五年级数学方程

时间:2023-12-19 13:25:55 好文 我要投稿

五年级数学方程

五年级数学方程1

  一、说教材

五年级数学方程

  ㈠. 教学内容:小学五年级数学上册第四单元解简易方程第五课时:“解方程”(课本第58-61页,例1—例4)

  ㈡. 教材所处地位:本节是学习解方程的方法与应用,它起着承前启后的作用。

  ㈢. 教材的重点和难点:

  教学重点:掌握应用四则运算各部分之间的关系解方程。

  教学难点:让学生掌握检验方程的方法以及相关的表达术语。

  ㈣. 教学目标:。

  1、掌握应用四则运算各部分之间关系解方程的方法,并会检验。

  2、了解教材中应用等式性质解方程的方法,作为必要补充。

  3、培养学生节约能源,保护环境的意识。

  二、说教法

  根据我班学生的实际情况,我准备在教学过程中,采用导---探---练三步教学法激发学生的学习兴趣,鼓励学生积极发言和敢于质疑,引导学生自己动脑、动手、动 口,重点分析研究方程式的数量关系,让学生根据应用题的题意列出正确的数量关系式。并以多种形式巩固练习,使学生变苦学为乐学,把数学课上得有趣、有益、有效 。

  三、说学法

  通过运用四则运算各部分之间的关系解方程。

  四、说教学程序

  (一)、导入新课

  通过前两节课的学习,我们对方程已经有了初步的了解,那么请同学们回答下面几个问题:

  1、什么是方程?

  2、什么是方程的解?

  3、什么是解方程?

  4、判断下面两个式子是不是方程。

  5+x>6 x+12=16

  想一想x+12=16的解是多少?

  但不是所有的方程的解都是能靠思考得出来的,这节课我们就来学习系统的`方程解法。首先我们来复习一下四则运算各部分之间的关系。

  (二)、讲授新课

  1、创设情境,激发兴趣

  随着气温的骤然下降,冬天的脚步离我们越来越近了,生活在北方,冬季的取暖可是个大问题,这不,经营煤炭的张叔叔又在开始忙着计算了。

  预计今年的煤炭销售量大约是300吨,可是库存仅有180吨,想要满足供应,还要运进多少吨煤炭?

  思考:题中有几个数量,它们之间是什么关系?如果假设还要运进的吨数看成x,怎么用方程还表示这其中的关系?

  180+x=300

  教师演示这个方程的解法,并检验。

  想一想:还有其他的方程列法吗?

  300- x=180

  学生同桌合作完成。

  2、小组合作学习

  ①如果每辆货车能运煤10吨,要想把这120吨煤一次运完,要多少辆车?

  ②一个运煤的车队,去掉派出的10辆车,还剩16辆待用,这个车队一共有多少辆车?

  每个题都有两种表示数量关系的方法,试着列方程解答。

  3、节约能源,思想教育

  随着煤炭、汽油等能源的价格在逐渐攀升,人们把目光都集中在新型能源——太阳能的身上,据统计,一个普通的太阳能用户,相当于每个月节约用电费用20元,那么一年将会节约多少元钱呢?

  4、浏览教材

  我们所用的教材所呈现给我们的解法是依据等式的性质,让我们一起快速地浏览教材,了解另外一种解方程的方法。

  5、巩固练习

  完成58面“做一做”的两个练习题。

  (三)、课堂小结

  方程,对于我们来说,这是一种全新的解决问题的方法,这和我们以前学习的算术解法是截然不同的,所以同学们要勤加练习。

  这节课你有什么收获吗?

  五、教学反思

  1、教材所呈现的方程解法不利于学生整体上掌握所有类型方程的解法,所以在教学过程中,我还是引导学生根据四则运算各部分之间的关系组织教学,而把教材当作了必要的补充。

  2、学生的分析数量关系的能力相对较差,对于我认为非常简单的数量关系居然无法表达清楚,也不能快速地用方程来表示,说实话让我有些措手不及了,他们在课堂上的表现太出乎我的意料了。学生的这种分析问题的能力必须要尽快提高,否则在学习上遇到的困难将会是越来越大。

五年级数学方程2

  前几天,我们学习了解方程。这不。我一回家,妈妈就开始考我了。

  妈妈打开数学书,问道:“一盒墨水x元,一支铅笔1.2元。一盒墨水和一支铅笔一共4元,一盒墨水多少钱?”

  我不假思索的回答:“x+1.2=4解:x=4-1.2x=2.8”

  “很好,很好。”妈妈笑着说。

  “我还没验算呢。”于是,我又开始验算。:“把x=2.8代入原方程左边=x+1.2=2.8+1.2=4右边=4左边=右边所以,x=2.8是原方程的解。”

  “呦。我的女儿学聪明了。”妈妈笑着说。我也笑了笑。

  “我在考考你吧。”妈妈神秘的笑了笑“一盒墨水x元,三盒墨水8.4元,那么一盒墨水多少元?”“一盒墨水x元,三盒墨水8.4元,那么一盒墨水多少元?这怎么做呀。”我问妈妈。妈妈说:“你这个小笨蛋,刚夸过你,你就不行了吧。你看,是这样写的:x×3=8.4。”

  “哦,我想起来了。x×3=8.4x=8.4÷3x=2.8。还有验算:检验:把x=2.8入原方程左边=x×3=2.8×3=8.4右边=8.4左边=右边所以,x=2.8是原方程的解。”

  “100分,看你这们来劲,我再给你出一道:小明今年x岁,爸爸今年40岁,他们俩相差28岁,小明今年多少岁?”“很简单。28+x=40x=40-28x=13。”“验算一下,看算得对不对。”妈妈提示我。”“检验:把x=13代入方程左边=28+x=28+13=41咦。左边不=右边。算错了,算错了。x+28=40x=40-28x=12。“这次算对了。”妈妈对我竖起了大拇指。我再问你个难点的:今天上午8时,洪泽湖蒋坝水位达14.14m,超过警戒水位0.64m,警戒水位是多少米?用方程解答。”我抓耳挠腮,终于想出来了:“解:设警戒水位是xm警戒水位+超出部分=今日水位x+0.64=14.14x=14.14-0.64x=13.5检验:把x=13.5带入原方程左边=x+0.64=13.5+0.64=14.14左边=右边所以,x=13.5是原方程的解。”“行呀。新学的知识,没想到掌握的这么牢。我再给你出一个类似于这样的题:光明小学的一个水龙头漏水小明拿桶接了半小时,共接了1.8kg水,你知道一个滴水的水龙头每分钟?”我回答道:“解:设一个滴水的'水龙每分钟浪费xkg水每分钟滴的水×30=半小时滴的水1.8kg=1800g30x=1800x=1800÷30x=60检验:把x=60带入原方程呢左边=30x=30×60=1800右边=1800左边=右边所以x=60是原方程的解。”“我的女儿长大了。”妈妈笑着说。

  你们看,我们身边的数学多吧。

五年级数学方程3

  教学内容:

  p53--54练习十一1,2,3

  教学目标:

  1. 通过观察天平演示,使学生初步理解方程的意义;

  2. 使学生能够判断一个式子是不是方程,并能解决简单 的实际问题;

  3. 培养学生观察、描述、分类、抽象、概括、应用等能力。

  教学重点:

  判断一个式子是不是方程;初步理解方程的意义。

  课前准备:

  课件,习题板

  教学过程:

  一、复习旧知,激趣导入

  同学们,我们上节课学了用含有字母的式子表示一些数量关系,现在老师要考考你们,已知我们学校有88位同学,再加上所有老师,你能用一个式子来表示师生一共有多少人吗?(板书:88+ x)。学得真不错,今天我们要进一步来研究这些含有未知数的式子所隐藏的数学奥秘,想知道吗?请你用饱满的姿态告诉老师!

  二、出示学习目标

  1、初步理解方程的意义,会判断一个式子是否是方程

  2、按要求用方程表示出数量关系,培养学生观察、比较、分析概括的能力。

  三、学习过程。

  (一)认识天平

  (二)新课学习

  自学指导(一)。

  自学p53, 分别说一说图1,图2,,显示的信息。

  图1天平两边平衡,一个空杯重100克。

  图2在空杯里加一杯水后天平不平衡了。

  自学指导(二)

  再看图3说说图3 显示的信息。

  天平1杯子和里面的水比200克法码重

  天平2杯子和里面的'水比300克法码轻

  自学指导(三)

  请用算式表示图3数量关系。

  天平1、100+x>200

  天平2、100+x<300

  自学指导(四)

  再看图4说说图4 显示的信息,请用算式表示图4数量关系

  100+x=250

  自学指导(五)

  观察比较下列算式说说你的发现

  观察比较

  100+x>200

  100+x<300

  100+x=250

  前面两个算式两边不相等,后面一个算式两边是相等的。

  教师总结:像这样两边相等的算式我们把它叫做等式。(板书)

  课堂练习(一)

  写出几个等式

  自学指导(六)

  请学生把这里的等式分类,并说说你们是如何分类的?

  20+30=50

  20+χ=100

  50×2=100

  14-8=6

  3y=180

  78× 3=234

  100+2y=3×50

  学生汇报后让学生说出分类的理由。(有的含有未知数,有的没有未知数)

  教师总结:含有未知数的等式,称为方程。(板书)

  课堂练习(二)

  请大家写出几个方程。

  四、小结:回答什么是方程?

五年级数学方程4

  教学内容:解简易方程例4(课本第110页)练习二十七第5一9题

  教学目的:

  ⒈进一步掌握转化的思路,正确解答二步计算的方程。

  2.在掌握ax±b=c的方程解法的基础上,学会用列方程的方法解答二步计算的文字题。

  3.养成分析的习惯,训练严谨的学习态度。

  教学过程:

  一、复习

  ⒈解下列各方程,并说明解题的思路与解法根据。

  (1)3.8一x=2.9(2)5x=12.5(3)3.8一4x=2.9(4)3×7十5x=42.5

  小结:(1)一⑵是最基础的简易方程。只要根据四则互逆关系,就可以求解;⑶一⑷比前二题稍复杂,只要把ax看作一个数,那么二步的问题就转成我们最熟悉的基本方程来解答。

  2.用方程表示下列各题的数量关系,并填在横线上:

  (1)x的2倍与3.5的和是7.3:

  (2)从30里减去x的1.5倍,差是18:

  (3)一个数的6倍减去35,差是13:

  小结:这些题,如果列综合算式来解答,恐怕不是一件易事,但当我们用方程列式时,却没有那种难的感觉,在方程里,逆向问题变顺向;也就不难了。

  二、新授

  揭示新课内容;

  转化的思路,给我们的解题带来了很大的方便,这节课我们沿着这样的思考方法,继续解简易方程:

  板书课题:解简易方程

  1.教学补充例:

  解方程X一0.8+4=9

  (1)分析题意;能不能说出这个方程所表达的相等关系是什么?

  很显然方程表示X减去0.8的差加上4得9。

  想一想怎么转化,使得这个方程解得更顺些?

  让学生议一议,最后取得共识:是应当把X一0.8看作一个加数,问题就好办多了。

  ⑵议出了基本思路后,可由学生自己尝试解答。

  师巡视,确定一生板演:

  解:把X一0.8看作加数,那么

  X-0.8=9-4

  X-0.8=5

  X=5十0.8

  X=5.8

  全班一块用口头检验一下:5.8一0.8+4=5十4=9(正确)

  小结比较:前面各题,我们通常把aX看作一个数,而本题则是把(Xl一0.8)的差看作一个数,把题顺利拿下了,说明转化应根据题目的具体情况而定。

  (3)完成做一做的1一2解方程X+15一21=6和4(X一0.8)=9

  想一想:这两题方程表达的是什么意义,可以把谁看作一个什么数来转化?

  师巡视后,作简要的讲评。

  ⒉例4的教学。

  一个数的6倍减去35,差是13,求这个数。

  分析:这个问题所提供的相等关系是什么,

  根据课复习的第2个题组的训练,学生不难得到,这样可以放手让学生自己解答,只要在格式上注意强调设题即可。

  尝试作业后,师可规范板出:

  解:设这个数是X。

  6X一35=13

  把6X看作被减数

  6X=13+35

  6X=48

  X=48÷6

  X=8

  (口头检验)

  3,把例5改成“一个数的6倍减去7和5的积,差是13”该怎样解?(即“做一做”的题练)

  学生一看就明白它比例5仅是把35用7和5的积转换而已。虽然,第一步只消先算出7X5的积得35,其余就是完全的例5。

  人这个变式,也让学生充分看到多步方程的演变内幕,深化对方程变换的方法的理解。

  三、巩固练习

  第一层次:形成性练习

  完成练习二十六的5的前两行和6(l一2)

  其中第5题只要求写出转化的'第一步方案,暂不解答。集体订正后,师做简要的讲评。

  第二层次:巩固性练习

  完成练习二十六第5题和第7题。

  师讲评

  四、全课总结

  1.到本课止,我们对二步解答的方程的解法有什么进一步的认识?(可以把积看作一个数,还能把和、差同样处理)

  2.应该养成自觉检验的好习惯,它是提高正确率的重要环节;检验应当回到原题上,才是彻底的真正意义上的检验。

  作业设计

  一、解下列各方程。(第1一2题要求写出检验)

  1.5x+32=672.8×15一12x=0

  3.0.85x一1.2=7.34.4.8×2.5+8x=20

  二、列方程解答下列各题。

  1.甲数的3.5倍与乙数的差是2.8,如果乙数是0.7,甲数是多少?

  2.甲数的3.5倍与乙数的和是2.8,如果甲数是0.2,乙数是多少?

  板书设计:

  解简易方程

  例4一个数的6倍减去35,差是13,求这个数?

  教后感:

五年级数学方程5

  依据市小学教研室举办的全市青年教师调教的活动安排,我校推荐李传玉老师担任五年级数学《解方程》这一课参加此次活动。为此,我校数学组全体成员和李老师开展了一次集体备课活动。有幸参加该老师在学校担任这节课的备课、试教、评课,最后都定案的全过程。此次活动先由李老师自己备教案,到数学组全体成员集体评议,先后在学校试教三次,最后形成定案,参加市调教活动。全体教师积极参与,畅谈观点,出谋献策,活动气氛十分热烈,充分体现了我校数学教研组活动开展的有效性,李老师备课认真,能够很好的把握教材,课堂教学方法灵活多样,注重学生能力的培养,体现新课改教学理念。各科组教师抓住课堂教学的要点,提出各种不同观点及看法,大到教学流程的整体设计,小到教态、板书的细节,发挥集体的智慧,真正实现资源共享,收取了良好的的效果。以下就本人参加此次活动谈谈几点体会。

  一、本节课教学亮点:

  1、李老师备课认真 ,吃透教材,整体设计符合学生实际。

  2、课堂教学目标明确,重难点突出。

  3、重视学生的动手操作能力的培养。

  4、利用多媒体进行教学,制作课件,提高课堂教学质量,受到了很好的效果。

  5、注重学生新旧知识之间的联系,如利用学生已有的知识经验“天平的平衡”和等式不变的性质来帮助学生理解解方程的步骤。

  二、心得体会:

  本课的最大亮点就是注重学生新旧知识之间的联系,如利用学生已有的知识经验“天平的平衡”帮助学生理解解方程的步骤。但就此教材的编排及要求,本人谈谈两点个人的困惑和体会:

  《数学课程标准(实验稿)》改变了小学阶段解方程方法的教学要求,采用了等式的性质来教学解方程。现将解方程的新旧方法举例如下:

  老方法:

  100+ x= 250

  x =250-100

  x = 150

  依据运算之间的关系:一个加数等于和减另一个加数。

  新方法:

  100+x = 250

  100+x-100=250-100

  x=150

  依据等式的基本性质1:等式两边加上或减去相等的数,等式不变。

  改革的原因(摘自教学参考书):

  新教材编写者如此说明:长期以来,小学教学简易方程时,方程变形的依据总是加减运算的关系或乘除运算之间的关系,这实际上是用算术的思路求未知数。到了中学又要另起炉灶,引入等式的基本性质或方程的同解原理来教学解方程。小学的思路及其算法掌握得越牢固,对中学代数起步教学的负迁移就越明显。因此,现在根据《标准》的要求,从小学起就引入等式的基本性质,并以此为基础导出解方程的方法。这就较为彻底地避免了同一内容两种思路、两种算理解释的现象,有利于加强中小学数学教学的衔接。

  从这我们不难看出,为了和中学教学解方程的方法保持一致,是此次改革的主要原因。

  那么,小学生学这样的方法,实际操作中会出现什么样的情况?这样的改革有没有什么问题? 在我的教学过程中真的出现了问题 。

  1.无法解如a-x=b和a÷x=b此类的方程

  新教材认为,利用等式基本性质解方程后,解象x+a=b与x-a=b一类的方程,都可以归结为等式两边同时减去(加上)a;解如ax=b与x÷a=b一类的方程,都可以归结为等式两边同时除以(乘上)a。这就是所谓“相比原来方法,思路更为统一”的优越性。然而,它有一个相应的调整措施值得我们注意,那就是它把形如a-x=b和a÷x=b的方程回避掉了。原因是小学生还没有学习正负数的四则运算,利用等式的基本性质解a-x=b,方程变形的过程及算理解释比较麻烦;而a÷x=b的方程,因为其本质是分式方程,依据等式的基本性质解需要先去分母,也不适合在小学阶段学习。

  我认为为了要运用等式基本性质,却回避掉了两类方程,这似乎不妥。更重要的`是,回避这两类方程,新教材认为并不影响学生列方程解决实际问题。因为当需要列出形如a-x=b或a÷x=b的方程时,总是要求学生根据实际问题的数量关系,列成形如x+b=a或bx=a的方程。但我认为,这样的处理方法,有时更会无法避免地直接和方程思想发生矛盾。

  我们不难看出,根据现实情境列方程解决问题,X当作减数、当作除数,应当是很常见、很必要的现象。要学生学会解这些方程,是正常的教学要求,这是不应该回避的,否则,我们的教学就会显得片面和狭隘。

  2.解方程的书写过程太繁琐

  教材要求,在学生用等式基本性质解方程时,方程的变形过程应该要写出来,等到熟练以后,再逐步省略。这样的要求,在实际操作中,带来了书写上的繁琐。

  因为用等式基本性质解方程,每两步才能完成一次方程的变形。这相对于简单的方程,尚没什么,但对一些稍复杂的方程,其解的过程就显得太繁琐了。如从课本第69页例2:(2.8+X )x2=10.4,

  (2.8+X )x2÷2=10.4÷2

  2.8+X=5.2

  2.8+X-2.8=5.2-2.8

  这样的过程,等式似乎在越变越长。等式长会对小学生的学习产生影响。因为小学生注意力集中时间短,对数量过多的信息处理能力弱。在上述变形中,等式长、数字多的特点,会使得小学生因为书写过程复杂而导致分心,抄错数字、简单计算出错等等现象就会接踵而来。现在的家庭作业中不少同学总是反映说,作业写得慢,错误率也较高.

  从这两个方面来看,小学里学习等式的基本性质,并运用它来解方程,在实际操作中,也存在许多的现实问题。那么,如果说用算术思路解方程对初中学习有负迁移,需要改革,现在改成用等式基本性质解方程,同样出现问题,那我们又如何是好呢?

五年级数学方程6

  小学五年级第四单元教材的设计打破了传统的教学方法。在以前人教版教材中,学习解方程之前首先要求学生掌握加、减、乘、除法各部分之间的关系,然后利用:一个加数=和-另一个加数;被减数=减数+差等关系来求出方程中的未知数。而新教材则是借用天平游戏使学生首先感悟“等式”,知道“等式两边都加上或减去同一个数,等式仍然成立”这个规律,这样才能从真正意义上很好地揭 示方程的意义,进而学会解方程,还能使之与中学的移项解方程建立起联系。

  在教学前,卢老师为了转变自己的教学思想,更新教学观念,深入了解新教材的涵意——方程是一个等式,是一个数学模型,是抽象的,而天平是一个具体的东西,利用天平这样的事物原形来揭示等式的性质,把抽象的解方程的过程用形象化的方式表现出来,使学生更好的理解解方程的过程是一个等式的恒等变形。并能站在“学生是学习的主人”和“教师是学习的组织者、引导者与合作者”的这一角度上,为学生创设学习此课的情境,通过直观演示,充分给学生提供小组交流的机会。在教学的整个过程中,重点突出了“等式”与“等式两边都加上或减去同一个数,等式仍然成立”这个规律,不断对孩子们进行潜移默化地渗透,促使绝大部分的学生都能灵活地运用此规律来解方程。从而,使卢老师很顺利地就完成了本课的教学任务。

  通过本节课的学习,发现学生很乐意用等式的性质来解方程,但同时让听课老师们感到了一些困惑:

  1、从教材的编排上,整体难度下降,有意避开了,形如:45—X=2356÷X =8等类型的题目。把用等式解决的方法单一化了。在实际教学中,如果用等式性质来解就比较麻烦。很显然这种方法存在着目前的局限性。对于好的学生来说,可以让他们尝试接受——解答X在后面这类方程的.解答方法,就是等号两边同时加上X,再左右换位置,再两边减一个数,真有点麻烦了。而有的学生还很难掌握这样方法。但是用减法和除法各部分之间的关系解答就比较简单。

  2、 内容看似少实际教得多。难度下降后,看起来教师要教的内容变得少了,可实际上反而是多了。教师要给他们补充形如X前面是除号或减号的方程还有 X÷1.1=3这样的方程的解法。

  总之,要使孩子们爱学、乐学,教师就必须更新教学观念,充分理解教材,并要懂得为教学去创设合理情境,从新的理念、新的角度以及学生的角度去重新定位自己的教学模式。灵活处理教材中的问题,鼓励学生算法的多样化,真正体现课改精神——“人人学有价值的数学,人人都能获得必须的数学;不同的人在数学上得到不同的发展。

五年级数学方程7

  长期以来,在小学教学解简易方程,是依据加减运算的关系或乘除运算之间的关系,这实际上是用算术的思路求未知数。这种方法到了中学又要另起炉灶,重新开始。根据新课标的要求,人教版教材从小学起就引入等式的基本性质,并以此为基础导出解方程的方法,使学生摆脱算术思维方法中的局限性,有利于加强中小学的知识衔接。

  猜想是学生学习数学的一种重要方式,通过让学生综合已有的知识和经验的基础上经历等式的变化过程,不仅让学生体会到数学来源于生活,还为猜想等式的性质奠定了良好的基础。学生一旦作出了猜想,就会迫不及待的想去验证自己的猜想是否正确,从而主动地去探索新知。

  任何猜想都必须经过验证,才能确定是否正确,而验证的过程也正是学生主动学习探索数学知识的过程。学生通过自己动手用天平称一称,验证自己的猜想,以一种自主探究的.方式进一步认识了等式的性质,为后面学习解方程奠定了良好的基础。“举出生活中的例子”体现了数学来源于生活,学到的数学知识也要应用到生活当中去的理念,让学生体会到数学就在自己的身边。这样的设计不但极大地激发了学生的学习兴趣,还有利于培养学生的自主探究能力和创新能力。

  学生在合作操作中,已经对解方程有了一定的基础和认识,能够大概地说出解方程的过程和依据,而又一次让同学之间同桌说一说后再全班交流体现了本节课的学习重点“理解并利用等式的性质解方程”,“为什么要减去3”突破本节课的难点。在这个环节中教师还有针对性地指导了书写的规范性和检验的过程。师生之间的共同探讨,显示了一种平等的师生关系。

  练习中学生加深了对“方程的解”的认识,抓住了利用等式的性质这一依据去解方程。不同层次的练习照顾了学生之间学习水平的差异,3X=8.4对等式的性质进行了拓展,有利于发散学生的思维。最后交流学习的收获促进了学生形成积极的学习心理。

五年级数学方程8

  本节课的教学重点和难点是:理解“方程的解”、“解方程”两个概念;会运用天平平衡的道理解简单的方程。在教学环节的设计和安排上,尽量为突破教学重点和难点服务,因此我进行了大胆的尝试,在讲解方程的解时,给学生一个明确的目的,告诉他们:“解方程就是为了求出“方程的解”而“方程的解”是一个神奇的数,由此引起了学生的好奇心,通过练习让学生充分感知“方程的'解”的神奇之处。

  1.本课主要对解方程进行了解题练习。通过抢夺小红花等游戏的形式大大提高了学生学习数学的乐趣和兴趣!

  2、通过本课的作业检测,有少量学生还是对本课的内容练习不是很到位。需要教师在课下不断的指导。

  3、学生对于方程的书写格式掌握的很好,这一点很让人欣喜.

五年级数学方程9

  新教材对于解方程的安排是变动非常大的。以前我们是根据四则运算各部分之间的关系来解方程。一开始时,还不和学生说解方程,叫求未知数X。而现在的教材编排时是根据等式的性质来解,在小学阶段,只要让学生明白,在等式的两边同时加、减、乘和除以同一个数,等式仍然成立。从学生的学习上来看,我觉得学生是比较容易接受这种方法的',特别是比较简单的方程,学生只要明白了要把谁抵消,怎么抵消,基本上问题不大。不过,到了稍微复杂的方程出现了一些问题,因此本节课把握好教学目标是关键,

  其目标有三:

  1.结合现实情景了解方程的意义,

  2.会用方程表示简单的等量关系,

  3.感受数学的应用价值。本节课内容新,知识抽象,练习多,因此要精讲,才能完成教学目标。

  经过第一课时的教学后,我发现大部分学生对于列方程解决简单实际问题的过程,掌握地还不错,只有个别同学会在“解:设………为X…。”X的后面会忘记加单位名称;还有个别同学会在求出的结果X=…,得数的后面反而又加了单位名称。我想格式上问题经过老师的几次提醒,个别同学会有所改正的.格式上的问题是比较好纠正的,然而理解上的问题就没有那么简单了。列方程解决实际问题的难点是:根据实际问题找出等量关系式,再列出方程。但是有些理解能力较弱的学生不知道怎样来找等量关系式。所以我在设计第二课时练习课的时候,我先让学生复习,巩固找出题目中等量关系式的本领和方法,并且让他们学会举一反三,这点相当重要。还有一点需特别注意学生列出的方程,其中有一种方程是X单独在“=”的左边或者单独在“=”的右边,这种情形要避免,因为,我觉得如果这样列方程就和算术解法差不多了,方程也就失去了它的意义。

  在练习中,我把练习的重点放在找准数量关系式上。课堂上大量提问了学生应用题的数量关系式是什么,进一步进行了专项训练,在进行列方程解应用题时,重点让学困生再说说关键句是什么,是根据哪句话找出来的,(让学生找关键句)要让他们知道怎样去找,从而总结找相等的数量关系可以有这样几种策略:

  ①根据关键句思考等量关系。

  ②根据公式思考等量关系。

  ③根据总数思考等量关系。

  ④根据相差数思考等量关系。

五年级数学方程10

  一、填空题(18分)

  1、小明身高138厘米,比哥哥矮b 厘米,哥哥身高( )厘米。

  2、一个正方形的边长是a米,它的周长是 米,面积是 米2。

  3、一堆煤有 c 吨,每车运 d 吨,运了5车后,还剩( )吨。

  4、在自然数中,与数a相邻的两个数是( )和( )它们三个数的和是( )。

  5、当5x=11时,x=( ),4x=( )。

  6、2.8比( )的5倍少1.2。

  7、已知x=5 是方程2a-3x=18 的解, a的值是( ),6a =( )。

  8、小丽买了5个笔记本,每个x元,付出了20元,应找回( )元。

  9、某班有学生40名。女生有40-b名,这里的b表示( )。

  10、当a=10时,b=15时,3a=( ),b÷a=( )。

  11、解1.7x=8.5时,需要在方程的两边同时除以( ),x=( )。

  二、判断(10分)

  1、方程9x-3x=4.2的解是x=0.7。( )

  2、一批货物a吨,运走b吨,还剩a-b吨 。( )

  3、观察一个正方体,最多能看到2个面。( )

  4、含有未知数的式子叫做方程。( )

  5、X=0是方程5X=5的.解。( )

  三、选择题:(10分)

  1、下面( )说法是正确的。

  ①含有未知数的式子叫做方程。 ② a一定大于1 。③方程4÷x=0.2的解是20。

  2、爸爸今年 a岁,比妈妈大3岁,表示妈妈明年岁数的式子是( )。

  【① a+3 ② a-3 ③ a-3+1 】

  3、 ab+bc=a+cb表示( )。

  【①乘法结合率 ②乘法交换率 ③乘法分配率】

  4、下面各式不属于方程的是( )。

  【① 3a>2b ② d-3=1 ③8+2b=13 】

  5、已知△+△+○=19 △+○=12,那么:△=( ) ○=( )。

  A、9、8 B、7、6 C、7、5

  四、计算(35分)

  1、口算:(5分)

  0.34×5= 16×0.01= 1.78÷0.3= 0.27÷0.003= 0.01÷0.1=

  1.8×20= 3a+a= x-0.4x= 5d-2d= 3.6÷0.4=

  2、解方程:(12分)

  4x+0.3=4.8 1.2x-0.8x=9.6 20+x=36

  7 x-5 =59 0.7x=4.2 (10-7.5)x=1

  3、用简便方法计算(18分)

  0.125×0.32×0.25 9.6+9.6×99 2.8×7.6+1.4×2.8 +2.8

  6.3×10.1 15.58÷8.2-0.72 4.5×1.2 -3.15÷15

  五、解决问题:(用方程解下列各题)27分

  1、水果店运来15筐桔子和12筐苹果,一共重600千克。每筐桔子重20千克,每筐苹果重多少千克?(4分)

  2、图书室科技书的本数比文艺书的3倍少75本,科技书有495本。文艺书有多少本?(4分)

  3、小东买6本笔记本,付给营业员16元,找回1.6元。每本笔记本是多少元?(4分)

  4、小红和小明共有126张邮票,小红的邮票是小明的2倍,小明和小红各有多少邮票?(5分)

  5、北京和上海相距1320km。甲乙两列火车同时从北京和上海相对开出,6小时后两车相遇,甲车每小时行120千米,乙车每小时行多少千米?

  (5分)

  6、李明到书店买了4本连环画和3本故事书,一共付了29.7元,连环画每本4.8元,故事书每本多少元?( 5分 )

  7、甲乙两个村养的羊数相等, 甲村卖出50只,乙村买进30只,现在乙村的的羊数是甲村的3倍,两村原来各有多少? (提高题)

五年级数学方程11

  一、教材分析,学情解析,目标定位

  (一)教材分析:

  《方程的意义》是学生学习了四年用算术思想解题后,在掌握了用字母表示数的基础上进行教学的,同时也是今后学习运用方程解决整数、小数、分数和百分数问题的重要基础。

  《方程的意义》对于学生来说是一堂全新数学概念课,是算术思维的一种提升,是数的认识上的一个飞跃,在用字母表示未知数的基础上,使学生解决实际问题的数学工具,从列出算式解发展到列出方程解,从未知数只是所求结果到未知数参与运算,思维空间增大,这又是数学思想方法上的一次飞跃,它将使学生运用数学知识解决实际问题能力提高到一个新的水平。

  (二)教学目标:

  结合教材的特点和学生已有的知识生活经验以及新课标中概念教学的理念,本节课的教学目标为:

  1、借助生活情境理解方程的意义,能从形式上判断一个算式是不是方程,区分等式与方程,理解等式与方程的关系,使学生初步理解等式的基本性质。

  2、使学生在观察、分析、分类、抽象、概括和交流的过程中,经历从现实问题抽象成方程的过程,渗透集合思想。

  3、感受数学探索的乐趣,培养学生认真观察,善于思考的学习习惯,加强数学知识与现实世界的联系。

  (三)教学重难点

  列方程时的数量关系与列算式时的思维过程有着明显不同。用算术方法列算式时的数量关系是充分运用已知数量的运算得出未知数量,它把已知和未知完全隔裂开来,已知条件作为一方,要求的问题为另一方。而列方程的数量关系,是把已知和未知融合起来,共同参与运算。从列算式求答案的习惯思维转向列方程表示等量关系,学生的思维会有一定的困难。

  基于以上的思考,本节课的`教学重点确定为:方程意义的理解以及在具体情境中建立方程的模型,理解等式与方程的关系,使学生初步理解等式的基本性质。教学难点是经历由问题抽象成方程的过程,渗透集合思想。

  (四)学情分析:

  课前我们对学生进行了调研,调研内容主要有三项:

  一、求未知数

  这道题主要是为解方程做准备。在这道题中,学生的书写格式错误较多,占40.2;会方法但计算错误的同学占10.9;格式计算都正确的同学占48.9。所以,在后面讲解方程的教学中,我们要规范学生的书写格式,讲清算理和算法,提高计算能力。

  二、给式子分类,并写出每类的特点。

  设计这道题的目的是想看看学生能否依据一定的标准进行分类,清楚分类的标准,为课上的分类做准备。通过调研,我们发现因为学生的关注点不同,所以分类的标准不同。有些学生关注的是式子当中的字母,所以根据有无字母把式子分为两类,一类式子当中有字母,一类没有字母,这样的学生占25;有些学生关注的是式子中的等于号,所以根据式子左右是否相等把式子分为两类,一类是等式,一类是不等式,这样的学生占26.1;有一些学生关注的是式子中的运算符号,所以分的类别较多,还有一些学生不知道根据什么来分,这样的学生占48.9。尽管一直以来学生总是在写等式,但对等式的概念学生并不清楚。所以,课上我们要让学生进一步理解等式的本质特征,真正理解等式的概念。

  三、你们在生活中见过与跷跷板类似的物品吗?

  设计这道题的目的是想了解一下学生是否知道天平,为课上应用天平列式做准备。课下我们又找个别学生进行了访谈,让他们说一说天平与跷跷板有什么相同之处。通过调研,我们发现学生基本上知道天平,只有个别学生不知道。

  (五)教法:

  新课程标准指出“以学生发展为本”必须为学生身心的全面发展和素质提高提供更为有利的条件。那么教师只能通过组织者、合作者、引导者的身份,使学生主动参与到整个学习过程中。根据小学生的认知特点和规律及教材特点,这节课,我们主要采用“直观教学法”、“演示操作法”、“观察法”等教学方法,为学生创设一个宽松的数学学习环境,使得他们能够积极自主地,充满自信地学习数学,平等交流各自对数学的理解,并通过相互合作共同解决所面临的问题。我设计了如下三个方面的教学手段:

  1、用直观的操作和演示,让每位学生理解和归结出结论。

  2、恰当运用现代教学手段,突出重点突破难点,努力促进本节课教学目标的实现。

  3、充分利用身边的事物,创设情境,激发兴趣,让学生能在轻松、愉快而且有趣的氛围中理解、掌握知识。

  (六)、学法

  为了使学生获取“方程的意义”这部分的知识,在课堂教学中,我们注重学生学习知识的过程,给学生充分的时间和空间,在特定的数学活动中自主探究、合作交流,激发学生的学习积极性,增强学生学习知识的自信心。让学生动眼观察,亲自参与,动脑思考,动口表达,真正理解和掌握方程最基本的知识,培养学生探索、发现和创新能力。

  二、教学过程

  教学活动主要安排了五个环节:

  1、创设情景,抽象出等量关系,理解等式的性质

  等式是方程的生长点,学生在前几册教材里对等式已经有了初步的认识,为了有利于方程概念的建立,我在教学中借助学生熟悉的跷跷板首先让学生体会等式的含义。

  活动一:感知平衡,体会等式含义,理解等式性质。

  课件出示一架跷跷板,请学生仔细观察后说一说玩跷跷板可能会出现哪些情况?再请学生用一个式子表示跷跷板现在所处的状态。然后告诉学生像这样用等于号连接的式子就叫等式,紧接着就提问学生:什么样的式子叫等式?对“等式”的概念进行了强化。这个提问及时准确。接着,利用跷跷板理解等式的性质,即等式两边同加同减,左右两边仍然相等。然后启发并引导学生思考:如果等式两边同乘同除,等式会怎么样?通过学生举例,总结出等式的性质。从学生熟悉的生活情境入手,既让学生从跷跷板“平衡”中体会到等式的含义,又能较好地激发了学生学习的乐趣。这样的安排符合学生的认知特点。

  活动二:观察发现,抽象出不同的式子

  创设具体情境,让学生观察天平从不平衡到平衡的变化过程,通过天平的动态变化得出若干个不同的式子。然后提问学生:以上的式子都是等式吗?它含有未知数吗?让学生思考,交流后说出:有的是等式,有的是不等式。这样由“扶”到“放”,引导学生通过自己的观察、思考、动口说一说,培养了学生探究新知的思维品质,促进思维的发展。这样设计,主要是给学生创造一个用眼观察,用脑思考的机会,让他们亲自感知了多个含有未知数的式子的来源,将“重视结论”的教学转变为“重视过程”的教学,不生硬的塞给学生现成的结论,让学生充分经历方程模型的生成过程。同时也为下一个教学环节——给式子分类做好准备。

  2.引导分类,抽象出方程的意义

  运用刚才得出的式子进行分类,并让学生说说分类标准,然后从学生按照等式不等式的标准分类的教学资源中直接导出本节课的课题:方程,在此基础上,再次让学生观察,讨论与交流,找到方程的特点,从而进一步得出方程的意义。在分类的过程中,尊重学生的想法,肯定他们分类的方法。这样的设计主要是给学生创造了一个大胆设想、敢于发现、抽象概括的机会,使学生从感性认识上升到理性认识,真正体会到自己获取知识、发现知识的成功乐趣。

  3.讨论比较,辨析、概念——等式与方程的关系

  为了体现学生的主体性,培养学生的合作意识,同时让学生在解决问题的过程中得到创造的乐趣。通过同桌合作用自己的方法创作“方程”与“等式”的关系图,并用自己的话说一说“等式”与“方程”的关系:方程一定是等式,但等式不一定是方程。。这是一道富有思维容量的习题,不但锻炼了学生的思维,培养了学生思维的灵活性和深刻性,而且能激发学生的创新意识,使学生的积极性、创造性得到保持与发展,同时渗透集合思想。

  4.巩固深化,拓展思维——练习

  在这一环节中,我们设计了“介绍方程”、“写方程”和“判断方程”三个活动。为了激发学生学习的兴趣,我们设计了“如果你是方程,你怎样介绍自己”之后让学生自己写一个方程,这样一个介绍,一个练写,不仅使学生爱做,而且还让学生进一步理解了方程的意义。然后让学生看式子进行判断,辨析;出示“方程一定是等式,等式也一定是方程”这句话让学生分析这句话对吗?说出理由。通过这些活动加深理解消化巩固所学的知识,并应用所学知识灵活解决实际问题。特别是方程的判断,能引起学生强烈的争论,让学生在争论中巩固方程与等式的概念,方程与等式的异同,使教学达到高潮,极大的调动了学生学习的积极性,把学生的注意力高度集中到巩固新知的过程中。

  5.小结新知,明确收获

  让学生说一说自己本节课的收获,目的在于让学生对本节课的新知进行一次梳理,通过总结概括再次让学生体验到探索新知的乐趣。

五年级数学方程12

  教学内容:

  教科书p7练习一第9~13题

  教学目标:

  1.通过练习,使学生进一步理解方程的意义。

  2.进一步理解等式性质,能根据等式性质正确地解方程。

  教学重点:

  进一步理解等式性质。

  教学难点:

  能根据等式性质正确地解方程。

  教学过程:

  一、基础练习

  1.什么是方程?

  含有未知数的等式叫做方程。

  (1)说出下面的式子哪些是方程,哪些不是?为什么?

  18+17=35

  x=1

  12-Y=4

  S+12=49

  21-b<24

  x=14+78

  16+a=27+b

  a +b=6

  b-8=100

  X+10

  4X=60

  2.让学生说一说等式的性质一和等式的性质二

  (1)解方程。带写出检验过程。

  X+25=37

  X-23=52

  0.7X=3.5X0.5=12

  48-X=25

  4.8x=20

  集体订正,帮有错的同学分析错误原因,使其明白算理。

  3.在○运算符号,在□填数字。

  (1)X-20=30 (2)5x=2.4

  解: X=30○□ 解:x=2.4○□

  X=□ x=□

  (3)3.6+X=5.7 (4)4.8x=12

  解: X=5.7○□ 解:x=4.8○□

  X=□ x=□

  学生独立完成后指名回答,让学生说说是怎样想的。使学生明白:根据等式的.性质。

  小结:通过把解方程的过程补充完整,启发学生简化解方程的书写,提高解方程的熟练程度。

  二、指导练习

  1.p7第9题

  学生独立完成

  2.P7第11题:pp列方程求表中的未知数的值

  学生看懂题意,列方程,解方程

  3.P7第13题

  学生口答练习

  4.出示小黑板

  判断题

  (1)等式两边同时加上或减去同一个数,所得结果仍然是等式。( )

  (2)方程一定是等式,等式不一定是方程。( )

  (3)解方程的依据是等式的性质。 ( )

  学生独立完成,说一说自己判断的理由。

  三、课堂小结

  通过本节课的练习,你有什么收获?你认为解决数学问题时,方程的用处大吗?

  四、作业

  1.P7第10题

  2.P7第12

  板书设计:

  等式的性质与解方程练习题

  12x=31.2 9.6y=48

  解:x=31.212 解:y=489.6

  X=2.6 y=5

五年级数学方程13

  “含有未知数的等式是方程”,这句话中包括两个条件,一个是”含有求知数”一个是“等式”。因此,“含有未知数”与“等式”是方程意义的两个重要的内涵。所以在本节课的教学中,就要围绕着这两处条件,设计教学。

  一、创设情境,在实际天平的操作中等到等式,并在实际操作中得到方程。

  为了加深学生对等式的理解和掌握,采用教科书的设计意图和设计,用天平的平衡找到两边物体质量相等,从而得到等式。为了让我们的设计更贴近我们的'生活,直接用我们的粉笔列道具,来称粉笔的重量的过程中得到不等式和等式,含有求知数的等式(方程)。一步一步,让学生从浅到深,一点一点掌握知识,得到要掌握的知识点。从而学会判断哪些是方程,哪些不是方程。

  二、通过比较和断定,从而加深对方程的理解。

  断定一个式子是不是方程,要从两个条件入手,一是“含有求知数”二是“等式”,两个条件缺一不可。从而学生互相问,这个为什么不是,哪个为什么不是。含有求知数:5Y不是方程,因为不是等式。5+8=13不是方程,因为没有求知数。所以方程既要是等式又要含有求知数。

  X+Y=Z也是方程,因为含有求知数,并且是等式。Y=5也是方程,因为含有求知数,并且是等式。

  三、在观察天平平衡列式过程中建立方程的概念,不仅要了解方程的外在特点,更要理解方程的意义。

  从判断等式方程到借助现实的相等情境写出方程,由表及里,由浅入深。学生在把实际问题的等量关系用符号化抽象成方程时,不仅感受了方程与日常生活的联系,也体会了方程的本质特征,从而巩固了方程的概念。

五年级数学方程14

  教学目标

  1.使学生初步学会这一类简易方程的解法.

  2.知道计算这类方程的道理.

  教学重点

  掌握解这一类方程的解法.

  教学难点

  理解这一类方程的.算理.

  教学过程

  一、复习引入

  (一)解下列方程

  (二)乘法分配律的意义是什么?用字母怎样表示?

  二、教学新授

  (一)教学例5

  例5.一个工地用汽车运土,每辆车运吨,一天上午运了4车,下午运了3车.这一天:网12网

  1.教师提问

  (1)这个方程有什么特点?

  (2)应该怎样解答?

  2.学生独立解答.

  教师板书

  解:

  检验:把代入原方程.

  左边=7×5+9×5=80,右边=80,

  左边=右边

  所以是原方的解.

  3.练习

  解方程3.6-0.9=5.4(要写出检验过程)

  三、课堂小结

  今天这节课你学到了哪些知识?解这类方程时要注意什么?

  四、巩固练习

五年级数学方程15

  一、我会填。

  1、x的8倍比2.4的6倍多多少?用式子表示为( )。

  2、张老师买了5个篮球和5个排球,每个排球x元,每个篮球45元,共付( )元。

  二、计算天地 。

  1、口算小专家。

  5.614

  101-26

  7203.6

  9.612

  86-49

  11.13

  2、解方程乐园。

  2 x-2.82.5=8.96

  4 x+123=56

  (x+0.8) 8=48

  (x+2.4)3=2.5

  三、列方程并求解。

  1、一个数的6倍减去3.5的2倍,差是71,求这个数。

  2、一个数的2.5倍,加上4.5乘6的积,和是77,求这个数。

  四、生活真体验。(列方程解应用题)

  1、佳琪去书店买书,他带了75元钱,其中有3张面值为5元的人民币,剩下的是面值为10元的`人民币,10元面值的有多少张?

  2、实验小学五年级有5个班,每班捐30盆花,布置花坛用去了若干盆后还剩25盆,布置花坛用去多少盆?

  五、数学小博士。

  1、甲乙两地相距38千米,小王从甲地出发向乙地行走,小李从乙地出发向甲地而来。己知小王每小时行5千米,小王先走4小时后,小李才出发,小李走2小时后,两人相遇。小李每小时行多少千米?

  2、方程6x-4.80.6=1与方程x-m0.1=1的解相同,求m的值。