函数图像

时间:2024-03-12 00:07:41 好文 我要投稿

常用函数图像集合(15篇)

常用函数图像1

  由于学生已具备初等函数、三角函数线知识,为研究正弦函数图象提供了知识上的积累;因此本教学设计理念是:通过问题的提出,引起学生的好奇,用操作性活动激发学生求知欲,为发现新知识创设一个最佳的心理和认识环境,引导学生关注正弦函数的图象及其作法;并借助电脑多媒体使教师的设计问题与活动的引导密切结合,强调学生“活动”的内化,以此达到使学生有效地对当前所学知识的意义建构的目的,感觉效果很好。

  课后反思:

  比较成功的地方:

  1.教学思路清晰,各个环节过渡比较自然,课堂教学设计得比较紧凑.

  2.教学设计对于正弦曲线、余弦曲线首先从实验入手形成直观印象,然后探究画法,列表,描点、连线——“描点法”作图,对于函数y=sinx,当x取值时,y的值大都是近似值,加之作图上的误差,很难认识新函数y=sinx的图象的真实面貌.因为在前面已经学习过三角函数线,这就为用几何法作图提供了基础.这样设计比较自然,合理,符合学生认知的基本规律.

  3.利用正弦线作出y=sinx在[0, 2?]内的图象,再得到正弦曲线,这里借助角周而复始的变化,体会后面性质“周期”,这样的设计由局部到整体,符合探究的一般方法.

  4.对于“五点法”老师让学生通过观察、学生讨论、进一步合作

  交流得到“五点法”作图,也是本节课中一大的亮点,充分体现以学生为主的教学思路.

  5.通过展示课件,生动形象地再现三角函数线的平移和曲线形成过程.使原本枯燥地知识变得生动有趣,激发学生的兴趣.

  6.在得到正弦函数的图象后,通过一个探究,引导学生利用诱导公式,结合图象变换研究余弦函数的图象,体现了新课改中倡导的“自主探究、合作交流”的教学理念,有利于培养学生主动探究的意识. 需要改进的'地方:

  1.时间的把握要恰当,否则会影响课堂后面内容的安排.

  2.在由正弦函数的图象得到余弦函数的图象的探究过程中,设计了让学生“自主探究、合作交流”的教学思路,但学生对“合作—交流”的热情不够,不太主动——在调动学生积极参与课堂活动方面做得不够好.

  3.由于导入的过程时间稍长,加之本节课的容量过大,尽管在例题的教学过程中及时的改变了教学策略,把例1中的第(2)小题交由学生练习,还是导致了学生练习时间较少.

常用函数图像2

  从这节课的准备来看,针对教学内容从课题的引入、知识的呈现方式、学生的学习活动安排、知识的巩固练习等多方面进行了多次的修改。

  通过课堂的实际实施感觉上也不是尽善尽美,还有令人不满意的地方。教师应该通观教材,把握知识的脉络体系,又要站在高于教材的位置统筹安排。这样,教师才能灵活的把握课堂教学。而现在,教师缺乏的正是这一点,还是为了教而教。按部就班,设计的条条框框较多,多了一些稳重,少了一些灵活。而在课堂上,教师面对的是数十名学生,师生之间、生生之间考虑问题的角度、方式要灵活的多、开放的多,有可能教师固定的设计会影响到学生的思维发展。从这一角度讲,教师应在把握知识的基础上。结合学生的表现,灵活多样的处理知识。学生是学习的主体,学生活动是新教材的一大特点。新教材在知识安排上,往往从实例引入,抽象出数学模型。通过学生的观察、分析、比较、归纳,探究知识的发生、发展、形成的过程,得出结论,并能运用解决实际问题。侧重于学生能力的培养,让学生知道学什么,如何学。因此,教学过程中,如何安排学生的学习活动至关重要,本节课,学生活动设计了三个方面。一是通过画函数图象理解一次函数图象的形状,二是两点法画一次函数的图象,三是探究一次函数的图象与k、b符号的关系。

  在学生活动中,如何调动学生的积极性、互动性,提高学生活动的实效性。值得老师们探讨。为了达到上述目的,我结合每个活动,都给学生明确的目的和要求,而且提供操作性很强的程序和题目。如在活动一中,要求学生观察图象的形状,两条直线的位置关系。

  在活动二中,强调两点法(直线与坐标轴的交点)画直线。在活动三中,探究k、b符号与直线经过的象限与增减性的关系。学生目标明确,操作性强,受到了较好的效果。本节课的重点是由一次函数的`解析式确定函数图象,研究函数性质。由函数图象的位置判断解析式中k、b符号。体现了数学中非常重要地数形结合的思想。这段内容的教学,还是从学生活动出发,从具体的实例研究起,观察图象的位置和性质,在按照k、b的符号分类讨论,使学生建立起数形之间的联系。还要找到数形间的结合点,明确k的符号决定直线的什么位置,b的符号又决定了什么。为了加深学生对知识的理解,课上设计了由解析式画函数图象的草图,由草图的位置判断解析式中k、b的符号的练习,收到了一定的效果。

常用函数图像3

  《正切函数的图像与性质》是高一的一节概念课,在学习了正弦函数和余弦函数的图形与性质以后,再学习正切函数的图像与性质,教学的重点除了要让学生掌握正切函数的图像性质,更要让学生掌握研究函数的一般方法,也就是在课堂教学中学生对于“方法”的掌握和体验很关键。这次,听了刘卫华老师的《正切函数的图像与性质》一课,给我的启发和收获很大。

  首先,虽然现在的数学课堂教学过程中可以利用的教学辅助技术和工具很多,而且,刘老师也确实恰到好处地在课堂教学过程中使用了PPT和几何画板,这对于更精确、形象而又直观地研究函数图像有很大的帮助。然而,让我很敬佩的是,刘老师同时也没有因此而放弃我们传统的尺规作图的教学,她通过自己的作图带领学生经历了一次很好的函数性质研究过程。从而也体现了她良好的数学业务功底以及对数学学科知识的很高认知水平。

  此外,刘老师教学语言的规范性,教学过程中推理的.严密性也非常值得我学习。她的课堂教学语言非常简练,几乎没有什么多余的废话。对学生的问题总是能非常简洁而又一针见血地指出。这对于培养学生严密的思维以及良好的数学语言表达能力是非常重要的。让我印象很深的是,在研究正切函数奇偶性的时候,当学生完成了奇函数的证明后,刘老师能够继续指出,让学生思考有没有可能是一个偶函数?从而充分体现了教师在教学过程中推理演绎过程的严密性。在这里,稍微有点遗憾的是,有学生提出是奇函数了就不会是偶函数时,教师可能因为没有听到的原因,没有针对这个问题把学生的这个错误纠正。

  第三、教学过程中对于一些通性通法的教学使得学生能够在类比思想的引导下,基本自主地完成函数图像和性质的研究。在整堂课的教学过程中,其实类比的思想方法是始终贯穿其中的。教师一开始就让学生类比正弦函数的定义来得到正切函数的定义。虽然在类比过程中,正切函数的定义得出有点快,但是整个的设计指导思想是对的。因为,数学教学中,最重要的是数学思想和一些研究问题的方法的学习,这才是对学生今后的继续学习最有用的。如果说稍微有些遗憾的地方,就是在课的最后小结部分显得有些仓促和慌乱,没有能很好的利用课堂小结这个环节将整堂课所涉及到的那么多研究的方法进行总结。

常用函数图像4

  教学目标

  (一)知识教学点:

  1.会用描点法根据解析式或表格画出函数的图象

  2.会由函数的图象获取函数的性质。

  (二)能力训练点:

  1.在选择恰当数值进行列表的教学中,培养学生分析问题和解决问题的能力;

  2.在描点画图的过程中培养学生的动手能力;

  3.通过函数图象的教学,向学生渗透数形结合的思想方法.

  (三)德育渗透点:

  通过函数图象的教学,使学生体会事物是互相联系的和有规律地变化着的.

  教学重点、难点和疑点

  1.教学重点:会用描点法画出函数的图象,由函数的图象获取函数的性质.

  2.教学难点:由函数的图象获取函数的性质.

  教学步骤 :

  (一)复习提问,引入新课,明确目标,

  提问:

  1.上节课我们学习了一种表示函数的方法,是什么?什么是函数?什么是变量?什么是常量?

  2.它是不是唯一的表示函数的方法呢?

  (再通过一个销售问题的实例来进行复习引入。出示幻灯片) 出售一种豆子,每千克2元,写出豆子的总金额y(元)与所售豆子的数 量x(千克)之间的函数关系式,并指出自变量的`取值范围。 解析法:

  y=2x 看一看,咱们还可以把上式列出表格 列表法:

  数量(千克) 1 2 3 4 5 6 7

  金额(元) 2 4 6 8 10 12 14

  解析法:

  y=2x(x≥0) 如果想直观地了解售出的金额与 数量之间的关系,你有什么办法吗?

  (1,2) (2,4) (3,6) (4,8) (5,10)(6,12) (7,14) 自变量与函数的每对对应值就是一些有序数对。你有什么想法?

  如果把自变量与函数的每对对应值分别作为点的横、纵坐标,在平面直角 坐标系中描出这些点,会有什么结果呢? (咱们还可以用画图像的方法来表示函数)

  有些问题中的函数关系很难列式子表示,但是可以用图来直观地反映,例如用心电图表示心脏生物电流与时间的关系.即使对于能列式表示的函数关系,如也能画图表示则会使函数关系更清晰.

  这节课我们就来学习函数的图象表示方法.(板书课题)

  (二)整体感知

  看实例:正方形的边长x与面积S的函数关系为:

  S=X2(X≥0), 其中自变量的取值范围是________.我们还可以利用在坐标系中画图的方法来表示S与的关系.

  计算并填写下表:

  X 0 0.5 1 1.5 2 2.5 3 3.5 4

  S

  上面,通过列表给出与S的对应值,也可以表示S与的函数关系,这种表示函数的方法叫做列表法.

  提问:1.看上表,给出的实际是一列实数对,如果规定把自变量的值写在前面,函数S的值写在后面,我们就得到一列什么样的实数对?

  (三)整体感知 ,新课学习。

  1、看实例:正方形的边长x与面积S的函数关系为:

  S=X2 其中自变量的取值范围是_X≥0_.我们还可以利用在坐标系中画图的方法来表示S与x的关系. (出示幻灯片)

  想一想,有序实数对与什么有关?有什么样的关系?

  通过这两个问题,可使学生很自然地把上面的列表与坐标平面联系起来,就可以顺利引出函数与坐标平面内的图形的联系.

  能否把上表中给出的有序实数对在坐标平面内描出相应的点? (板演画图,归纳总结)

  一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象. 如图的曲线即函数S=X2(X≥0)的图象.

  2、归纳:表示函数关系的方法:

  ①、解析法:准确地反映了函数与自变量之间的数量关系。

  ②、列表法:具体地反映了自变量与函数的数值对应关系。

  ③、图象法:直观地反映了函数随自变量的变化而变化的规律。

  3、老师演示,学生观察:函数y=x4的图像。

  通过例题归纳由函数解析式画图象,一般按下列步骤进行:

  (1).列表:列表给出自变量与函数的一些对应值;

  (2).描点:以表中对应值为坐标,在坐标平面内描出相应的点;

  (3).连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连结起来.

  4、练习:作出函数y=2x+1的图象

  5、例题精讲,图像的运用:

  ①、观察:如图是自动测温仪记录的图象,它反映了北京的春季某天气温T如何随时间t的变化而变化.你从图象中得到了哪些信息?(图见P.11图11.1-4)

  学生讲论,全班交流,归纳总结

  ②、例2 下面的图象反映的过程是:小明从家去菜地浇水,又去玉米地锄草,然后回家.其中 表示时间,y表示小明离他家的距离. 根据图象回答下列问题:(图见课本P.12图11.1-5)

  (1) 菜地离小明家多远? 小明走到菜地用了多少时间?

  (2) 小明给菜地浇水用了多少时间?

  (3) 菜地离玉米地多远? 小明从菜地到玉米地用了多少时间?

  (4) 小明给玉米地锄草用了多少时间?

  (5) 玉米地离小明家多远?小明从玉米地走回家的平均速度是多少?

  (四)拓展练习:

  1、某厂今年前五个月生产某种产品的月产量Q(件)关于时间t (月)的函数图象如图所示,则对这种产品来说,下列说法正确的是( ).

  A、1月至3月每月产量逐月增加,4、5两月每月产量逐月减少

  B、1月至3月每月产量逐月增加,4、5两月每月产量与3月持平

  C、1月至3月每月产量逐月增加, 4、5两个月停止生产

  D、1月至3月每月产量不变, 4、5两月停止生产

  2、三峡工程去年在6月1日至6月10日下闸蓄水期间,水库水位 由106米升至135米,高峡平湖初现人间。假使水库水位匀速上 升,那么下列图象中,能正确反映这10天水位h(米)随时间t (天)变化的是( )

  3.小明从家里出发,外散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间,然后回家.

  下面的图描述了小明在散步过程中离家的距离s(米)与散步所用时间t(分)之间的函数关系.请你由图具体说明小明散步的情况.

  4、如图是一种古代的计时器——“漏壶”的示意图,在壶内盛一定量的水,水从壶下的小孔漏出,壶壁内画出刻度,人们根据壶中水面的位置计算时间。用x表示时间,y表示壶底到水面的高度,下面的哪个图像适合表示一小段时间内y与x的函数关系(暂时不考虑水量变化时对压力的影响)?(出示幻灯片)

  5、一枝蜡烛长20厘米,点燃后每小时燃烧掉5厘米,则下列3幅图象中能大致刻画出这枝蜡烛点燃后剩下的长度h(厘米)与点燃时间t之间的函数关系的是( ).

  (五)、课堂小结,提高认识:

  1、回忆一下,本节课你学会了什么?

  (一般来说,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图像。)

  2.画函数图象的方法:

  描点法:

  (1)列表

  (2)描点

  (3)连线(平滑)

  3、函数的表示方法:解析法,列表法,图像法。

  4、画函数图象的步骤从函数图象获取信息的步骤:

  ①、画出函数的图象。

  ②、观察图象,发现数量关系及其变化规律。

  (六)、布置作业 :

  1、课本107页第7题。

  2、画出函数的图象。

常用函数图像5

  二次函数的图像是教学的重点,也是教学的难点。学会并理解了函数的图像,可以说就掌握了函数的性质。如何进行函数图像的教学呢?

  1、学习图像之前,让学生正确画平面直角坐标系,准备不同颜色的彩笔。

  2、每节课基本都是学生自己画图、比较、讨论、总结。本节画出的图像比较,和上节学习的图像比较,和小组其他同学比较,看形状、看开口、看对称轴、看顶点有什么相同点和不同的地方,尽可能自己总结函数的图像。

  3、小组展示成果,其他小组听、评和补充。总结出顶点形式的.图像性质。

  4、画出函数的图像,根据图像确定ahk的数值。

  5、注意二次函数的对称性,步骤是列表、描点、连线。取值时从对称轴开始取,注意左右对称取值。

常用函数图像6

  教学过程中教师应通过情境创设激发学生的学习兴趣,对函数与图像的对应关系应让学生动手去实践,去发现,对一次函数的图象是一条直线应让学生自己得出。在得出结论之后,让学生能运用 “ 两点确定一条直线 ” ,很快做出一次函数的图像。在巩固练习活动中,鼓励学生积极思考,提高学生解决实际问题的能力。

  根据学生状况,教学设计也应做出相应的调整 . 如第一环节:探究新知,固然可以激发学生兴趣,但也可能容易让学生关注代数表达式的寻求,甚至部分学生形成一定的认知障碍,因此该环节也可以直接开门见山,直切主题,如提出问题:一次函数的代数形式是 y=kx+b ,那么,一个一次函数对应的.图形具有什么特征呢?今天我们就研究一次函数对应的图形特征 — 本节课是学生首次接触利用数形结合的思想研究一次函数图象和性质,对他们而言观察对象、探索思路、研究方法都是陌生的,因而在教学过程中我通过问题情境的创设,激发学生的学习兴趣,引导学生观察一次函数的图像,探讨一次函数的简单性质,逐步加深学生对一次函数及性质的认识。本节课的重点是要学生了解正比例函数的确定需要一个条件,一次函数的确定需要两个条件,能由条件求出一些简单的一次函数表达式,并能解决有关现实问题。本节课设计注重发展了学生的数形结合的思想方法及综合分析解决问题的能力及应用意识的培养,为后继学习打下基础。

  由于这节课的知识容量较大,而且内容较难,我们所用的学案就能很好地帮助学生消化理解该知识,。在教学过程中,让学生亲自动手、动脑画图的方式,通过教师的引导,学生的交流、归纳等环节较成功地完成了教学目标,收到了较好的效果。但还存在着不尽人意的地方,由于课的内容容量较大,对于有些知识点,如 “ 随着 x 值的增大, y 的值分别如何化? ” ,本应给学生更多的时间练习、讨论,以帮助理解消化该知识,但由于时间紧,学生的这一活动开展的不充分。课堂气氛不够活跃,个别学生的主动性、积极性没有充分调动起来。这是今后教学中应该注意的问题。

常用函数图像7

  教学目标

  (一)知道函数图象的意义;

  (二)能画出简单函数的图象,会列表、描点、连线;

  (三)能从图像上由自变量的值求出对应的函数的近似值。

  教学重点和难点

  重点:认识函数图象的意义,会对简单的函数列表、描点、连线画出函数图象。

  难点:对已知图象能读图、识图,从图象解释函数变化关系。

  教学过程设计

  (一)复习

  1。什么叫函数?

  2。什么叫平面直角坐标系?

  3。在坐标平面内,什么叫点的横坐标?什么叫点的纵坐标?

  4。如果点A的横坐标为3,纵坐标为5,请用记号表示点A(答:A(3,5))。

  5。请在坐标平面内画出A点。

  6。如果已知一个点的坐标,可在坐标平面内画出几个点?反过来,如果坐标平面内的一个点确定,这个点的坐标有几个?这样的点和坐标的对应关系,叫做什么对应?(答:叫做坐标平面内的点与有序数对一一对应)

  (二)新课

  我们在前几节课已经知道,函数关系可以用解析式表示。像y=2x+1就表示以x为自变量时,y是x的函数。

  这个函数关系中,y与x的对应关系,我们还可以用在坐标平面内画出图象的方法表示。

  具体做法是

  第一步:列表。(写出自变量x与函数值的对应表)先确定x的若干个值,然后填入相应的y值。

  (这种用表格表示函数关系的方法叫做列表法)

  第二步:描点,对于表中的每一组对应值,以x值作为点的横坐标,以对应的y值作为点的纵坐标,便可画出一个点。也就是由表中给出的有序实数时,在直角坐标中描出相应的点。

  第三步:连线,按照横坐标由小到大的顺序把相邻两点用线段连结起来,得到的图形就是函数式y=2x+1图象。

  例1 在同一直角坐标系中画出下列函数式的'图像:

  (1) y=-3x; (2)y=-3x+2; (3) y=-3x-3。

  分析:按照列表、描点、连线三步操作。

  解:

  它们的图象分别是图13-25中的(1),(2),(3)。

  例2 某化我厂1月到12日生产某种产品的统计资料如下:

  (1) 在直角坐标系中以月份数作为点的横坐标,以该月的产值作为点的纵坐标画出对应的点。把12个点画在同一直角坐标系中。

  (2) 按照月份由小到大的顺序,把每两个点用线段连接起来。

  (3) 解读图像:从图说出几月到几月产量是上升的、下降的或不升不降的。

  (4) 如果从3月到6月的产量是持逐平稳增长的,请在图上查询4月15日的产量大约是多少吨?

  解:(1),(2)见图13-26。

  (3) 产量上升:1月到2月;3月,4月,5月,6月逐月上升;10月,11月,12月逐月上升。产量下降:8月到9月,9月到10月。产量不升不降:2月到3月;6月到7月,7月到8月。

  (4)过x轴上的4。5处作y轴的平行线,与图象交于点A,则点A的纵坐标约4。5,所以4月15日的产量约为4。5吨。

  (三)课堂练习

  已知函数式y=-2x。用列表(x取-2,-1,0,1,2),描点,连线的程序,画出它的图象。

  (四)小结

  到现在,我们已经学过了表示函数关系的方法有三种:

  1。解析式法——用数学式子表示函数关系。

  2。列表法——通过列表给出函数y与自变量x的对应关系。

  3。图象法——把自变量x作为点的横坐标,对应的函数值y作为点的纵坐标,在直角坐标系描出对应的点。所有这些点的集合,叫做这个。用图象来表示函数y与自变量x对应关系。

  这三种表示函数的方法各有优缺点。

  1。用解析法表示函数关系

  优点:简间明了。能从解析式清楚看到两个变量之间的全部相依关系,并且适合于进行理论分析和推导计算。

  缺点:在求对应值时,有进要做较复杂的计算。

  2。用列表法表示函数关系

  优点:对于表中自变量的每一个值,可以不通过计算,直接把函数值找到,查询时很方便。

  缺点:表中不能把所有的自变量与函数对应值全部列出,而且从表中看不出变量间的对应规律。

  3。用图象法表示函数关系

  优点:形象直观。可以形象地反映出函数关系变化的趋势和某些性质,把抽象的函数概念形象化。

  缺点:从自变量的值常常难以找到对应的函数的准确值。

  函数的三种基本表示方法,各有各的优点和缺点。因此,要根据不同问题与需要,灵活地采用不同的方法。在数学或其他科学研究与应用上,有时把这三种方法结合起来使用,即由已知的函数解析式,列出自变量与对应的函数值的表格,再画出它的图像。

  (五)作业

  1。在图13-27中,不能表示函数关系的图形有( )。

  (A) (a),(b),(c) (B)(b),(c),(d) (C) (b),(c)(e) (D)(b),(d),(e)

  2。函数 的图象是图13-28中的( )。

  3。矩形的周长是12cm,设矩形的宽为x(cm),面积为y(cm2)。

  (1) 以x为自变量,y为x的函数,写出函数关系式,并在关系式后面注明x的取值范围;

  (2) 列表、描点、连线画出此函数的图象。

  4。(1) 画出函数y=- x+2的图象(在-4与4之间,每隔1取一个x值,列表;并在直角坐标系中描点画图);

  (2) 判断下列各有序实数地是不是函数。y=- x+2的自变量x与函数y的一对对应值,如果是,检验一下具有相庆坐标的点是否在你所画的函数图像上:

  5。画出下列函数的图象:

  (1) y=4x-1; (2)y=4x+1。

  6。图13-29是北京春季某一天的气温随时间变化的图象。根据图象回答,在这一天:

  (1)8时,12时,20时的气温各是多少;

  (2)最高气温与最低气温各是多少;

  (3)什么时间气温高,什么时间气温最低。

  7。画出函数y=x2的图象(先填下表,再描点,然后用平滑曲线顺次连结各点);

  8。画出函数 的图象(先填下表,再描点,然后用平滑曲线顺序连结各点):

  作业的答案或提示

  1。选(C)。因为对应于x的一个值的y值不是唯一的。

  2。选(D)。当x<0时,|x|=-x,所以 ,当x>0时,|x|=x,所以

  3。

  (1) y=x(6-x)其中0<x<6,(图13-30)。

  (2)

  4。

  5。

  见图13-32。

  6。(1) 8时约5℃,12时约11℃,20时约10℃。

  (2) 最高气温为12℃,最低气温为2℃。

  (2) (2) 14时气温最高,4时气温最低。

  7。

  课堂教学设计说明

  1。在建立平面直角坐标系后,点的坐标(有序实数对)与坐标平面内的点一一对应;不同的坐标与不同的点一一对应;函数关系与动点轨迹一一对应。把抽象的数量关系与形象直观的图形联系起来,通过解读图象,了解抽象的数量关系,这种“数形结合”,是数学中的一种重要的思想方法。

  2。本课的目标是使学生会画函图象,并会解读图象,即会从图象了解到抽象的数量关系。为此,先在复习旧课时,着重提问会标平面上的点与有序实数对一一对应。接着在新课开始时介绍了画函数图象的三个步骤。

  3。教学设计中的例3,即训练学生从已有数据画图象,又训练学生逆向思维、解读图象、在图象上估计某日产量的能力。对函数图象功能有一个完整的认识。

  4。在小结中,介绍了函数关系的三种不示方法,并说明它们各自的优缺点。有利于对函数概念的透彻理解。

  5。作业中的第1~3题,对训练函数概念及函数图象很有帮助。

  第1题,目的要说明,对于x的一个值,必须是唯一的值与之对应。而(b),(c),(e)都是对于x一个值,y有不止一个值与之对应,所以y不是x的函数。本题还训练解读形的能力。

  第2题,训练学生分类讨论的数学思想,在去掉绝对值符号对,必须分x≥0与x<0讨论。

  第3题,训练学生根据已知条件建立函数解析式,并列表、描点、连线画出图象的能力。

  这些都是学习函数问题时应具备的基本功。

常用函数图像8

  一堂好的数学课常常是由好的数学问题启发并激励学生学习的充实过程。因此,我把教学设计的主体“解决问题,总结性质”设计成由若干个有一定逻辑顺序的问题,并由这些问题组织师生的教学活动。那么,怎样设计好的问题呢?我认为,在完成教学任务并实现教学目的的“作用点”上,在知识形成过程的“关键点”上,在运用数学思想方法产生解决问题策略的“关节点”上,在数学知识之间联系的“联结点”上,在数学问题变式的“发散点”上,在学生思维的“最近发展区”内,提出恰当的、对学生数学思维有适度启发的问题就是好问题,这也是问题设计的基本原则。例如:本课在一开始就创设问题情境,引导学生思考,引入课题。给出几个一次函数的图像,让同学们合作学习进行探索一次函数的性质。又如,画一次函数图象只需描出图象上的“任意两点”的结论后,提问学生“你取的是哪两点”,找了四个同学回答出各自的两个点,既让学生知道如何去找图象上的两个点,也使学生理解了刚刚得出的结论。

  适当地提出好问题,不仅可以引导学生的思考和探索活动,使他们经历观察实验、猜测发现、推理论证、交流反思等理性思维的基本过程,而且还给了学生提问的示范,使他们领悟发现和提出问题的艺术,引导他们更加主动、有兴趣地学,富有探索地学,逐步培养学生的问题意识,孕育创新精神。而“兴趣是最好的老师”,有良好的兴趣就有良好的学习动机,但不是每个学生都具有良好的学习数学的兴趣。“好奇”是学生的天性,他们对新颖的事物、知道而没有见过的事物都感兴趣,要激发学生的学习数学的积极性,就必须满足他们这些需求。

  探索一次函数的性质时,给出几个关联问题,

  问题1:既然一次函数 y=kx+b(k不为零)的'图象是一条直线,()那么作图时,至少要取几个点就可以了?取哪一些点比较简单,有代表性?

  问题2:在前面的直角坐标系中作一次函数 y=2x-1,y=2x,y=-1/2x的图象,并观察四条直线的位置关系。

  问题3:正比例函数 y=kx (k不为零)是一次函数吗?作图时需要几个点?每一个正比例函数一定能通过哪一个点?

  设置的问题由浅入深,使得学生能进行理性的思考,并提升他们思维的深度。

  学生是学习的主人。新课标强调,让学生在自主探索与合作交流中学会学习,提高数学素养。本节课充分体现了这一理念,学生有足够的自主探索时间,有与同学合作互动的空间,有与老师交流表达的机会。学生不是从老师那里获取知识,而是在数学活动的过程中发现规律、体验成功。

  教师是课堂的主导。教师是学生数学学习的组织者、引导者和合作者。然而,组织、引导本身就强调了教师必须是一个特殊的“合作者”,而不是撒手不管的“非主导者”。教师的主导作用不是体现在“主宰”课堂,而应体现在为学生提供鲜活的学习素材,体现在对学习团体的严密组织,体现在对交流活动的精心策划,体现在处理反馈信息的及时有效。这不仅需要教师透彻领会教材实质,更需要教师准确把握学生个性。试想本节课,如果教师不是真正了解学生,就不能组成协调高效的学习小组,也不能在有限的时间内完成教学任务。

常用函数图像9

  一、教学内容分析

  教材地位:幂函数是中学教材中的一个基本内容,即是对正比例函数、反比例函数、二次函数的系统总结,也是对这些函数的概况和一般化、

  教学重点:幂函数的图像与性质、

  教学难点:以幂函数为背景的图像变换、

  二、教学目标设计

  能描绘常见幂函数的图像,掌握幂函数的基本性质;理解幂函数图像的演进及单调性质;理解幂函数图形特征与代数特征的对称联系,在函数性质的应用中体会它的价值。能以幂函数为背景进行基本的函数图像的.平移和对称变换、

  三、教学流程设计

  设置情境→探索研究→总结提炼

  →尝试应用→练习回馈→设置评价

  五、教学过程设计

  1、情境设置

  指导学生描画一些典型的幂函数的图像,回忆并归纳幂函数的性质、

  2、探索研究

  问题:如图所示的分别是幂函数①,②,③,④,⑤,⑥,⑦在坐标系中第一象限内的图像,请尽可能精确地将指数的范围分别确定出来

  3、总结提炼

  揭示幂函数图像特征与底数的依赖关系、师生共同整理出规律性结论、

  4、尝试应用

  ①(1)研究函数的图像之间的关系;

  (2)在同一坐标中作上述函数的图像;

  (3)由所作函数的图像判断最后一个函数的奇偶性、单调性、

  ②已知函数

  (1)试求该函数的零点,并作出图像;

  (2)是否存在自然数,使=1000,若存在,求出;若不存在,请说明理由、

  ③作函数的大致图像、

  5、练习回馈

  课本第83页练习4、1(2)

  六、教学评价设计

  习题4、1——

  B组(根据学生具体情况选用)

常用函数图像10

  教材分析

  三角函数是基本初等函数之一,是描述周期现象的重要数学模型,是函数大家庭的一员。除了基本初等函数的共性外,三角函数也有其个性的特征,如图像、周期性、单调性等,所以本节内容有着承上启下的作用;另外,学习完三角函数的定义之后,必然要研究其性质,而研究函数的性质最常用、最形象直观的方法就是作出其图像,再通过图像研究其性质。由于正弦线、余弦线已经从“形”的角度描述了三角函数,因此利用单位圆中的三角函数线画正弦函数图象是一个自然的想法.当然,我们还可以通过三角函数的定义、三角函数值之间的内在联系性等来作图,从画出的图形中观察得出五个关键点,得到“五点法”画正弦函数、余弦函数的简图. 教学目标

  1.通过简谐振动实验演示,让学生对函数图像有一些直观的感知,形成正弦曲线的初步认识,进而探索正弦曲线准确的作法,养成善于发现、善于探究的良好习惯.学会遇到新问题时善于调动所学过的知识,较好地运用新旧知识之间的联系,提高分析问题、解决问题的能力.

  2.通过本节学习,理解正弦函数、余弦函数图象的画法.借助图象变换,了解函数之间的内在联系.通过三角函数图象的三种画法:描点法、几何法、五点法,体会用“五点法”作图给我们学习带来的好处,并会熟练地画出一些较简单的函数图象.

  3.通过本节的学习,让学生体会数学中的图形美,体验善于动手操作、合作探究的学习方法带来的成功愉悦.渗透由抽象到具体的思想,加深数形结合思想的认识,理解动与静的辩证关系,树立科学的辩证唯物主义观. 重点难点

  教学重点:正弦函数、余弦函数的图象.

  教学难点:将单位圆中的正弦线通过平移转化为正弦函数图象上的点;正弦函数与余弦函数图象间的关系.

  教学用具:多媒体教学、几何画板软件、ppt控件 教学过程 导入新课

  1.(复习导入)首先复习相关准备知识:三角函数、三角函数线。遇到一个新的函数,非常自然的是画出它的图象,观察图象的形状,看看有什么特殊点,并借助图象研究它的性质,如:值域、单调性、奇偶性、最大值与最小值等.我们也很自然的想知道y=sinx与y=cosx的图象是怎样的呢?回忆我们是如何画出它们图象的(列表描点法:列表、描点、连线)?

  2.(物理实验导入)视频观看“简谐运动”实验.得到一条曲线,它就是简谐运动的图象.物理中把简谐运动的图象叫做“正弦曲线”或“余弦曲线”.有了上述实验,你对正弦函数、余弦函数的图象是否有了一个直观的印象?画函数的图象,最基本的方法是我们以前熟知的列表描点法,但不够精确.下面我们利用正弦线画出比较精确的正弦函数图象. 推进新课

  新知探究 提出问题

  问题①:作正弦函数图象的各点的纵坐标都是查三角函数表得到的数值,由于对一般角的三角函数值都是近似值,不易描出对应点的精确位置.我们如何得到任意角的`三角函数值并用线段长(或用有向线段数值)表示x角的三角函数值?怎样得到函数图象上点的两个坐标的准确数据呢?简单地说,就是如何得到y=sinx,x∈[0,2π]的精确图象呢?

  问题②:如何得到y=sinx,x∈R时的图象?

  对问题①,第一步,可以想象把单位圆圆周剪开并12等分,再把x轴上从0到2π这一段分成12等份.由于单位圆周长是2π,这样就解决了横坐标问题.过⊙O1上的各分点作x轴的垂线,就可以得到对应于0、2π等角的正弦线,这样就解决了纵坐标问题(相6432当于“列表”).第二步,把角x的正弦线向右平移,使它的起点与x轴上的点x重合,这就得到了函数对(x,y)(相当于“描点”).第三步,再把这些正弦线的终点用平滑曲线连接起来,我们就得到函数y=sinx在[0,2π]上的一段光滑曲线(相当于“连线”).如图1所示(这一过程用课件演示,让学生仔细观察怎样平移和连线过程.然后让学生动手作图,形成对正弦函数图象的感知).这是本节的难点,教师要和学生共同探讨

  对问题②,因为终边相同的角有相同的三角函数值,所以函数y=sinx在x∈[2kπ,2(k+1)π],k∈Z且k≠0上的图象与函数y=sinx在x∈[0,2π]上的图象的形状完全一致,只是位置不同.于是我们只要将函数y=sinx,x∈[0,2π]的图象向左、右平行移动(每次2π个单位长度),就可以得到正弦函数y=sinx,x∈R的图象.(这一过程用课件处理,让同学们仔细观察整个图的形成过程,感知周期性)

  操作结果、总结提炼:①利用正弦线,通过等分单位圆及平移即可得到y=sinx,x∈[0,2π]的图象. ②左、右平移,每次2π个长度单位即可. 提出问题

  如何画出余弦函数y=cosx,x∈R的图象?你能从正弦函数与余弦函数的关系出发,利用正弦函数图象得到余弦函数图象吗?

  意图:如果再用余弦线作余弦函数的图象那太麻烦了,根据已学的知识,教师引导学生观察诱导公式,思考探究两个函数之间的关系,通过怎样的坐标变换可得到余弦函数图象?让学生从函数解析式之间的关系思考,进而学习通过图象变换画余弦函数图象的方法.让学生动手做一做,体会正弦函数图象与余弦函数图象的异同,感知两个函数的整体形状,为下一步学习正弦函数、余弦函数的性质打下基础. 讨论结果:

  把正弦函数y=sinx,x∈R的图象向左平移个单位长度即可得到余弦函数图象

  正弦函数y=sinx,x∈R的图象和余弦函数y=cosx,x∈R的图象分别叫做正弦曲线和余弦曲线点.

  提出问题 问题①:以上方法作图,虽然精确,但不太实用,自然我们想寻求快捷地画出正弦函数图象的方法.你认为哪些点是关键性的点? 问题②:你能确定余弦函数图象的关键点,并作出它在[0,2π]上的图象吗? 活动:对问题①,教师可引导学生从图象的整体入手观察正弦函数的图象,发现在[0,2π]上有五个点起关键作用,只要描出这五个点后,函数y=sinx在[0,2π]上的图象的形状就基本上确定了.这五点如下: (0,0),(3,1),(π,0),(,-1),(2π,0).

  因此,在精确度要求不太高时,我们常常先找出这五个关键点,然后用光滑的曲线将它们连接起来,就可快速得到函数的简图.这种近似的“五点(画图)法”是非常实用的,要求熟练掌握.

  对问题②,引导学生通过类比,很容易确定在[0,2π]上起关键作用的五个点,并指导学生通过描这五个点作出在[0,2π]上的图象. 讨论结果:①略. ②关键点也有五个,它们是:(0,1),(3,0),(π,-1),(,0),(2π,1).

  学生练习巩固:1。用五点法作出函数y=sinx在[0,2π]上的图象;2. 用五点法作出函数y=cosx

  在[0,2π]上的图象 应用示例

  例1 画出下列函数的简图 (1)y=1+sinx,x∈[0,2π];(2)y=-cosx,x∈[0,2π]描点并将它们用光滑的曲线连接起来

  课堂小结

  以提问的方式,先由学生反思学习内容并回答,教师再作补充完善.

  1.怎样利用“周而复始”的特点,把区间[0,2π]上的图象扩展到整个定义域的?

  2.如何利用图象变换从正弦曲线得到余弦曲线?

  这节课学习了正弦函数、余弦函数图象的画法.除了它们共同的代数描点法、几何描点法之外,余弦函数图象还可由平移交换法得到.“五点法”作图是比较方便、实用的方法,应熟练掌握.数形结合思想、运动变化观点都是学习本课内容的重要思想方法.

  3.课后请同学们利用三角函数线(把单位圆8等分)来作出正弦函数图象?(思考为什么要进行8等分)

  教学反思:

  这节课从整体上看,比较圆满完成了既定的教学目标:正弦函数、余弦函数的图像,以及掌握五点法,利用五点法作出函数的图像,注意函数之间的内在联系。学生掌握了三角函数的定义之后,自然而然就会去研究函数的性质,而研究函数的性质一般从函数的图像入手,本节课学生的动手操作要求较高,需要学生在练习本上画图;这节课从教学过程看,逻辑行强,过渡比较自然,幻灯片制作精美,特别是几何画板的控件,让学生能够直观看到图像的变化趋势,还有电子白板的灵活运用,可以使用新建屏幕页,让学生看到我们老师如何操作,给学生示范。

  当然,在教学中也存在一些问题:前面复习回顾的内容用时过多,导致后面的时间有些紧,例题可以讲一个详细的,后面让学生完成;正弦函数的图像分析透彻之后,对于余弦函数可以略讲。

常用函数图像11

  【知识与技能】

  1.会用描点法画函数y=ax2(a>0)的图象,并根据图象认识、理解和掌握其性质.

  2.体会数形结合的转化,能用y=ax2(a>0)的图象和性质解决简单的实际问题.

  【过程与方法

  经历探索二次函数y=ax2(a>0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.

  【情感态度】

  通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a>0)图象和性质的真正理解,从而产生对数学的兴趣,调动学生的积极性.

  【教学重点】

  1.会画y=ax2(a>0)的图象.

  2.理解,掌握图象的性质.

  【教学难点】

  二次函数图象及性质探究过程和方法的体会教学过程.

  一、情境导入,初步认识

  问题1 请同学们回忆一下一次函数的图象、反比例函数的图象的`特征是什么?二次函数图象是什么形状呢?

  问题2 如何用描点法画一个函数图象呢?

  【教学说明】

  ①略;

  ②列表、描点、连线.

  二、思考探究,获取新知

  探究1 画二次函数y=ax2(a>0)的图象.

  画二次函数y=ax2的图象.

  【教学说明】

  ①要求同学们人人动手,按“列表、描点、连线”的步骤画图y=x2的图象,同学们画好后相互交流、展示,表扬画得比较规范的同学.

  ②从列表和描点中,体会图象关于y轴对称的特征.

  ③强调画抛物线的三个误区.

  误区一:用直线连结,而非光滑的曲线连结,不符合函数的变化规律和发展趋势.

  误区二:并非对称点,存在漏点现象,导致抛物线变形.

  误区三:忽视自变量的取值范围,抛物线要求用平滑曲线连点的同时,还需要向两旁无限延伸,而并非到某些点停止.

常用函数图像12

  这节课主要是通过学生自主探究、观察、类比学习,探索得出反比例函数的图象和性质,使学生经历了一次自主获取新知的成功体验,充分体现了新课程的教学理念和自主探究的学习方法。自主探究学习是近年来兴起的一种全新的教学方式,它主要着力于学生的学,鼓励学生以类似科学研究的模式,进行主动探索。它把目标指向学生的创新能力、问题意识,以及关注现实、关注人类发展的意识和责任感的培养,而不仅仅是知识的传播和掌握.其有利于改变学生学习数学的方式,它强调“做中学”,力图通过学生“做”的主动探究过程来培养他们的创新精神、动手能力和解决问题的能力。而立足于课堂,深入钻研教材,是数学课堂教学中实施探究性学习的基础。

  带着这样的思路,我设计了《反比例函数的图象与性质》教案。对教学中体会较深的内容体会如下:

  首先,为达到自主探究、培养学生的动手能力、观察能力和问题意识的教学目的,教师要努力为学生创设必要的情境。人们的学习往往从问题开始,因为这样的学习具有方向性与原动力。一节高质量的数学课常常是由好的数学问题启发并激励学生学习的充实过程。因此,我把教学设计的主体“教学情境设计”设计成由若干个有一定逻辑顺序的问题。即通过复习反比例函数的定义——各自举一个反比例函数,同桌互相检查——画出它的图象。使他们经历观察实验、猜测发现、交流反思等理性思维的基本过程,使他们领悟发现和提出问题的艺术,引导他们更加主动、有兴趣地学,富有探索地学,逐步培养学生的问题意识,孕育创新精神。

  其次,如何把复杂抽象的数学问题变为具体化、形象化的问题,让学生在学习时充满激情,过程中充满乐趣,在活跃的课堂气氛中,渐入佳境。在教学的过程中,我把信息技术和数学教学的学科特点结合起来,利用多媒体的动画演示让学生通过观察、探究发现反比例函数图象的性质,从而把复杂抽象的数学问题变为具体化、形象化的问题,让学生成为课堂的真正主角,教师从课堂的主宰者变为引导者。让学生来发现、归纳和总结反比例函数图象的性质规律。这样有利于提高学生的学习积极性。我们知道“兴趣是最好的老师”,有良好的兴趣就有良好的学习动机,但不是每个学生都具有良好的学习数学的兴趣。“好奇”是学生的天性,他们对新颖的事物、知道而没有见过的事物都感兴趣,要激发学生的学习数学的积极性,就必须满足他们这些需求。利用多媒体信息技术图文并茂、声像并举、能动会变、形象直观的特点为学生创设各种情境,可激起学生的各种感官的参与,调动学生强烈的学习欲望,激发动机和兴趣。这充分说明了多媒体信息技术在教学中的作用。

  再次,关注教学过程,注意抓住一切有利的教育机会,对学生的疑问和解决问题能力进行引导和培养。比如在做能力测试题第

  (1)已知反比例函数y=(3k-6)x,如果在每个象限内y随着x的增大而减小,那么k的取值范围是______时,学生回答的答案是(k>2),是正确的,但进一步提问为什么时,答案却是因为当k=2时,3k-6=0不符合题意,此时我就进一步提出k<2行吗?解决此问题的关键是什么?从而培养了学生解决问题能力

  不足和遗憾之处:

  (1)反比例函数的图象可以进一步地利用有理数的`乘法及各象限坐标的特点来验证说明。

  (2)因为时间关系,最后没有进行总结。

  反思二:

  刚刚讲完《反比例函数的图像和性质》这节课,感受很深,本节课的内容主要有两点:一是画反比例函数的图像,二是由图像得出反比例函数的性质。后者只需观察即可直观得出,显然画反比例函数的图像是本节课的重点,从教学目标的角度分析,本节课更应侧重于画图像技能的培养。

  准确、美观的画出反比例函数的图像,也应是本节课的难点,原因之一画函数的图像第一步是列表,列表时取哪些点?不取哪些点?取多少?密集程度如何?对刚接触反比例函数的学生来说,都是必须解决好的问题,否则划出的图像必然是五花八门,错误百出。原因之二,学生画函数图像的经验源于正比例函数和一次函数,由于二者的图像均为直线,所以有可能对画反比例函数图像造成一定的干扰。

  本节课在难点的处理上,我首先在列表时,直接给定了x的取值,这就把列表时应有的困惑化为无形,学生只需由y=4/x计算y值而已。其次,学生在坐标系中描完点后,我运用多媒体及时矫正,把问题分散,同时又为下面的连线清除了计算上的障碍。在此一句具有启发性的问话:这些点是否在一条直线上?怎样连接这些点?把学生分散而不着边际的思维集中在正确的轨道上来,图像的正确率自然大大增加。紧接着跟上矫正:同学们所画图像与老师图像不太一致,请对照老师正确的图像小组讨论,由于前面层层铺垫,加之有正确的图像作比较,学生很容易发现自己画图中的错误,最后概括总结注意点水到渠成。但仔细想想在学生对答如流的表面下,却掩盖了本应解决好的问题,这些问题暂时不暴露,就永远不会暴露吗?这对画图像技能的培养必然带来负面影响,在这里就出现了一个很现实的问题:教学中作为老师的我们,是掩盖问题还是暴露问题,答案是显然的。但我对这节课在以下方面还是很满意的:如列表时直接给定x的取值,连线时启发性的问话,使学生思维定向,避免了错误的不断尝试,使学生尽快步入正确学习的轨道,节省了学习时间等等……在教学中给我的感觉明快顺畅,但是这与教学中质疑解惑并不矛盾,有效教学的标志不仅是顺畅,更重要的是对问题的深入思考,最终达到技能的形成和情感目标的实现。

  回忆以往我在处理这个问题时的方法:列表、描点、连线由学生独立完成,然后老师提出问题,画反比例函数应该注意什么?列表时注意什么?为什么有的点取得密集?有的点取得疏松?描点时注意什么?连线时注意什么?用折线段连结所描的点可以吗?等等

常用函数图像13

  初中数学三角函数和差化积公式表

  数学公式的学习需要公式定理的积累外,还需要大家在试题中的运用。

  三角函数和差化积公式

  sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

  sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

  cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

  cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

  初中数学的三角函数和差化积公式是我们在考试中经常会遇见的解题公式。

  初中数学正方形定理公式

  关于正方形定理公式的内容精讲知识,希望同学们很好的掌握下面的内容。

  正方形的特征:

  ①正方形的四边相等;

  ②正方形的四个角都是直角;

  ③正方形的两条对角线相等,且互相垂直平分,每一条对角线平分一组对角;

  正方形的判定:

  ①有一个角是直角的菱形是正方形;

  ②有一组邻边相等的矩形是正方形。

  希望上面对正方形定理公式知识的讲解学习,同学们都能很好的掌握,相信同学们会取得很好的成绩的'哦。

  初中数学平行四边形定理公式

  平行四边形的性质:

  ①平行四边形的对边相等;

  ②平行四边形的对角相等;

  ③平行四边形的对角线互相平分;

  平行四边形的判定:

  ①两组对角分别相等的四边形是平行四边形;

  ②两组对边分别相等的四边形是平行四边形;

  ③对角线互相平分的四边形是平行四边形;

  ④一组对边平行且相等的四边形是平行四边形。

  上面对数学中平行四边形定理公式知识的讲解学习,同学们都能很好的掌握了吧,相信同学们会从中学习的更好的哦。

  初中数学直角三角形定理公式

  直角三角形的性质:

  ①直角三角形的两个锐角互为余角;

  ②直角三角形斜边上的中线等于斜边的一半;

  ③直角三角形的两直角边的平方和等于斜边的平方(勾股定理);

  ④直角三角形中30度

  角所对的直角边等于斜边的一半;

  直角三角形的判定:

  ①有两个角互余的三角形是直角三角形;

  ②如果三角形的三边长a、b 、c有下面关系a^2+b^2=c^2,那么这个三角形是直角三角形(勾股定理的逆定理)。

  以上对数学直角三角形定理公式的内容讲解学习,同学们都能很好的掌握了吧,希望同学们都能考试成功。

  初中数学等腰三角形的性质定理公式

  等腰三角形的性质:

  ①等腰三角形的两个底角相等;

  ②等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一)

  上面对等腰三角形的性质定理公式的内容讲解学习,同学们都能很好的掌握了吧,希望同学们在考试中取得很好的成绩。

  初中数学三角形定理公式

  对于三角形定理公式的学习,我们做下面的内容讲解学习哦。

  三角形

  三角形的三边关系定理及推论:三角形的两边之和大于第三边,两边之差小于第三边;

  三角形的内角和定理:三角形的三个内角的和等于180度;

  三角形的外角和定理:三角形的一个外角等于和它不相邻的两个的和;

  三角形的外角和定理推理:三角形的一个外角大于任何一个和它不相邻的内角;

  三角形的三条角平分线交于一点(内心);

  三角形的三边的垂直平分线交于一点(外心);

  三角形中位线定理:三角形两边中点的连线平行于第三边,并且等于第三边的一半;

常用函数图像14

  一、教材分析(说教材)

  1。教材所处的地位和作用

  本节内容是高中数学必修4第一章第七节的内容。它前承正弦余弦函数的图像和性质,后启正切函数的诱导公式问题。

  2。教学目标

  知识与技能:(1)能借助单位圆理解任意角的正切函数的定义.(2)能画出y=tanx的图像.(3)掌握正切线的基本性质.(4)让学生亲身经历数学研究的过程,学会应用类比推理与数形结合的思想处理问题。

  过程与方法:类比正、余弦函数的概念,引入正切函数的概念;让学生通过类比,联系正弦函数图像的作法,通过单位圆中的有向线段得到正切函数的图像;能学以致用,结合图像分析得到正切函数的性质.

  情感态度与价值观:使同学们对正切函数的概念有一定的体会;会用联系的观点看问题,建立数形结合的思想,激发学生的学习积极性;培养学生分析问题、解决问题的能力;培养学生形成实事求是的科学态度和锲而不舍的钻研精神。通过学生自主探究小组合作交流的过程体验探索的乐趣,增强团队意识,增强学习数学的兴趣。

  3。重点、难点以及确定的依据和处理的方法

  重点:正切函数的图像和性质是本节课的重点,其理论依据是任意函数的图像和性质都是紧密相连的,都是研究的重点对象。对于正切函数来说由于定义域的不连续性导致了图像的间断性。所以要正确探索出图像和性质。处理方法是类比正余弦函数的图像和性质的研究。

  难点:画正切函数的图像。依据是正切线能准确画正切函数的图像,但不实用,在应用时一定要学会画简图。在难点的处理上我先让学生通过自己画出特殊角的正切线并平移到直角坐标系中,让学生体会图像与X轴的交点,再利用定义域找到图像间断处的渐近线(用虚线),然后找到一个周期内的几个特殊点,利用周期性画出其它区间的`图像。

  二、学情分析(说学法)

  学生已经有了研究正弦余弦函数图像和性质的经验,这种经验完全可以迁移到对正切函数图像和性质的研究中,在心理上也具备了一定的分辨能力和语言表达能力。因此采用自主合作探究式学习方法,让学生自己通过自学和与他人合作的方式来完成学习任务。教师在重难点的地方给予提示和帮助即可。

  三、教学策略(说教法)

  (一)教学手段

  一般对于三角函数性质的研究总是先作图像,再通过图像来获得对函数性质的直观认识,然后再从代数的角度对性质进行严格的表述。所以对正切函数仍然采用了这样的方法。先根据已有的知识(类比正弦函数和余弦函数的图像与性质)来研究正切函数的图像,然后再根据图像来研究性质。这样处理主要是为了给学生提供研究数学的直观视角,在图像的引导下可以更加有效地研究性质,加入感性思维的成分,并使数形结合的思想体现的更加全面。

  (二)教学方法及其理论依据

  如何突出重点,突破难点,从而实现教学目标。我在教学中利用课前布置预习任务,课中学生讨论回答问题的形式进行教学,从而为重点和难点知识留下充分的学习时间。教学中坚持“以学生为主体,以教师为主导”的原则,即“以学生活动为主,教师讲述为辅,学生活动在前,教师点拨评价在后”的原则,采用学生参与程度高的自主探究教学法。在学生课前看书、独立完成思考、小组合作探究讨论的基础上,在教师课前了解学生学情的前提下,让一部分学生回答提出的问题,其他学生进行质疑讨论,教师对学生的质疑点进行解释,最后老师再进行点评和补充。

  四、教学流程

  (一)复习回顾:正弦函数和余弦函数;

  利用单位圆中的正弦线作出正弦函数的图像。

  (二)自主探究:

  1。正切函数的定义

  请学生课前自主学习课本35页7。1的内容,明确以下几个问题:

  (1)正切函数的定义及定义域。

  (2)正切函数值在每个象限的符号。

  (3)什么是正切线?怎样作?

  (4)正切函数是周期函数吗?如果是,周期与最小正周期分别是多少?

  分组讨论后解答这几个问题。

  通过学生自学探究,由学生自己把正切函数的定义以及相关问题,讨论并回答出来,教师对学生的一些知识疑惑点进行帮助提示。

  2。正切函数的图像

  让学生类比正弦函数图像的画法自己尝试画出正切函数的图像,对学生画出的正切函数图像进行点评。以鼓励为主然后让学生想一想怎样可以画出整个定义域内的正切函数图像。

  3。正切函数的性质

  通过多媒体展示,用平移正切线的方法,准确的画出正切函数的图像,并让学生看着图像再直观的理解性质。

  (三)例题展示

  例1求函数《正切函数的定义、图像与性质》说课稿的定义域.

  设计意图:让学生会进行整体代换问题,加强对正切函数定义域的理解。

  例2利用正切函数图像求满足条件的角的范围。

  设计意图:强调学生要学会利用图像来做题,注意区间的开闭问题。

  (四)课堂小结:学生自己先总结然后老师补充。

  (五)思考问题:

  1。正切函数是整个定义域上的增函数吗?为什么?

  2。正切函数会不会在某一区间内是减函数?为什么?

  五、作业布置

  完成相应的课后作业。

  六、设计说明

  1。板书说明:侧黑板留给学生展示,前黑板用来展示多媒体。

  2。时间分配:(一)五分钟(二)六分钟1。十分钟2。十二分钟3。五分钟

  (三)五分钟(四)一分钟(五)一分钟

常用函数图像15

  一、说教材:

  1.在教材中的地位和作用

  本节内容是高等教育出版社出版的中等职业教育课程改革国家规划新教材《数学(基础模块)》上册第四章第二节第一课时,属于数与代数领域的知识。在之前,学生已学习了函数的概念与性质掌握了研究函数的一般思路,并将幂指数从整数推广到了实数范围的知识,这为过度到本节的学习起着铺垫作用,本节内容是函数内容的深化,又是后续学习对数函数及等比数列的性质的基础,有非常高的实用价值例如在细胞分裂、贷款利息、考古中年份的测算都有较大的应用。也是教材中起承上启下作用的核心知识之一。因此,在指数函数是函数的重要内容之中,在高中阶段有不可替代的作用。

  二、说学情:

  2.学情分析

  心理特点:中职生的共性是一般学习数学的兴趣不高,学习比较被动,自主学习能力比较差,因此在课堂的一开始就要激发学生学习数学的动机,学习动机是直接推动学生学好数学达到学习目的的内在动力,直接影响学习效果。变“要我学”为“我要学”。

  此外职高生生理上表现为少年好动,注意力易分散抓住学生特点,积极采用形象生动,形式多样的教学方法和学生广泛的积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。

  知识障碍上:知识掌握上,学生刚刚学习了函数的定义、图象、性质,已经掌握了研究函数的一般思路,对于本节课的学习会有很大帮助。许多学生出现知识遗忘,所以应全面系统的去回顾与讲述;学生学习本节课的知识障碍,底数对函数图象的影响学生不易理解,所以教学中老师应予以简单明白,深入浅出的分析。

  三、说教学目标:

  知识与技能:理解指数函数的概念,掌握指数函数的图像及其性质,并用指数函数的性质解决一些问题。

  过程与方法: 让学生经历“特殊→一般→特殊”的认识过程,完善认知结构,领会数形结合、分类讨论、归纳推理等数学思想方法;通过运用多媒体的教学手段,引领学生主动探索指数函数性质,体会学习数学规律的方法,体验成功的乐趣。

  情感态度价值观:让学生感受数学问题探索的乐趣和成功的喜悦,体会数学的理性、严谨及数与形的和谐统一美;使学生获得研究函数的规律和方法,提高学生的学习能力养成积极主动,勇于探索,不断创新的学习习惯和品质。

  四、说教学方法:

  教法的选择与教学手段:基于本节课的特点,应着重采用多种的教学方法和手段,其理论依据是坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用学生参与程度高讨论教学法。在学生看书,讨论的基础上,在老师启发引导下,运用问题解决式教法,师生交谈法,图像法,问答式,课堂讨论法。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。

  (1)故事激趣法:通过小故事牵动学生的思维,在他们不会解决又急于的心理之间制造一种悬念,激起学生强烈的求知欲望;

  (2)多种教学方法结合:教学形式上开展分组比赛、课堂抢答等多种形式的活动,使学生在学习中有光荣感、成就感,使他们获得学习的乐趣。

  (3)任务驱动法:根据学生的心理发展规律,采用学生参与程度高讨论教学法。在老师启发引导下,运用问题解决式教法,师生交谈法,图像法,问答式,课堂讨论法。在采用问答法时,特别注重不同难度的.问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。

  五、说教学过程:

  1、导入新课(2分钟)

  创设情境 ,兴趣导入:从前有个财主,为人刻薄吝啬,常常克扣工人的工钱,因此附近村民都不愿意到他那里打工。有一天,这个财主家来了一位年轻人,要求打工一个月,报酬是:第一天的工钱只要一分钱,第二天是二分钱,第三天是四分钱……以后每天的工钱是前一天的2倍,直到30天期满。这个财主听了,心想这工钱也真便宜,就马上与这个年轻人签订了合同。可是一个月后,这个财主却破产了,因为他付不了那么多的工钱。那么这工钱到底有多少呢?

  财主应付给打工者的工钱为1073741824分≈1073万元

  (为了激发学生探究的好奇心和学习的兴趣,引起注意,让学生在不会解决又急于的心理状态下学习)

  2、探索新知(7分钟)

  问题1:某种物质的细胞分裂,由1个分裂成2个,2个分裂成4个,4个分裂成8个,……,1个这样的细胞分裂x次后,得到的细胞个数y与x的关系式是什么?

  问题2:《庄子天下篇》中写道:“一尺之棰,日取其半,万世不竭。”请你写出截取x次后,木棰剩余量y关于x的关系式?

  归纳:函数 中,指数x为自变量,底2为常数.

  概念:一般地,形如 的函数叫做指数函数,其中底 ( )为常量.指数函数的定义域为 ,值域为

  (设计意图:两个例子恰好为研究指数函数中底数大于1和底数大于0小于1的图象做好了准备。 )

  3、分组讨论(8分钟)

  4、例题讲解(12分钟)

  5、强化练习(8分钟)

  6、课堂总结(2分钟)

  7、布置作业(1分钟)

【函数图像】相关文章:

图像记忆的原理03-06

函数知识点03-01

一次函数与正比例函数导学案03-03

函数知识点(必备)03-04

正弦函数的性质说课03-03

函数知识点精华(15篇)03-04

指数函数及其性质课后反思03-11

八年级上册数学函数03-09