用数对确定位置

时间:2024-03-12 08:51:38 好文 我要投稿
  • 相关推荐

用数对确定位置完整版

用数对确定位置完整版1

  一、说教材

  1.教材内容

  《用数对确定位置》是苏教版小学数学四年级下册第八单元P98——100的教学内容。

  2.教材分析

  本课安排的是用从生活中的电影院中位置的确定来引入数对的方法。教材呈现的例题是小军在教室的位置的问题情境,“用数对确定位置”是在第一学段已经学了上下、前后、左右以及第几排第几个的基础上进行学习的,是第一段学习内容的延续和发展。让学生用抽象的数对来表示位置,进一步发展学生空间观念,提高抽象思维能力,为今后进一步学习“图形与坐标”打下重要基础。

  3.教学目标

  我是从知识与技能、过程与方法、情感、态度与价值观三个方面来设计本节课的教学目标

  (1)、知识与技能:使学生在具体情境中认识列、行的含义,知道确定第几列第几行的规则,初步理解数对的含义,会用数对表示具体情境中的位置。

  (2)、过程与方法:使学生经历由具体的座位图到用列、行表示的平面图的抽象过程,进一步发展空间观念。

  (3)、情感态度与价值观:使学生感受用数对表示位置的简洁性,体验数学与生活的密切联系,进一步增强用数学眼光观察生活的意识。

  4.教学重、难点

  从学生的知识结构和年龄特征出发,我理解本课的

  教学重点:初步理解并掌握用数对表示位置的方法。

  教学难点:能正确使用数对表示具体情境中物体的位置。

  二、说教法、学法

  1.教法:

  本课时主要采用“探究式教学法”,辅以“情境教学法”进行教学。教学中,从生活中常见的电影院导入新课,借助找位置的实际问题,让学生逐步形成如何去确定位置,再让他们小组交流,从中巩固新知,学会写数对,从而发展学生的数学技能。

  2.学法:

  学生作为主体,在学习过程中的学生的参与状态和参与度是决定学习效果的重要因素。因此在学法的选择上体现出“玩中学——学中玩——在合作交流中学——学后交流合作”的思想。

  三、说教学过程

  教学过程:

  (一)、导入

  提问:《题西林壁》这首诗学过吗?为什么诗人不识庐山真面目?

  指出:观察物体角度很重要。中国有句俗话“当局者迷,旁观者清”,就是告诉我们要以旁观者、局外人的视角观察人、事、物,才能更准确。

  (出示电影院的座位图)提问:同学们,你们去看过电影吗?这是电影院一个厅的平面图,竖着的一排叫什么?横着的一排呢?(板书:竖排叫列,横排叫行)

  老师想要观察这个厅所有的观众,应该站在什么位置?(银幕的位置)

  指出:会选角度观察,我们今天的课就成功了一半。下面就进入我们的数学之旅吧!

  (二)、认识数对

  1、游戏——寻找幸运观众

  (1)给出任务:电影院今天搞活动准备在这个电影院里选择三位观众免费观看,已找出两位,剩下的一位,让学生自己寻找。

  (2)寻找幸运观众

  第一步:漫无目的寻找。

  第二步:根据提示寻找。教师给出提示(3,2),学生根据提示指一指幸运观众可能在的位置,教师用投影显示8个可能的位置。

  第三步:根据视角寻找。进一步缩小范围,点击鼠标,寻找出幸运观众。

  提问:为什么一个提示出示8种可能?(不知道哪个数据表示行或列,也不知道是从哪边开始数起的),你认为观察者在哪?根据观察者的视角和(3,2),你认为可能在哪?

  (3)理解数对的含义。

  提问:(3,2)表示什么意思?(板书:第3列,第2行)列是从观察者的哪边开始数起?行呢?(板书:从左往右从前往后)

  指出:像这样用一组数表示物体位置的方法就是我们今天研究的内容。(板书课题:用数对表示物体位置)

  提问:你觉得用数对表示物体的位置有什么好处?(简洁)能不能将逗号省去?能不能将()省去?(逗号将列和行分开,括号是数对的特征)

  (4)运用数对

  用数对表示出前2位幸运观众的位置。用数对表示自己的位置

  提问:以谁的视角来观察,哪边是第一列?(选5个同学,其他同学用手势表示正误,)

  提问:比较一下,你和你的同桌写出的数对有什么相同点?为什么?

  (三)、用数对确定位置

  1、★出示“小军班上的座位表”。(表略)

  师:你能说出小军的位置吗?

  生:小军在第4列第3行

  小结:一起数在第四列,第三行。用数对表示,小军的位置是(4,3)。

  2、★师:如果我们把每个同学的位置看成一个圈,就成了这样的图形。

  (多媒体显示,把刚才的图片抽象化,每个同学只用一个圈表示)

  师:小军在班上的好朋友小林坐在教室的这个位置,你能用数对表示出小林的位置吗?谁来说一说师:这些实际上是我们数学教学用书上的`,实际上我们生活中也有很多关于数对的问题

  (四)、巩固练习

  1、课件出示练习三第2题:

  (1)小明家刚买了新房子,正在装修,这是他家厨房一面墙上的瓷砖,请用数对表示四块装饰瓷砖的位置。

  (2)各自在书上填写后指名汇报,全班交流。

  (3)讨论:你发现表示这两块瓷砖位置的数对有什么特点吗?(注:两块出示后讨论,再出示第3块讨论)

  在同一列的瓷砖,数对中的第一个数相同在同一行的瓷砖数对中的第二个数相同

  2、课件出示练习三第3题

  学校要举办艺术节,准备放置一些花来装饰一下我们的校园,我们一起去看看吧。

  (1)写数对:能用数对表示出这些盆花的位置吗?各自在书本上填写后指名汇报,全班交流。

  (2)找规律:观察这些盆花的位置,你发现了什么?先让学生在小组中说说自己的发现,再组织全班交流

  3、学习了这么长时间,同学们也有点累了,我们一起来玩个找字的游戏,好吗?

  出示题目以及游戏规则,玩四次。指名交流思考题,安排位子

  你知道吗,介绍笛卡尔如何想到数对。

  拓展延伸,拓展到三维的角度

  (五)、全课总结

  这节课大家学习的很棒,摩斯侦探想再考考大家,你们有信心用今天学习的数对的知识找出摩斯密码下的秘密吗?下课了。

  四、说板书设计

  板书主要就是从问题想起的策略的一个思考过程,比较清晰,简单,能突出说出这节课的重点

  用数对确定位置

  竖排叫列从前往后数对。

  横排叫行从左往右(4,3)

  五、总结

  以上是我对本课教材教学以及教学方法的预设。基于对本课的设计理解,我认为我们应从数学思考、数学意识的层次上解读用数对确定位置,而不能将此类课型简单地的教学。

  学生从生活实际慢慢的到需要引入数对来确定位置,比较自然,学生在学习时也是一个循序渐进的过程。

用数对确定位置完整版2

  教学目标

  1 知识与技能:

  让学生结合具体情境认识行与列,初步理解数对的含义;

  能在具体情境中用数对表示物体的位置。

  2过程与方法:

  使学生经历从已有经验到用数对确定物体位置的探索过程,体验用数对确定位置的必要性和简洁性。

  3 情感态度与价值观 :

  渗透“数形结合”的思想,发展学生的空间观念。

  体会生活中处处有数学,产生对数学的亲切感。

  教学重难点

  1 教学重点

  经历用数对确定物体位置的探索过程,知道用数对表示位置的方法。

  2 教学难点

  灵活运用数对知识解决实际问题。

  教学工具

  多媒体设备

  教学过程

  教学过程设计

  1 创设情境,激趣导入

  【师】课件出示多媒体教室上课情境图。

  【师】这是上多媒体课的情景,每一个同学都有一个单独桌子,教室的前面 是一个控制台,控制台的左下方是一个座位表。如果哪个同学有问题要问老师,只要按一下秘书桌上的按钮,座位表上相应位置的红灯就会点亮,老师就知道谁要发言。

  【师】播放动画。这时,红灯亮了,是谁提问了呢?

  【生】(看课件中红灯亮的位置)是张亮在提问。

  【师】那同学们,你们想知道哪一位同学是张亮吗?那们就来找一找吧。

  这节课我们就一起来进一步学习“确定位置”。

  【板书】第二章 位置 第1节 确定位置

  2 探索新知

  [1]寻找张亮的位置

  【师】课件展示多媒体教室全景大图,请同学们仔细研究座位表和同学们座位间的关系,找一找哪一位同学是张亮。可以看教材19页,在教材上标出张亮同学的位置。

  【生】在教材上寻找张亮的位置。

  【师】说一说,你是怎么知道这就是张亮呢?

  【生】红灯亮的是第二列第三行,学生座位中第二列第行的就是张亮。

  [2]明确行列的含义

  【师】张亮是在第二列第三行吗?

  【课件展示】同在数学上竖排叫“列”,横排叫“行”。 “列”习惯上从左往右数,依次为第1列、第2列…… “行”习惯上从前往后数,依次为第1行、第2行……

  【师】同学们,张亮是在第二列第三行吗?

  【生】是。

  【板书】(第2列、第3行)

  [3]认识数对

  【师】为了表示方便,表示位置我们还可以用“数对”来表示。括号中第一个数字表示列,第二个数字表示行,中间用逗号隔开。张亮在第2列、第3行的位置,可以用数对(2,3)表示。

  【师】根据描述的习惯,你认为括号里这两个数各表示什么?

  【生】括号里的第一个数表示第几列,第二个数表示第几行。

  【板书】(2,3)

  [4]用数对表示位置

  【师】你能用数对来表示王艳同学的位置吗?

  【生】王艳的位置用数对表示是(3,4)。

  【师】括号里的3和4表示什么呢?

  【生】3表示王艳在第三列,4表示在第四行。

  【师】你们能不能用数对表示赵雪的.位置呢?

  【生】赵雪在第四列第三行,用数对表示是(4,3)。

  【师】括号里的4和3表示什么呢?

  【生】4表示赵雪在第四列,3表示在第三行。

  【师】赵雪的位置能用数对(3,4)表示吗?

  【生】不能,赵雪的位置在第四列第三行,而第三列第四行的位置是王艳。

  【师】看来,数对(3,4)和(4,3)不仅是数的顺序不同,它们表示的位置也不同,所以我们用数对表示位置的时候,一定要遵循规则,数对前面的数字表示——列,后面的数字表示——行。

  巩固练习:请同学们利用刚才所学的知识写一写孙芳,周明,李小冬的位置。

  指定一个学生上白板上写。

  [5]巩固确定位置的方法

  1、先说一说自己班里,哪是第一列,哪是第一行,并让学生用数对表示自己的位置。指多名学生回答,加强数对练习。

  2、老师说数对,学生根据数对找出相应的同学。

  [6]巩固拓展

  【师】生活中还有很多用两个数来确定位置的情况,你知道有哪些吗?

  【生】举生活中用数对确定位置的例子。

  【课件展示】1、楼宇案例门上表示几层几号的按钮。

  2、电影院里的座位——几排几号

  3、象棋棋盘

  [7] 课堂练习

  1、用数对(3,2)表示。你能用数对表示其他几个图案的位置吗?

  参考答案:

  苹果用数对表示(4,3);西瓜用数对表示(2,1);香蕉用数对表示(4,1);樱桃用数对表示(2,3)。

  2、下图是国际象棋。

  (1)她是怎样确定棋子位置的?

  (2)你能像她那样说一说每个棋子的位置吗?

  参考答案:白方的“王”从左向右数在“e”列,从下往上数在“1”行,所以用数对表示为(e,1)。

  [8]课堂小结(PPT投影)

  【师】同学们,这节课我们学习了确定物体位置的方法,相信同学们一定大有收获,谁来说一下收获呢?

  【生】我学会了怎样用数对表示位置。

  我知道了数对中第一个数表示列,第二个数表示行。

  我知道竖排叫列,一般从左往右数,横排叫行,一般从前往后数。

  板书

  第二章 位置 第1节 确定位置

  (第2列、第3行)——(2,3)

  数对 (3,4)

  (4,3)

  列 行

  竖排叫列,一般从左往右数

  横排叫行,一般从前往后数

用数对确定位置完整版3

  学校近期举行“过关课”观摩,我选择的教学内容是苏教版小学数学第九册的“用数对确定位置”。

  在备课中,关于“行”与“列”的定义出现了困惑,请教数学组的其他老师,大家意见不一。老师:日常生活中,我们习惯把走进教室时紧挨着窗的一组设定为第一组,第一个同学就是第1列第1行。

  因此,用生活数学的视角看,我通常从右往左数。所以我认为:小军的位置不一定为第4列第3行。 H老师:教材上写着竖排叫做列,横排叫做行。确定第几列一般从左往右数,确定第几行一般从前往后数。那么,我个人觉得教材这样规定是和中学数学中的直角坐标系相吻合的,便于中小学数学的衔接。教学时,我们应该研究教材的编排意图,应该从教师站的角度来观察,小军是坐在第4列第3行。 T老师:我上课时是以教室的门为参照物,当所在教室中师生的位置刚好与教材情景图相同时,我得到了小军坐在第4列第3行,当位置与情景图相反时,结果就不同了。

  听了老师们的发言,感触良多。出现的争议源 于老师们对教材的不同解读。我只有请教《教师用书》,认真拜读小学阶段“确定位置”这一内容,发现一年级用一个“第几”描述物体在直线上的位置,二年级用两个“第几”表示物体在平面上的位置,通过两次教学,学生有了一定的方向感,获得了自然数能表示次序的体验。在此基础上,五年级教学用“数对”确定位置,使学生由原来凭生活经验描述位置上升到用数学方法确定位置,从而发展学生的数学思考,培养空间观念,为六年级教学根据物体的方向和距离来确定物体的`位置奠定基础。 因为数对是按列与行确定位置的。

  因此,竖排叫做列,横排叫做行都是约定俗成的规定,而从教材提供的场景图来看,显然要求我们按照H老师的思路来设计我们的教学流程。在教学时,为了避免孩子们出现以上争议,按照H老师的意图,我事先做好。把我左边的、前排的第一位同学的名字放在数对(1 , 1)的位置,全班44位同学按座位正好分成8列,再按照前后的顺序依次把姓名放入表格中(坐标)。先让孩子们观察屏幕,找到自己的位置,说出数对;然后我通过报数对随机点名,还故意报出数对(9 , 2)、(4 , 7),孩子们很快发现这两个是空号,因为我们班没有9列,也没有7行;最后我分别点名数对(3 , 1)(3 , 2)(3 ,3)(3 , 4)(3 , 5)起立,(1 , 3)(2 , 3)(3 ,3)(4 , 3)(5 ,3)起立,让同学们分别思考:看到这些数对,再观察起立的同学,你发现了什么?

  孩子们很容易得出:第一次起立的同学在同一列;第二次的在同一行。不仅避免了争议,还使得每位同学共同参与数学活动,并在活动中轻松、快乐地获得知识。

用数对确定位置完整版4

  这部分内容是在学生已经初步获得了用自然数表示位置的经验的基础上进行教学的。将学生已有的用类似“第几排第几个”的方式描述位置的经验加以提升,用抽象的数对来表示位置,进一步发展空间观念,提高抽象思维能力。本节课我通过引导学生观察主题图——军营生活引入对新知识的探索,使学生充分了解数学与日常生活的联系。课的最后,利用猜位置找礼物和大家喜欢的迷宫游戏的实例,引导学生将所学知识应用到实际生活中去。这样设计,充分体现了“数学知识从实际中来、到实际中去”的思想。

  数学教学要重视知识形成的过程是当前数学课程改革的一个重要的理念。本节课中,我注重了向学生充分展现知识形成的.过程,我通过将“小强”站在从左数第3列从前数第2行”简化成用数对来表示,然后把人物图简化成点子图再到方格图,力图让学生经历数学知识、数学思想的形成过程,从而加深学生对所学数学知识的理解;而且在这个充满探索和自主体验的过程中,使学生逐步学会数学的思想方法和如何用数学方法去解决问题,获得自我成功的体验,增强学好数学的信心。

  在练习题的设计中,我设计了孩子喜欢的游戏入手,先设计了一个根据位置寻找礼物的游戏,又设计了一个走迷宫的游戏,从孩子喜欢的游戏入手,可以提高孩子的学习兴趣,增强数学的应用能力,拓宽了孩子的视野。

  知识的延伸:了解数对的发展史:

  笛卡尔是著名的法国哲学家、数学家、物理学家。有一天,笛卡尔生病卧床,但他头脑一直没有休息,还在反复思考一个问题:通过什么办法,才能把“点”和“数”联系起来呢?突然,他看见屋角上的一只蜘蛛在上边左右拉丝。他想,可以把蜘蛛看做一个点,蜘蛛的每个位置就能用一组数确定下来。于是在蜘蛛的启示下,笛卡尔用一对有顺序的数表示平面上的一个点,创建了数对与直角坐标系。他本人也受到了人们永远的尊敬。由此可以看出,在我们的生活中蕴藏许多奥秘,同学们要学会用数学的眼光观察生活、了解生活。

  然后让学生联系一下生活中用数对表示位置的事例,从而让学生联系生活,引出地球仪上的经纬网也是应用了数对的思想。在地球仪上连接两级的点叫做经线,垂直于经线的横线叫做纬线,根据经纬线可以确定地球上任何一点地位置,而且还可以根据该地点的经纬度,测算出该地点与我们的距离。神州 七号飞船发射返回地面时地面工作人员就是根据经纬度来准确地判断飞船的着陆地点的。从而拓宽孩子的知识面。

  当课结束了,学生还沉浸在神奇的知识奥秘之中。

用数对确定位置完整版5

  上完“确定位置”这节课后,心里轻轻地松了一口气。“确定位置”对于学生学习来说并不难,大多数学生都能够很快接受。如何才能充实课堂内容,让学生通过相对简单的知识学到更多的东西呢?在设计本课时,我主要考虑了以下问题:

  (一)让学生经历从具体到抽象的过程

  在教学中,我设计了如下内容:通过把座位图上学生的位置由图变成点,再动态显示横线和竖线,最后引入以纯坐标出现的学校附近的地图,逐步引导学生在头脑中建立由实物图抽象出坐标图的概念,使学生经历从具体到抽象的数学思考过程。这样既尊重了教材提供的要素,又不拘泥于教材的呈现方式,有利于更好地实现“发展学生的空间观念,渗透数学‘符号化’思想”的教学目标。

  (二)让学生体会数学与生活的关系

  新课标明确提出“使学生感受数学与生活的密切联系,从学生已有的生活经验出发,让学生亲历数学学习的过程”。本课根据先由实际找座位引入数对,由学生自主探究理解数对,并在了解数对在实际生活中的作用后,进行对数对的.应用练习,从实际到抽象,最后又回到实际,使学生体会到数学在生活中的重要作用。

  “座位”是一个学生感兴趣且生活中经常遇到的问题,通过确定座位让他们初步感受到:要确定位置首先要弄清确定位置的方法。同时,课的最后我适时向学生渗透经纬度的有关知识,把数对的知识延伸到更广的范围,不仅学生的兴趣浓厚,而且使课堂内容更丰富,形式更活泼,更好地进行了学科融合,促使学生全面发展。使学生感到确定位置在生活中无处不在,加深了学生对数学来源于生活,数学与生活息息相关的印象。

用数对确定位置完整版6

  有效评价不是无源之水、无本之木,它一定是建立在执教者对教学目标的精准把握,对教学活动的合理的、符合学生认识规律的设计上,也就是当我们的教学目标把握精准到位时,我们的教学评价就会发挥出它巨大的作用,这时有效的教学评价就会促进教学目标在数学课堂上完美达成,当我们教学活动设计的合理、顺畅、符合学生的认识规律时,我们的有效教学评价就会促进学生在数学活动中有足够的时间和空间经历观察、猜想、实践、交流、推理、验证、抽象概括等过程,学生在老师为他们提供的充足的从事数学活动的机会中感悟数学思想,积累活动经验,发展各种能力。

  下面我就何老师早上执教的《用数对确定位置一课》与大家作简单的交流:

  一、课前互动,期待式的语言评价

  评价不仅仅是学习成果的甄别与选拔,也不是单一的判断是与非,它应该是教师在课堂教学过程中对学生的学习行为表现给予的倾向性意见。教师的评价倾向,会对学生的学习情感起到即时的调节作用。如课前交流中,何老师说:“黄老师给我介绍,咱们班的孩子是最会思考,最会听讲的,他有没有吹牛呀?全体学生大声的说道:没有吹牛!师:怎么来检验她没有吹牛呢?生:上课时,像黄老师说的一样认真听讲,积极思考,大胆发言。”这时何老师期待式的语言评价“说得真好,如果这节课大家真像黄老师说的那样,积极思考、大胆表达,老师会有奖励”实际就是在有意识地让学生积极端正学习态度,挑起学生为了老师的荣誉而战的无穷斗志,形成一种无形的力量,进而内化为学生的情感体验并产生相应的行为表现。

  二、课中交流,生生互评

  在合作交流探究体验的环节中,何老师采用了生生互评的评价方式。这样的方式可以使学生面对面地积极互动,有机会互相解释所学的知识,有机会互相帮助来理解所学的知识。学生在各自的小组中各抒己见,直接交流各自的意见,交换各自的想法,从不同的角度对各自创造的方法进行评价。通过这种评价,可以使思路不清晰的同学变得思想清晰,不严谨的同学变得严谨。同时又调动了学生的积极性,互相取长补短,共同提高。

  三、课中活动,激励式评价

  在学生理解了数对的含义之后,何老师设计了一个游戏:袋子里有写着数对的卡片,从袋子里摸奖,摸到哪个,就请卡片对应的同学站起来,这位同学就是今天的幸运之星。

  全体学生兴致高昂,等待着成为幸运之星。老师摸出了第一个卡片,一名学生站了起来。何老师问:“你为什么站起来?生:因为卡片上写的是3列2行,我就是3列2行的。师:请你到前面来,领取一颗幸运之星,然后请你来给发幸运之星。这名学生兴冲冲的来到台前,领奖,激动不已。师:下面我们请一名学生来摸奖,被摸到的同学站起来,你们两人就是今天的幸运星搭档。”学生全都兴奋不已,有的学生激动的叫起来:老师,我来。

  对学生进行激励评价,可以强化正确的目标行为,会使他们的自尊心得到满足,并感到成功后的喜悦,从而唤起自我实现的需要。在课堂教学中,采用幸运之星的激励式评价,很好地激发了学生向更高的目标努力的`动机,使他们的潜能得到了充分的发挥。

  四、贯穿始终,示“意”代评

  在教学数对的含义时,有一个片段,何老师:老师只有一个孩子呀,怎么出现了四个呢?

  生:因为我们不知道是从哪儿开始数列,从哪开始数行的。师亲切的走到他跟前,摸摸他的头说:你看,说得真好,这就需要我们统一定位。

  再如:在后边比较王乐和周明位置的活动中,数对(2,6)和(6,2)有什么不同?学生表述的不太清楚。

  师示范引导说:因为数对(2,6)表示的是————

  生:第2列,第6行。

  师:而数对(6,2)表示的是—————

  生很自然的说:第6列,第2行。

  师:因为6在第一个数对中表示的是———(生:第6行————在第二个数对中————生心领神会的说:表示的是第6列),而2在第一个数对中表示的是————

  接下来学生自然而然的做出了完整的叙述。

  从中我们可以看出,何老师始终都在巧妙地通过一个手势、一个眼神、一个微笑或者示意引导对学生的课堂表现进行及时地评价。这样的评价方式,虽隐晦但却效果明显,虽无声却胜似有声,可以说是春风化雨,润物细无声。

  从何老师的课堂中,我感受到充分发挥多元化评价手段在课堂教学中的积极促进作用,只有尽可能不断变换评价方式,用充满爱心和智慧的评价去熏陶、感染学生,展示课堂评价的魅力,才能在评价中师生共同演绎课堂的精彩。

用数对确定位置完整版7

  《确定位置》这节课是要求学生能用数对来确定位置,在此之前,学生已会用语言文字描述自己在教室中的位置,数对的学习将为学生以后学习直角坐标的知识打下基础。

  “数对”这一数学知识对于学生来说是比较抽象的,为了解决这一问题,我在这节课的设计中注意了以下几点。

  从学生现实情境“向学生介绍座位”导入,创设了轻松、和谐的课堂氛围,有唤醒学生已有对确定位置的`认知,为下一步的自主探究提供了基础,也为抽象出“数对”构建了一个现实模型。

  首先,让学生自己根据问题进行思考,用自己喜欢的解决问题,这一过程是开放的,学生的思维得到了很好的拓展,在此之后,教师在学生交流中合理引导,充分发挥信息技术的优势,丰富的感性材料,合理的动态演示,激发了学生习兴趣,启迪学生的有序思维,有利于学生对“数对”有个清晰的理解。

  整个教学过程我采用多样化的呈现方式,激励学生学习生活中的数学,在后一教学环节中,有意识地的创设生活情境,让学生在数学交流中,培养了应用知识、解决问题的能力,同时使学生真切地感受到数学知识来源于生活,应用于生活。

用数对确定位置完整版8

  本节课中用数对确定位置的关键是让学生认识列、行的含义,并弄清确定第几列、第几行的规则。课本是这样告诉学生的:竖排叫做列,第几列一般从左往右数;横排叫做行,确定第几行一般从前往后数。列“从左往右数”、行“从前往后数”,是用数对表示位置的逻辑前提,但是让学生明白站在不同的“观测点”来观察结论是不同的,确定位置要有统一的标准,有着一定的意义。总的来讲,从课堂同学们的表现来讲,每一个同学都掌握了所学的知识,教学设计的目标都很好的得以实现,但是反思自己的教学实际,还有几个方面需改进:

  1、 课堂的引入,不是那么的`有吸引力,没能更好的引起学生的认知冲突,把统一标准作为前提,作为确定位置的需要,学生求知的欲望会更强。

  2、 在整节课的设计时,因为知识比较简单,安排了自学环节,交流时大多数的同学都已经掌握的知识,因此交流环节有些流于形式,前面来展示的面比较窄,教师引导语言没有跟上,造成学困生没有吃饱。

  3、 在学生“说数学”的训练上还要加强指导,会说、说的明白、简洁利索才是真的理解了。很多教师的引导性语言可以省略让小老师来代替,逐步培养学生自主学习的能力。

用数对确定位置完整版9

  教学目标:

  1.使学生在具体的情境中认识列、行的含义,知道确定第几列、第几行的规则,初步理解数对的含义,会用数对表示具体情境中的位置。

  2.使学生经历由具体的座位图到抽象成用列、行表示平面图的过程,提高抽象思维能力,发展空间观念。

  3.使学生体验数学与生活的密切联系,进一步增强用数学的眼光观察生活的意识。

  教学重点:

  会正确用数对表示具体的位置。

  教学难点:

  培养学生的空间观念。

  教学准备:

  每位学生准备红、绿两支水彩笔;练习纸一张。多媒体课件。

  教学过程:

  一、情境引入,激发需要

  提问:能说出我们班中队长坐在哪里吗?

  出示例1主题图,让学生按自己的想法描述小军的位置。(学生可能认为小军坐在第4组第3个,也可能认为小军坐在第3排第4个)

  质疑:同样都是表示小军的位置,怎么会有两种不同的表达方式呢?(第一种意见是把一竖排看作一个小组,小军就在第4组第3个;第二种意见是把一横排看作一排,小军就在第3排第4个)

  提问:怎样才能用一致的方式,更简明地说出小军的位置呢?(学生可能想到:先说清楚是什么排或什么是组,再说明小军在第几组第几个或第几排第几个;统一规定,横着的是排,大家都按照这样的规定去说)

  提问:你认为哪一种方法更好些?(学生中可能会出现两种不同的意见,注意引导学生体会:如果有一个约定,大家都按照这样的规则去做,就不会表达不清了)

  揭示课题:怎样规定横排和竖排呢?这节课我们就来学习一种既准确又简洁的确定位置的方法。板书:确定位置

  二、认识列、行和数对

  1、认识列、行的含义

  师:你的座位在整个会场中还可以用第几列第几行来表示

  板书列行

  师:在你的理解中,什么叫“列”?什么叫“行”?请你比划一下。

  板书:竖排为列横排为行

  电脑显示座位中的列、行

  2、统一定位

  (1)请3位学生上台凭票指出自己找到的'位置。并简述是怎样找到的?

  师:个别同学有异议吗?

  情况一:都能正确找到位置。

  师:他们在找座位时有哪些相同的方法步骤?

  (发现他们在数列与行的时候,都很有序。先找列,再找行;确定第几列一般从左往右数,看屏幕显示确定列数,确定第几行一般从前往后数,看屏幕显示行数。这样每一个座位与位置一一对应,不会产生异议。)

  情况二:两人找到了同一个座位。

  在矛盾中引出:由于同学们看的方法和角度不同,所以在找位置时,产生了不同的说法,看来得统一定位。确定第几列一般从左往右数,看屏幕显示确定列数,确定第几行一般从前往后数,看屏幕显示行数。这样每一个座位与位置一一对应,不会产生异议。请刚才有争议的同学重新找到自己的座位。

  (2)教师指座位,学生口答。

  第1列第1行、第5列第7行

  第11列第7行、第2列第10行

  3、用数对表示位置

  (1)提炼数对

  师:在教室后面坐着几位老师,请你用既准确、又简洁的方法,把老师的位置记录下来。

  反馈:把学生的记录方法一一呈现在黑板上,作为进行比较的素材

  可能出现:a全部用文字b第2列第3行c(2,3)

  52(5,2)

  47(4,7)

  师:这几种的记录方法,有什么相同的地方?(相同点,都是用两个数分别表示列和行。)

  师:这几种方法,你喜欢哪一种?为什么?

  师:大家的方法已经很接近和数学家的方法。数学上用两个数分别表示列和行,中间用逗号隔开,再用小括号把两个数括起来,就叫做数对。

  (2)读法和意义

  读一读数对(2,3)

  数对(2,3)表示什么?这两个数(2,3)分别表示什么?

  (3)完整书写课题

  师:用有顺序的两个数表示平面中的位置,就是今天我们的学习内容。(板书完整课题:用数对确定位置)

  (4)数对的作用

  师:认识了数对,充分让我们体验到数学表达的简约之美。请用数对说说你现在的位置?同桌交流。小结:根据两个数组成的数对,能很快确定教室里每个人的位置。

  三、用数对表示平面图上点的位置。

  1、动物园示意图

  (1)质疑,引入列行标准

  师:这是动物园的示意图,动物园内的大象馆、猴山、海洋馆等不规则地分布着,说说动物园大门的位置?(列行不明,难以描述)

  可用一定大小的方格来统一距离,那些分散的场馆就好似方格中的点了。

  (2)观察起点的位置

  方格中的0表示什么?(既是列的开始,也是行的开始;同时也指示了列从左往右,行从上往下。)

  (3)大门的位置用数对(3,0)表示。

  (4)数对表示大象馆和海洋馆的位置。

  表示第几列,第几行?你是怎样看的?

  (5)学生独立完成

  a、熊猫馆的位置在第()列第()行,用数对表示为(3,5)。

  b、海洋馆的位置在第()列第()行,用数对表示为(5,3)。c、在图上标出下列场馆的位置。

  飞禽馆(0,1)大象馆(0,4)猴山(3,3)

  (6)观察,讨论,深化数对的意义。同时向学生渗透坐标思想。

  选择其中的两个位置进行比较,你发现什么?

  发现一:数对(3,5)和(5,3),同样的两个数写的位置不同,实际的位置不同,因此在写数对时要按照规定先列再行。

  发现二:猴山和海洋馆都在同一行上,因此第2个数都相同。

  师:这一行上还有许多点,它们都可表示(几,3)列数不确定而行数确定,你能用一个数对来概括这一行上的所有点的位置吗?

  发现三:熊猫馆(3,5)和猴山(3,3),数对中的第一个数相同,它们都在同一列上。用(3,y)可以表示这列上所有点的位置。

  四、应用数对,创作图形。培养观察比较,空间想象能力。

  1.根据顶点的数对,在方格中画出三角形。

  (1)想一想

  观察顶点的数对a(1,1)b(3,1)c(1,3),想象这是个什么图形?

  (2)画一画

  根据顶点的数对,在方格中画出这个三角形。

  (3)移一移

  画出这个三角形向上平移5个单位后的图形。说一说又是什么三角形?

  2.根据顶点的数对,在方格中定点连线,找规律(1)根据数对在图上描出各点,标上字母,并顺次连接a、b、c、d。

  a(1,9)b(2,8)c(3,7)d(4,6)

  (2)比较这些数对,你有什么发现?

  列变化,行也随之变化;但列与行的和是不变的。当列和行的和是10时,连接各点是一条线段。如果把这条线段的两端延长,想一想,还有哪些点也一定在这条斜线上?

  五、总结、延伸。

  1、师:今天这节课学了什么?你对数对都了解了哪些?

  2、在直线上确定一个点,只要一个数据;

  在平面上确定一个点,需要两个数据,就是今天我们学的数对;

  在三维空间里确定一个点,也需要数据,需要几个数据?

用数对确定位置完整版10

  本节课内容是在学习了用前后、左右、上下等表示物体位置和东西南北等八个方向及认识简单的路线图等知识的基础上进行学习的,是“方向与位置”内容的延续和发展。也是以后进一步学习相关知识的基础。这部分内容对学生认识自己的生活环境、发展空间观念具有重要的作用

  “数对”这一数学知识对于学生来说比较抽象,为了解决这一问题,我注意了以下几点。

  1、本节课的教学是先从认识观察者与被观察者开始的。认识观察者与被观察者是认识那是第一列的基础,也是学生经常发生混淆的地方。因此我在导入时设计了学生介绍第一排同学给我认识的环节。通过学生用方位词向我介绍同学,使学生产生认知的冲突,从而加强了观察角度的认识。事实证明,我这样的教学设计确实对学生认识列产生了深刻的影响。

  2、本节课又通过让学生看军营情境图激起学生的好奇心,通过说出小强的位置,唤起了学生对已有的用“第几组第几个”或“第几排第几个”的知识来确定位置的经验,帮助学生找到新旧知识的连接点。然后让学生根据已有的生活经验确定小强的位置,有的.从左边数起,有的从右边数起,有的从前边数起,有的从后面数起,这样找出的位置不是唯一的,使学生认识到这样描述位置的方法不够准确。进而让学生将叙述的语句改准确,使学生认识到如果叙述准确了,又显得太罗嗦。有没有一种既准确又简明的方法呢?这样就使学生产生了学习新方法的内在需要,有效地激发了学生学习新知的积极性。

  3、在教学中引导学生经历由实物图到方格图的抽象过程,渗透“数形结合”的思想,发展空间观念。在教学中我先给学生出示了实物图,然后通过电脑演示了有实物图到点子图的过程。最后我把点子图的各个点用横线和竖线连接起来,然后点子图的各个点逐渐缩小,直到缩到与横线和竖线的交叉点一样大为止。通过电脑的演示使学生亲身感知了由实物图到点子图再到方格图的变化过程,渗透了数形结合的思想。

  4、在教学中我应用了小组讨论的方法。在解决本节课的重点难点的时候,我并没有直接告诉学生现成的答案,而是引导学生经历了一个探索问题的过程。通过学生小组内的谈论,学生找到了许多中简单表示第3列第2行方法。通过学生的讨论汇报,我适时引导从而使学生认识了数对表示方法的科学性、准确性和简洁性。

  5、在整个教学设计中我始终坚持了“数学知识从实际中来、到实际中去”的思想。在导入部分我先从班级内的第一排学生开始,然后引导出了军训中的情景图,从而引起了新知识的探讨过程。最后我设计了寻找班级的数对以及猜一猜的文字游戏也是这一思想的体现。

  通过实际的教学,我认为我在教学这节课的时候还存在着以下几点缺憾:

  1、讲完课后总觉的有些面面俱到,没有突出重点。

  2、在小组讨论的时候给学生的时间太少,学生自由活动不够充分。在汇报讨论结果的时候又过于仓促,没有给学生留下自己评价和相互评价的时间。

  3、过于依赖课件,在讲到十几分钟的时候,电脑突然死机使我有些措手不及,上课的思路有些乱了。在处理这个突发事件时,我处理的也有些不当。当时我还没有介绍点子图我不应该叫学生到点子图中找小强的位置。当时我在黑板上已经总结出了“第3列,第2行”,如果这个时候叫学生直接讨论“第3列,第2行”表示方法我想效果会更好,而且能为自己争取到更多的时间。

  一节课已经结束了,但我的思考却没有终止,我不停地思考着我教学的每一个细节,考虑着我教学的得与失。我始终坚持着教数学的目的是发展学生的思维,而不是已记住一些知识为目的。知识的探索必须以实际生活为依赖,使学生经历知识形成的过程,体会数学的价值。

用数对确定位置完整版11

  教学目标:

  1.在具体情境中认识列与行,理解数对的含义,能用数对表示具体情境中的位置。

  2.使学生经历由具体的实物图到方格图的抽象过程,提高学生的抽象思维能力,渗透坐标思想,发展空间观念。

  3.使学生体验数学与生活的密切联系,拓宽知识视野,体会数学的价值,进一步增强用数学的眼光观察生活的意识,提高学习数学的兴趣。

  重点难点:

  理解数对的含义,能用数对表示位置

  课前准备:

  课件

  教学过程:

  一、谈话导入

  师:同学们,上学期时间我们学校进行了课间操的展示活动,这是我们学校某班的同学(课件),在这次活动中小强是表现最出色的一个,你能说一说小强在什么位置吗?

  生:从右向左数第4排的第2个。

  师:谁还想说?

  生:从左向右数第2排的第3个。

  师:还有不同的说法吗?

  生:从后往前数,第4排的第3个。

  师:怎么同一个人的位置有这么多种说法呢?

  生1:人们是从不同的角度和不同的方位观察的。

  生2:人们的视觉不同,也就是观察的角度不同,说的方法就不一样了。

  师:正像刚才大家所说的,一个人的位置不变,但由于人们观察的角度不同,描述位置的方法就不同。刚才大家在描述小强位置时,你有你的说法,他有他的说法,感觉怎样?

  生:有点乱。

  师:我们能不能寻找一种既简单又准确的方法来描述位置呢,这节课我们就一起来探讨如何确定位置。(板书:确定位置)

  【设计意图】从学生的实际情况和具体特点出发,了解已有的生活经验和知识背景。同时设置如何描述方阵中事物的位置,感受描述方法不统一带来的不便,体验统一描述方法的必要性。

  二、用列与行确定位置

  师:刚才同学们在描述小强的位置时,用到了“排”,“个”等词来描述位置,你们认为怎样为一排?

  生:横着是一排。

  师:还有不同意见的吗?

  生1:竖着也可以看作一排。

  生2:排是直的。

  师:有横排,也有竖排,在描述位置时很容易混淆了,在数学上我们通常把竖排称为“列”,把横排称为“行”。(板书:列和行)大家认为哪为第一列合适?

  生1:最左边的为第一列。

  生2:最右边的为第一列。

  师:你们认为从哪边起为第一列合适?

  生:最左边为第一列。

  师:能说说你的理由吗?

  生:我们观察的时候一般是从左边开始数的,这是习惯。

  师:这位同学说得多好啊,根据人们的习惯,我们通常把最左边的一列称为第一列,请你找到第2列,第3列…(课件)

  师:哪为第一行呢?

  生:最前面的是第一行。

  师:自己找一下第2行,第3行……

  师:你能用列和行来描述小强的位置吗?

  生:第3列第2行。

  师:还有不同说法吗?

  生:第2行第3列。

  师:在数学上我们通常先说列再说行。小强的位置可以说是在第3列第2行。(板书:第3列第2行)

  【设计意图】尊重学生原有的知识经验,创设情境激发学生的创造思维。通过不同理解、不同表述,让学生再次体验产生“统一标准”即做出规定的必要性。渗透正确的描述顺序,分解难点,为理解“数对”这一抽象的概念奠定基础。]

  三、探讨用数对确定位置

  1.抽象点子图。

  师:同学们观察,圆点代替学生(课件:人物图渐变成点子图),你还能找到小强的位置吗?

  生:能。

  师:你能说说是怎样找到的吗?

  生:先找到第3列再找到第2行,交叉的地方就是小强的位置。

  师:这位同学不但找到小强的位置,而且还介绍了自己寻找的方法。

  师:小青的位置在第几列第几行呢?

  生:第1列第4行。

  师:小刚的位置呢?

  生:第4列第5行。

  师:其它点的位置你能用列和行来表示吗?

  生:能。

  师:你能说出几个点的位置?

  生:所有点的位置。

  师:其实每一个点的位置我们都可以用第几列第几行的方法来表示。

  【设计意图】 通过让学生观察点子图的变化,培养学生抽象思维的能力,渗透数学的简捷性。

  2.探究用数对确定位置的方法。

  师:我们用第几列第几行的方法来表示位置,这个方法的确很简单。我们能不能用数学上的数或符号等创造出一种更简捷的方法呢?有没有这样的方法呢?同桌两人商量一下,如果有,请记录在小卡片上。

  学生活动,部分学生板书自己的表示方法。

  师:刚才我看到在开始时,大家都皱着眉头,可是后来经过努力都创造出了自己的方法,下面同学们来看这几种表示方法。谁来介绍一下你们自己的表示方法?

  (1)3列2行

  师:谁创造的这种表示方法?说一说你是怎样想的。

  生:这样表示很明白,而且比第3列第2行更简单了。

  (2)(3 2 )

  师:这种方法又是怎样想的`呢?

  生:用竖线表示列,用横线表示行。

  师:这位同学很有自己的想法。

  (3)3 2

  师:这种方法是谁的创意?

  生:为了区分列与行,用圆圈表示列,三角表示行。

  师:这位同学很有创意。

  (4)3、2

  师:谁能看懂这种方法?

  生:用点把列与行隔开,这样表示非常方便。

  (5)3 2

  师:这种方法是怎样想的 ?

  生:我用竖线把行与列隔开。

  师:谁能对这些方法发表一下自己的看法?

  生1:我认为用第4种方法很方便,而且能表示第几列第几行。

  生2:这种方法虽然方便,但是万一看成三点二怎么办?

  生3:如果换成逗号就好了。

  师:同学们不但对方法进行了评价,而且还提出了自己的建议。

  师:谁还想评价一下其他的方法?

  生:我认为第一种方法比其它方法更容易懂一些,像其它的方法:三角、竖线等还要加以说明,别人看了不明白,而3列2行很容易明白。

  师:3列2行看起来的确很明白,可是与其他方法比呢?

  生:用3列2行表示不简单。

  师:明白了又不简单,简单了又不明白。其实大家在这么短的时间内创造出了这么多的方法已经很了不起了。这些方法有共同点吗?

  生1:都有3和2。(板书)

  生2:都有列和行。

  师:而且大家都想到了把列和行隔开,正像刚才大家说的我们用逗号把列和行隔开,因为表示一个人的位置,是一个整体所以再加上一个小括号。像这样用一对数来表示位置的方法称为数对。小强的位置可以用数对三二表示。

  师:小青的位置怎样用数对表示?

  生:(1,4)。

  师:小刚的位置呢?

  生:(4,5)。

  师:其它的位置我们可以用数对表示吗?

  生:能。

  师:你感觉用数对表示位置怎样?

  生1:非常简单。

  生2:既简单又准确。

  师:经过我们大家的努力,我们探讨了一种既简单又准确的表示位置的方法,也就是用数对来确定位置。(补充课题:用数对确定位置)

  【设计意图】让学生在具体的活动中进行独立思考,鼓励学生发表自己的意见,给学生提供了创造的机会,充分展示学生思维过程的机会。学生个性化表示的过程,就是感知、理解数对的过程,让学生亲身经历知识的形成过程,深刻理解概念。

  四、在方格图上确定位置

  师:同学们仔细观察,发生了什么变化?(课件展示渐变的过程)

  生:小圆点没有了,用横线和竖线穿起来了。

  师:还有其它变化吗?

  师:你是怎样找到的呢?

  生:根据小强的位置用数对(3,2)表示,只要找到第3列第2行就可以了。

  师:不仅小强、小青的位置我们可以用数对表示,今天同学们所在的位置也可以用数对来表示。在表示之前,首先要知道什么呢?

  生:一共有几列几行。

  师:哪是第一列呢?

  生1:从右边数。

  生2:从左边数。

  师:我们通常以观察者为标准,左边起是第一列。你认为哪是第一行呢?

  找一找自己的位置,然后用数对表示出自己的位置并记录在圆形卡片上。

  部分学生的卡片贴在黑板的格子图上。

  师:第一位同学的位置用哪一个数对表示?

  生:(1,2)。

  师:第二位同学的位置用哪一个数对表示?

  生:(3,1)。

  师:你能在格子图上找到自己的位置吗?

  生:能。

  【设计意图】 将人物图抽象为点子图,再将点子图抽象为方格图,引导学生经历知识的形成过程,渗透“数形结合”思想,发展空间观念。

  五、练习

  1.捉迷藏

  2.找到石榴王和石榴仙子在哪

  3.用数对表示各顶点的位置

  4.会说话的字母

  【设计意图】 通过练习,拓展学生的思维,进一步体验“坐标”思想,为将来进一步学习平面直角坐标系打下基础。

  六、小结

  其实在我们的生活中,还有很多地方也是利用了数对的方法和思想确定位置,请同学们课下继续研究。

用数对确定位置完整版12

  数对的认识:

  数对可以方便表示位置,数对发明之前,我们常常会这样表示:

  5 ▲▲▲△☆

  4 □ □ △∽◆

  3 ▲△ ● ■ ℅

  2 ● ● □ ▲※

  1 ∪∩ 〤 ÷ ●

  0 1 2 3 4 5

  在这些符号中,如果确定一个符号的位置,比如确定一个※符号,我们就表示:

  ※在▲右边

  ※在℅下边

  等等都可以这样表示,数对发明之后,我们表示就方便多了,例如上面的※符号可以用数对表示在(5,2)处,要注意的是,要按坐标上的数来确定,如果坐标上的`数改动了,表示就不一样了,像这样的话:

  5 ▲▲▲△☆

  4 □ □ △∽◆

  3 ▲△ ● ■ ℅

  2 ● ● □ ▲※

  1 ∪∩ 〤 ÷ ●

  0 1 2 3 4 5

  表示※就是(5,2)了,还要注意的是,表示一个位置时,必须先表示列,后表示行,列和行数用逗号隔开,还要把数对用括号括起来,这才是完整的数对,例如上面两个数对(5,2)(5,2)就不能表示(2,5)(2,5)。

用数对确定位置完整版13

  《用数对确定位置》是人教版五年级上册第二单元《位置》的第一课时内容,教师在这节课中关键把握了两点:一是抓住了数对的数学本质,把看似简单的内容上出深度和厚度,二是关注了学生的真实起点,很好地帮助学生从对生活位置的认识,提升到对数学位置认识。

  一、抓住数对的数学本质,循序渐进。

  确定位置在小学阶段的学习过程中遵循从区域范围到精确表示的一个过程,一年级上册学习了上、下、前、后、左、右确定位置;三年级下册学习了用东、南、西、北等词语描述物体方向;五年级上册使用数对,精确描述物体在点上的位置,为后面进一步学习“根据方向和距离两个参数确定物体的位置”打下基础。

  在本课例1的教学中,教师通过四个层次的设计,让学生逐步感悟、掌握用数对表示位置的方法。第一层次,创设情境,让学生随意表示位置方法,感受到二维空间上确定位置存在的必要性。第二层次,依托原型,明确列行的含义,以及确定第几列第几行的一般规则;第三层次,逐步抽象,过渡到用数对的方法确定点子图上交叉点的位置;第四层次,应用方格图,在不断抽象、方法不断简化的过程中初步感受坐标思想的本质。

  二、关注思想的'逐层渗透,层层深入。

  数对的发现和使用,对数学界来说是一个重大的贡献。它的价值在于发现一个几何的对象,可以用数来描写,而数所满足的关系就是方程。因此在小学阶段,用数对确定位置首当其冲便是坐标思想的渗透。小学阶段,学生所学习的用数对确定位置,只是直角坐标系的雏形,需要让学生对“唯一确定的直角坐标系下,一个有序数对与平面上的点是一一对应关系”有基本感悟,因此在例2的教学中,教师通过四个层次予以不断深化,渗透坐标系中原点和方向的意识。

  第一层次,在教学中多处渗透先列后行的意识,如从左往右,从前往后出示箭头,这其实就是指名了关键要素之一“方向”。第二层次,教师明确地点出了关键要素之二“原点”(0,0)的重要性,因为对于确定位置而言,原点即参照点恰恰是第一位的。小学教材中虽然没有明确提到,但从有利于后续学习的角度分析,教师不得不提。第三层次,让学生对同一张方格图展开研究,利用写出不同的数对展开比较、辨析,深度感知“任意两个有序的数都可以表示平面上的任意一点”,这些都是坐标思想的集中体现。第四层次,从用数对表示位置的方法回归生活实际,教师还让学生了解了一维的围棋、二维的国际象棋以及三维的地球经纬线。所以本节课教师对于模型思想的构建绝不是固化的,而是一个具有生长性的生态过程。

  三、把握学生的需求走向,自然生长。

  首先,教师以从教室中的座位图中找小军的位置为学习起点,借助观察角度不同、表示方法不同引发学生的认知冲突,从而使学生产生要有统一的观察标准和表示方法的学习需要,感受到二维空间上确定位置的必要性。其次,介入“列与行”的概念教学,不作任何无意义的探索,直接把把数学的规定教给学生,简短而又明快,自然高效;第三,通过开展“限时记录位置”的游戏,来激发学生的探索欲望,让学生充分展现个性化的表示方法,交流创造意图,在这一过程中,学生并不仅仅只是单纯“创造”数对,而是用自己的方法表达自己的思考过程,教师在互动交流中适当引导,逐步让学生感受到统一规范描述数对产生的必要性。最后,通过同一行、同一列数对特点的比较,从而使学生形成同一行中,行不变列变;同一列中,列不变行变的基本认识,不断完善认知结构,构建整体的思维模式。整个过程以学生为本,对学生各个阶段的学习情况作了充分而客观的预设,环节流畅,过程清晰,真实而有效。

  四、整合有效的教学资源,步步为营。

  本节课中教师对于教学资源的使用始终做到高效整合,使得整节课一气呵成、主题鲜明。从开始教学所使用的座位情境开始,到中间部分的根据点写数对,再到方格纸上找数对,观察同一行、同一列数对的特点,教师都是建立在同一张方格图中的,使得学生感受到今天所学习的知识万变不离其宗,将这些知识都清楚地建立在了平面坐标系上。最后的图形变形组合练习部分,从梯形变形为平行四边形,再到平移梯形,每层练习环环相扣,一脉相承,在逐步升级的练习过程中,学生的研究思维也在逐步升级,使得整个探究过程变成了学生主动建构的快乐的学习过程。

  古人认为“魂”是阳气,构成人的思维才智。“魄”是粗粒重浊的阴气,构成人的感觉形体,魂魄协调则身体健康。本节课,教师牢牢抓住数与点的一一对应性,正是明确了用数对确定位置的“灵魂”所在。从让学生熟练掌握用数对确定位置这个结果而言,若离开了深刻理解的前提,学生岂不仅是机械模仿而已。所以,有了数学思想之魂,才可能真正拥有数学事实之魄。

用数对确定位置完整版14

  《用数对表示物体的位置》知识点不多,对于五年级的学生来说是比较简单的,那么如何使教学的内容更丰富,在课堂上激发学生学习的需要,在导入环节,我出示了小军班级的座位图后,先向学生提出要求:你能用以前所学过的知识告诉我小强的位置在哪里吗?你是怎么看的呢?学生在描述时出现了两种不同的说法:“第3列第2个”、“第2排第3个”。小强的位置没变,但同学们看的'角度和方法不同,所以产生了不同的说法,从而使学生产生正确、简明描述小强位置的需要。学生在生活中已具备了确定列和行的经验,因此,便很顺利地得出竖排叫做列,从左往右数,横排叫做行,从前往后数,小强是在第3列第2行。知道了确定第几列、第几行的规则后,再将所站位置的场景加以抽象,用圆圈表示实际场景中不同的位置,详细地标出每一列每一行,让学生在圆圈图中找出小强的位置,提高了学生的抽象思维能力。

  同时,向学生介绍表示位置还可以用更简明的表示方法——用数对确定位置。学生在具体情境中学习用数对确定位置,并理解用数对表示物体位置的方法,第一个数表示第几列,第二个数表示第几行。当学生学会从平面图上用数对确定位置后,我又引导学生回归到生活中,在教室里,找到自己的位置在第几列第几行。通过游戏的形式,使学生认识教室里的列和行,并学会描述自己的位置和好朋友的位置。本节课学生学的比较感兴趣,课堂效果较好。

用数对确定位置完整版15

  一、挖掘教材、理解教材、明确目标《用数对确定位置》这节课开始给我的感觉是比较简单的一个内容。可当静下心来细细琢磨教材时,才感觉到本不像我所料。这节课的重点不是满足让学生会用“数对”表示一个位置就可以了,而是让学生回顾科学家探究的历程,“数对”的产生过程才是本节课的关键所在。“数对”这个概念对五年级的.小孩子来说是极为抽象而又陌生的,如何让他们既对其生成过程有所经历,又对其实质顺理成章轻松地接受。用心思考之后,我把本节课的设计理念定位为:既尊重教材,又超越教材;既自主探究,又适当讲授;既重视结果,又关注过程;既夯实基础,又培养能力;既关注课内,又适当延伸。

  二、遵循学生的原认知,注重数学与生活的联系课堂上,我利用学生已有的生活经验和知识,从学生熟悉的座位顺序出发,通过让学生指出赵亮同学的位置,学生开始表达位置的方法不一样,从而产生了统一标准的必要性,然后潜移默化地建立起“第几列第几行”的概念。接着通过座位图来学习“数对”,让学生用“数对”来描述座位图中人物的位置。再借助班级的实际座位,让学生用“数对”表示自己的位置,并通过一些小游戏进一步明确实际座位中的行和列。在明确了“数对”的概念后,抽象出方格图,让学生在方格图中确定位置,将数学知识应用到生活中去。

【用数对确定位置】相关文章:

位置的作文08-15

自己的位置02-28

准确定位作文10-05

徘徊抉择确定作文04-30

位置与价值的作文10-30

换位置作文07-10

位置与价值作文08-02

认清位置作文08-12

我们的位置作文09-10