

  (2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;

  (3)上升与下落过程具有对称性,如在同点速度等值反向等。

  二、质点的运动(2)——曲线运动、万有引力。

  1)平抛运动。

  1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt

  3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2

  5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)

  6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2,合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0

  7.合位移:s=(x2+y2)1/2,位移方向与水平夹角α:tgα=y/x=gt/2Vo

  8.水平方向加速度:ax=0;竖直方向加速度:ay=g

  注:

  (1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;

  (2)运动时间由下落高度h(y)决定与水平抛出速度无关;

  (3)θ与β的关系为tgβ=2tgα;

  (4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。

  2)匀速圆周运动。

  1.线速度V=s/t=2πr/T 2.角速度ω=/t=2π/T=2πf

  3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合

  5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr

  7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)

  8.主要物理量及单位:弧长(s):米(m);角度():弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。

  注:

  (1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;

  (2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。

  【总结】把握高三,备战高考。同学们要好好复习,在高三时期把握住每分每秒。希望小编为大家整理的高中物理公式对大家有帮助,大家加油。

  高考物理复习:抓住主干知识

  通过第一轮的复习,高三学生大部分已经掌握了物理学中的基本概念、基本规律及其一般的应用。在第二轮复习中,首要的任务是要把整个高中的知识网络化、系统化;另外,要在理解的基础上,综合各部分的内容,进一步提高解题能力。这一阶段复习的指导思想是:突出主干知识,突破疑点、难点;关注热点和《考试说明》中新增点、变化点。二轮复习的目的和任务是:①查漏补缺:针对第一轮复习存在的问题,进一步强化基础知识的复习和基本技能的训练,进一步巩固基础知识和提高基本能力,进一步强化规范解题的训练;②知识重组:把所学的知识连成线、铺成面、织成网,梳理知识结构,使之有机结合在一起,以达到提高多角度、多途径地分析和解决问题的能力的目的;③提升能力:通过知识网的建立,一是提高解题速度和解题技巧,二是提升规范解题能力,三是提高实验操作能力。在第二轮复习中,重点在提高能力上下功夫,把目标瞄准中档题。

  二轮复习的思路模式是:以专题模块复习为主,实际进行中一般分为如下几个专题来复习:

  1、力与直线运动;2、力与曲线运动;3、功和能;4、带电体(粒子)的运动;5、电路与电磁感应;6、必做实验部分;7、选考模块。

  每一个专题都应包含以下几个方面的内容:(1)知识结构分析;(2)主要命题点分析;(3)方法探索;(4)典型例题分析;(5)配套训练。

  具体说来,专题复习中应注意以下几个方面的问题:

  抓住主干知识及主干知识之间的综合

  高中物理的主干知识是力学和电磁学部分,在各部分的综合应用中,主要以下面几种方式的综合较多:①牛顿三定律与匀变速直线运动和曲线运动的综合(主要体现在动力学和天体问题、带电粒子在匀强电场中运动、通电导体在磁场中运动,电磁感应过程中导体的运动等形式);②以带电粒子在电场、磁场中运动为模型的电学与力学的综合,如利用牛顿定律与匀变速直线运动的规律解决带电粒子在匀强电场中的运动、利用牛顿定律与圆周运动向心力公式解决带电粒子在磁场中的运动、利用能量观点解决带电粒子在电场中的运动;③电磁感应现象与闭合电路欧姆定律的综合,用力与运动观点和能量观点解决导体在匀强磁场中的运动问题;④串、并联电路规律与实验的综合(这是近几年高考实验命题的热点),如通过粗略地计算选择实验器材和电表的量程、确定滑动变阻器的连接方法、确定电流表的内外接法等。对以上知识一定要特别重视,尽可能做到每个内容都过关,绝不能掉以轻心,要分别安排不同的专题重点强化,这是我们二轮复习的重中之重,希望在这些地方有所突破。

  摩擦力突变问题分类探析

  摩擦力是历年的必考内容,摩擦力的突变的考题常有出现,且类型多,特别是静摩擦力随物体的相对运动趋势发生变化,其大小与方向均有可能变化的情况对应于过程的转变及临界状态,在分析中很容易发生失误,在时应引起高度重视,应仔细分析物体的状态变化的过程与细节。

  一、 静动突变

  例1、长直木板的上表面的一端放有一个铁块,木块由水平位置缓慢一向上转动(即木板与地面的夹角 变大),另一端不动,则木块受到摩擦力 f 随角度 的变化关系图象是(甲)中的( )

  解析:(1)开始时, =0, =0。

  (2)静摩擦力的大小分析:开始一段时间,物体相对木板静止,所受的是静摩擦力;缓慢竖起时,可认为物体处于平衡状态,由的平衡关系可知,静摩擦力大小等于物体重力沿斜面向下的分力:

  。因此,静摩擦力随 的增大而增大,它们呈正弦规律变化。图线为正弦函数图像。

  (3)在物体刚好要滑动而没滑动时, 达到最大值。 继续增大,物体将开始滑动,静摩擦力变为滑动摩擦力。且满足: 。

  (4) 开始滑动后, ,因此,滑动摩擦力随 的增大而减小,呈余弦规律变化。图线为余弦规律变化。

  (5)最后, ,

  综上分析可知:C 正确。

  练习:如图乙所示,在水平桌面上放一木块,用从零开始逐渐增大的水平拉力 F 拉木块直到沿桌面运动,在此过程中,木块所受到的摩擦力 f 的大小随拉力 F 的大小变化的图象正确的是( )

  解析:开始时,物体静止不动,受静摩擦力的作用,且满足: ;当 F 达到最大静摩擦力之后,物体开始滑动,物体运动状态发生了变化,摩擦力突变为滑动摩擦力: 保持不变。则木块所受到的摩擦力 f 的大小随拉力 F 的大小变化的图象正确的是B 。

  二、 动静突变

  例2:把一重为 G 的物体,用一个水平的推力 (k 为恒量,t 时间)压在竖直的足够高的平整的墙上(如图甲所示),从 t =0 开始物体所受的摩擦力 f 随 t 的变化关系是图中的( )

  解析:首先,物体受到的动摩擦力 ,随时间的增加而从零开始增加。开始时, ,物体向下做加速运动;当 时,物体的速度最大;此后 ,物体做减速运动;当速度为减速为零时,物体处于静止。动摩擦力变为静摩擦力,大小突变为与重力大小相等。

  三、 动动突变

  例3、传送带以恒定的速率 运动,已知它与水平面成 ,如图所示, ,将一个小物体无初速度地放在 P 点,小物体与传送带间的动摩擦因数为 ,问当皮带逆时针转动时,小物体运动到 Q 点的时间为多少?

  解析:当物体刚放在传送带上时 高中英语,物体的速度速度传送带的速度,物体所受的滑动摩擦力方向沿斜面向下,加速度为:

  滑行时间:

  滑行距离:

  当物体与传送带的速度相同时,由于重力的作用物体继续加速,物体的速度大于传送带的速度,摩擦力的方向变为沿斜面向上,加速度为:

  因为:

  又: 解得:

  所以,小物体从 P 点运动到 Q 点的时间:

  四、 静静突变

  例4.一木块放在水平桌面上,在水平方向共受到三个力即 F1、F2 和摩擦力的作用,木块处于静止状态,如图所示,其中 F1=10N, F2=2N ,若撤去 F1 ,则木块受到的摩擦力为( )

  A.10 N,方向向左 B.6 N,方向向右

  C.2 N,方向向右 D.零

  解析:当物体受F1、F2 及摩擦力的作用而处于平衡状态时,由平衡条件可知物体所受的摩擦的作用大小为8N ,可知最大静摩擦力 。当撤去力F1 后, ,物体仍处于静止状态,由平衡条件可知物体所受的静摩擦力大小和方向发生突变,且与作用在物体上的F2 等大反向。

  五、 摩擦力有无判断

  例5、水平皮带传输装置如图所示,O1 为主动轮,O2 为从动轮。当主动轮顺时针匀速转动时,物体被轻轻地放在 A 端皮带上,开始时,物体在皮带上滑动,当它到达位置 C 后停止滑动,直到传送到目的地 B 端,在传送过程中,若皮带与轮不打滑,则关于物体受的摩擦力和图中P 、Q 两处(在O1 、O2 连线上)皮带所受摩擦力的方向的正确说法是( )

  ① 在AC 段物体受水平向左的滑动摩擦力,P 处皮带受向上的滑动摩擦力。

  ② 在AC 段物体受水平向右的滑动摩擦力。P 处皮带受向下的滑动摩擦力。

  ③ 在CB 段物体不受静摩擦力,Q 处皮带受向下的静摩擦力。

  ④ 在CB 段物体受到水平向右的静摩擦力,P 、Q 两处皮带始终受向下的静摩擦力。

  A.①③ B、①④ C、②③ D、③④

  解析:本题物体在 C 处是摩擦力的突变点,在此之前,物体相对皮带有相对运动,存在滑动摩擦力,且方向与接触物体的相对运动方向相同,指向右方;在此之后,物体相对皮带无相对运动趋势,不存在静摩擦力;另外,主动轮与从动轮的区别在于相对运动趋势的差别。

  摩擦力的突变是由于摩擦力的被动性所引起的,因此,我们要认真分析物体的运动状态的每一个细节,运动用牛顿第二定律或力的平衡关系求解。

  物理教学中培养学生自学能力的探索

  当今世界是一个信息化的世界,社会向信息化方向的发展,使当今文盲不再只是目不识丁的人,还包括不会学习的人,因此我们今天与其教给学生知识,不如教给学生自己去获得知识的方法,使学生由“学会”转化为“会学”。这也正是叶圣陶先生说的:“教是为了达到不需要教”。自学,就是根据教学目标,在一定的方法指导下,通过独立阅读教材进行感知和思考来获取知识和发展能力的学习过程。其突出的特点就是让学生动脑、动手、动情,在主动参与中获取知识和本领。

  近年来,笔者在物理教学中,采用“六步自学法”指导学生在课堂上充分参与自学,收到了良好的效果。现介绍如下:

  1、明确目标

  教师根据“大纲”和教材“学习重点、难点”的要求,拟定本课的学习目标,为学生的学习实行“定向”,让学生对本课学习重点、难点心中有数,在教学中与教师达到“共鸣”。

  2、提示学法

  根据教材特点,在指导学法中一般是要求学生按“四自”法进行自学。

  ①“自读”即阅读教材内容,对重点的物理概念、物理规律,进行圈点批画,明确它们的适用条件和范围,找出注意点;②“自参”即参阅教材中的“典型例题”,初步学会应用所学物理规律和定理等解决基本问题;③“自思”即思考学习重点和教材后边的问题、小实验、练习题,发现疑难、提出问题;④“自写”即学生按“释疑”、“质疑”等自学要求写出自学笔记,积累自学问题。

  3、创设问题情境

  问题是思维的出发点,有问题才会去思考,思维总是指向解决某项任务(或某个问题)的.。教师根据自己对教材的钻研和掌握,结合学生实际认知水平,有针对性地提出几个“环环相扣、步步深入”、带有挑战性的问题激发学生学习的兴趣,促使他们积极地思考,产生强烈地求知欲。例如,讲《牛顿第一定律》时,教师给学生提出以下问题(出示用幻灯机将问题打在屏幕上):⑴物体为什么有的在运动,有的静止?⑵“用力推车,车子才前进,停止用力,车子停下来。”亚里斯多德怎样分析这个现象?用正确的观点又怎样理解?(3)牛顿第一定律的内容是什么?它包含着几层含义?(4)牛顿第一定律比伽利略的结论进了一步在何处?(5)你能说出牛顿第一定律和惯性的区别与联系吗?(6)你能举出几个运用惯性的概念分析应用惯性的实例吗?这一系列问题的创设,顿时激发了学生的认知冲突。

  4、学生独立阅读

  学生独立阅读是自学的核心环节,叶圣陶先生告诉我们,教师讲课的真谛不在于“全盘授予”,而在于“相机诱导”,即引导学生动脑、动手,通过自己的思维和实践去掌握知识。在上述问题情景的激发下使学生产生认识上的冲突,引起了学生对新知识的探索,有效地促使学生进入主动参与的学习状态,在这种情况下,学生会情不自禁的去阅读教材,并把自我探究知识视为一种自我提高和取得发展的需要,从而充分调动了学习的主动性与自觉性。在学生独立阅读的同时,教师巡视课堂,对个别学生的特殊问题,做单独辅导,实行因材施教,让每个学生都能发挥自己的主观能动性。教师要了解学情,收集学生疑难,作为后面启发点拨的重点对象,加强教学的针对性。

  5、组织讨论

  问题通过争辩,就会更加明晰,因此,让学生前后四人组成一组,在认真阅读教材之后,围绕教师提出的问题各抒己见,发言交流,争论反驳,形成信息的多向传递,充分发挥思维的“共振效应”,让学生扬长避短,互相促进,共同提高,从而培养了学生团结互助的精神,增强了集体主义观念。

  6、启发点播与归纳

  在小组讨论的基础上,请部分小组的代表在全班发言,交流讨论结论。教师结合前面所掌握的情况,相应进行启发、点拨、补充订正,把讨论所得引导到一定的深度,并根据实际需要不断穿插读、议、讲,完成教学重点,突破教学难点。在师生共同讨论学习,基本解决重点难点的基础上,教师再归纳小结,使学过的知识明晰化、条理化、系统化。让学生将新旧知识联系起来,掌握新概念、规律,完善认知结构,总结学习方法。

  在高中理科各科目中,物理科是相对较难学习的一科,学过高中物理的大部分同学,特别是物理成绩中差等的同学,总有这样的疑问:“上课听得懂,听得清,就是在课下做题时不会。”这是个普遍的问题,值得物理教师和同学们认真研究。下面就高中物理的学习方法,浅谈一些自己的看法,以便对同学们的学习有所帮助。

  首先分析一下上面同学们提出的普遍问题,即为什么上课听得懂,而课下不会作?我作为学理科的教师有这样的切身感觉:比如读某一篇文学作品,文章中对自然景色的描写,对人物心里活动的描写,都写得令人叫绝,而自己也知道是如此,但若让自己提起笔来写,未必或者说就不能写出人家的水平来。听别人说话,看别人文章,听懂看懂绝对没有问题,但要自己写出来变成自己的东西就不那么容易了。又比如小孩会说的东西,要让他写出来,就必须经过反复写的练习才能达到那一步。因而要由听懂变成会作,就要在听懂的基础上,多多练习,方能掌握其中的规律和奥妙,真正变成自己的东西,这也正是学习高中物理应该下功夫的地方。功夫如何下,在学习过程中应该达到哪些具体要求,应该注意哪些问题,下面我们分几个层次来具体分析。

  记忆:在高中物理的学习中,应熟记基本概念,规律和一些最基本的结论,即所谓我们常提起的最基础的知识。同学们往往忽视这些基本概念的记忆,认为学习物理不用死记硬背这些文字性的东西,其结果在高三总复习中提问同学物理概念,能准确地说出来的同学很少,即使是补习班的同学也几乎如此。我不敢绝对说物理概念背不完整对你某一次考试或某一阶段的学习造成多大的影响,但可以肯定地说,这对你对物理问题的理解,对你整个物理系统知识的形成都有内在的不良影响,说不准哪一次考试的哪一道题就因为你概念不准而失分。因此,学习语文需要熟记名言警句、学习数学必须记忆基本公式,学习物理也必须熟记基本概念和规律,这是学好物理科的最先要条件,是学好物理的最基本要求,没有这一步,下面的学习无从谈起。

  积累:是学习物理过程中记忆后的工作。在记忆的基础上,不断搜集来自课本和参考资料上的许多有关物理知识的相关信息,这些信息有的来自一题,有的来自一道题的一个插图,也可能来自一小段阅读材料等等。在搜集整理过程中,要善于将不同知识点分析归类,在整理过程中,找出相同点,也找出不同点,以便于记忆。积累过程是记忆和遗忘相互斗争的过程,但是要通过反复记忆使知识更全面、更系统,使公式、定理、定律的联系更加紧密,这样才能达到积累的目的,绝不能象狗熊掰棒子式的重复劳动,不加思考地机械记忆,其结果只能使记忆的比遗忘的还多。

  综合:物理知识是分章分节的,物理考纲能要求之内容也是一块一块的,它们既相互联系,又相互区别,所以在物理学习过程中要不断进行小综合,等高三年级知识学完后再进行系统大综合。这个过程对同学们能力要求较高,章节内容互相联系,不同章节之间可以互相类比,真正将前后知识融会贯通,连为一体,这样就逐渐从综合中找到知识的联系,同时也找到了学习物理知识的兴趣。

  提高:有了前面知识的记忆和积累,再进行认真综合,就能在解题能力上有所提高。所谓提高能力,说白了就是提高解题、分析问题的能力,针对一题目,首先要看是什么问题??力学,热学,电磁学、光学还是原子物理,然后再明确研究对象,结合题目中所给条件,应用相关物理概念,规律,也可用一些物理一级,二级结论,才能顺利求得结果。可以想象,如果物理基本概念不明确,题目中既给的条件或隐含的条件看不出来,或解题既用的公式不对或该用一、二级结论,而用了原始公式,都会使解题的速度和正确性受到影响,考试中得出高分就成了空话。提高首先是解决问题熟练,然后是解法灵活,而后在解题方法上有所创新。这里面包括对同一题的多解,能从多解中选中一种最简单的方法;还包括多题一解,一种方法去顺利解决多个类似的题目。真正做到灵巧运用,信手拈来的程度。

  综上所术,学习物理大致有六个层次,即首先听懂,而后记住,练习会用,渐逐熟练,熟能生巧,有所创新。

  2016高中物理知识点总结之能量守恒定律与能源知识点

  物理学史集中地体现了人类探索和逐步认识世界的现象,结构,特性,规律和本质的历程.随着科学的发展,我们更要重视物理学。因此小编准备了这篇2013高中物理知识点总结之能量守恒定律与能源知识点,欢迎阅读。

  知识点概述

  能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为其他形式,或者从一个物体转移到另一个物体,在转化或转移的过程中,能量的总量不变。这就是能量守恒定律,如今被人们普遍认同。

  知识点总结

  一、能量的转化与守恒

  1.化学能:由于化学反应,物质的分子结构变化而产生的能量。

  2.核能:由于核反应,物质的原子结构发生变化而产生的能量。

  3.能量守恒定律:能量既不会消灭,也不会创生,它只会从一种形式转化为另一种形式,或者从一个物体转移到另一个物体,而能的总量保持不变。

  ●内容:能量既不会消灭,也不会创生,它只会从一种形式转化为其他形式,或者从一个物体转移到另一个物体,而在转化和转移的过程中,能量的总量保持不变。

  即

  E机械能1+E其它1=E机械能2+E其它2

  ●能量耗散:无法将释放能量收集起来重新利用的现象叫能量耗散,它反映了自然界中能量转化具有方向性。

  二、能源与社会

  1.可再生能源:可以长期提供或可以再生的能源。

  2.不可再生能源:一旦消耗就很难再生的能源。

  3.能源与环境:合理利用能源,减少环境污染,要节约能源、开发新能源。

  三、开发新能源

  1.太阳能

  2.核能

  3.核能发电

  4、其它新能源:地热能、潮汐能、风能。

  能源的分类和能量的转化

  能源品种繁多,按其来源可以分为三大类:一是来自地球以外的太阳能,除太阳的辐射能之外,煤炭、石油、天然气、水能、风能等都间接来自太阳能;第二类来自地球本身,如地热能,原子核能(核燃料铀、钍等存在于地球自然界);第三类则是由月球、太阳等天体对地球的引力而产生的能量,如潮汐能。

  【一次能源】指在自然界现成存在,可以直接取得且不必改变其基本形态的能源,如煤炭、天然气、地热、水能等。由一次能源经过加工或转换成另一种形态的能源产品,如电力、焦炭、汽油、柴油、煤气等属于二次能源。

  【常规能源】也叫传统能源,就是指已经大规模生产和广泛利用的能源。表2-1所统计的几种能源中如煤炭、石油、天然气、核能等都属一次性非再生的常规能源。而水电则属于再生能源,如葛洲坝水电站和未来的三峡水电站,只要长江水不干涸,发电也就不会停止。煤和石油天然气则不然,它们在地壳中是经千百万年形成的(按现在的采用速率,石油可用几十年,煤炭可用几百年),这些能源短期内不可能再生,因而人们对此有危机感是很自然的。

  【新能源】指以新技术为基础,系统开发利用的能源。其中最引人注目的是太阳能的利用。据估计太阳辐射到地球表面的能量是目前全世界能量消费的1.3万倍。如何把这些能量收集起来为我们所用,是科学家们十分关心的问题。植物的光合作用是自然界“利用”太阳能极为成功的范例。它不仅为大地带来了郁郁葱葱的森林和养育万物的粮菜瓜果,地球蕴藏的煤、石油、天然气的起源也与此有关。寻找有效的光合作用的模拟体系、利用太阳能使水分解为氢气和氧气及直接将太阳能转变为电能等都是当今科学技术的重要课题,一直受到各国政府和工业界的支持与鼓励。

  以上是从能源的使用进行分类的方法,若从物质运动的形式看,不同的运动形式,各有对应的能量,如机械能(包括动能和势能)、热能、电能、光能等等。各种形式的能量可以互相转化,如动能可与势能互相转化(建筑工地打夯的落锤的上、下运动所包括的能量转化过程);化学能可与电能互相转化(化学电池和电解就是实现这种转化的两种过程)。在能量相互转化过程中,尽管做功的效率因所用工具或技术不同而有差别,但是折算成同种能量时,其总值却是不变的,这就是能量转化和能量守恒定律,这是自然界中一条极为基本的定律(另一条为质量守恒定律),也是识破各式各样永动机的有力判据。在能量转化过程过中,未能做有用功的部分称为“无用功”,通常以热的形式表现。

  物质体系中,分子的动能、势能、电子能量和核能等的总和称为内能。内能的绝对值至今尚无法直接测定,但体系状态发生变化时,内能的变化以功或热的形式表现,它们是可以被精确测量的。体系的内能、热效应和功之间的关系式为:

  △E=Q+W

  其中△E是体系内能的变化,Q是体系从外界吸收的热量,W是外界对体系所做的功。这就是著名的热力学第一定律的数学表达式,也就是能量守恒定律的数学表达式。应用上述公式时,要注意各种物理量的正、负号,即:

  △E──(+)体系内能增加, (-)体系内能体系减少;

  Q──(+)体系吸收热量, (-)体系放出能量;

  W──(+)外界对体系做功, (-)体系对外界做功。

  例如1.00 g乙醇在78.3℃时气化,需吸收 854 J的热,这些乙醇由液态变成气态,在101 kPa压力下所做的体积膨胀功为63.2J,这是体系对外界所做的功,应为负值,所以该体系内能的变化△E=[854+(- 63.2)]J=+791J,△E为正值,即体系内能增加了791J。

  能源的利用,其实就是能量的转化过程。如煤燃烧放热使蒸汽温度升高的过程就是化学能转化为蒸汽内能的过程;高温蒸汽推动发电机发电的过程是内能转化为电能的过程;电能通过电动机可转化为机械能;电能通过白炽灯泡或荧光灯管可转化为光能;电能通过电解槽可转化为化学能等等。柴草、煤炭、石油和天然气等常用能源所提供的能量都是随化学变化而产生的,多种新能源的利用也与化学变化有关。化学变化的实质是化学键的改组,所以了解化学键及键能等基本概念,将有助于加深对能源问题的认识。

  以上就是2013高中物理知识点总结之能量守恒定律与能源知识点的全部内容,希望能够对大家有所帮助!

【高中物理知识点汇总及学习方法】相关文章:

高中物理水平考知识点汇总08-04

高中物理力学知识点12-13

高中物理弹力知识点10-26

高中物理水平考知识点08-08

高中物理知识点最新大全07-30

高中物理知识点归纳最新12-07

高中物理电势能知识点10-26

高中物理直线运动知识点10-26

高中物理相互作用知识点10-26

高中物理牛顿定律知识点10-26