高三立体几何的知识点

时间:2024-09-10 20:49:43 好文 我要投稿
  • 相关推荐

高三立体几何的知识点

  1.三视图与直观图:注:原图形与直观图面积之比为 。

高三立体几何的知识点

  2.表(侧)面积与体积公式:⑴柱体:①表面积:S=S侧+2S底;②侧面积:S侧= ;③体积:V=S底h ⑵锥体:①表面积:S=S侧+S底;②侧面积:S侧= ;③体积:V= S底h:⑶台体:①表面积:S=S侧+S上底S下底;②侧面积:S侧= ;③体积:V= (S+ )h;⑷球体:①表面积:S= ;②体积:V= 。

  3.位置关系的证明(主要方法):⑴直线与直线平行:①公理4;②线面平行的性质定理;③面面平行的性质定理。⑵直线与平面平行:①线面平行的判定定理;②面面平行 线面平行。⑶平面与平面平行:①面面平行的判定定理及推论;②垂直于同一直线的两平面平行。⑷直线与平面垂直:①直线与平面垂直的判定定理;②面面垂直的性质定理。⑸平面与平面垂直:①定义---两平面所成二面角为直角;②面面垂直的判定定理。注:理科还可用向量法。

  4.求角:(步骤-------Ⅰ。找或作角;Ⅱ。求角)⑴异面直线所成角的求法:1 平移法:平移直线,2 构造三角形;3 ②补形法:补成正方体、平行六面体、长方体等,4 发现两条异面直线间的关系。注:理科还可用向量法,转化为两直线方向向量的夹角。⑵直线与平面所成的角:①直接法(利用线面角定义);②先求斜线上的点到平面距离h,与斜线段长度作比,得sin 。注:理科还可用向量法,转化为直线的方向向量与平面法向量的夹角。⑶二面角的求法:①定义法:在二面角的棱上取一点(特殊点),作出平面角,再求解;②三垂线法:由一个半面内一点作(或找)到另一个半平面的垂线,用三垂线定理或逆定理作出二面角的平面角,再求解;③射影法:利用面积射影公式: ,其中 为平面角的大小; 注:对于没有给出棱的二面角,应先作出棱,然后再选用上述方法;理科还可用向量法,转化为两个班平面法向量的夹角。

  5.求距离:(步骤-------Ⅰ。找或作垂线段;Ⅱ。求距离)⑴两异面直线间的距离:一般先作出公垂线段,再进行计算;⑵点到直线的距离:一般用三垂线定理作出垂线段,再求解;⑶点到平面的距离:①垂面法:借助面面垂直的性质作垂线段(确定已知面的垂面是关键),再求解;5 等体积法;理科还可用向量法: 。⑷球面距离:(步骤)(Ⅰ)求线段AB的长;(Ⅱ)求球心角AOB的弧度数;(Ⅲ)求劣弧AB的长。

  6.结论:⑴从一点O出发的三条射线OA、OB、OC,若AOB=AOC,则点A在平面BOC上的射影在BOC的平分线上;⑵立平斜公式(最小角定理公式): ⑶正棱锥的各侧面与底面所成的角相等,记为 ,则S侧cos =S底;⑷长方体的性质①长方体体对角线与过同一顶点的三条棱所成的角分别为 则:cos2 +cos2 +cos2 =1;sin2 +sin2 +sin2 =2 。②长方体体对角线与过同一顶点的三侧面所成的角分别为 则有cos2 +cos2 +cos2 =2;sin2 +sin2 +sin2 =1 。⑸正四面体的性质:设棱长为 ,则正四面体的:1 高: ;②对棱间距离: ;③相邻两面所成角余弦值: ;④内切2 球半径: ;外接球半径: ;

【高三立体几何的知识点】相关文章:

英语上册高三知识点总结03-01

高三语文说木叶知识点02-28

高三英语知识点复习归纳03-04

高三地理复习知识点12-18

高三化学知识点归纳大全三篇03-03

高三政治必修一知识点归纳最新03-03

函数知识点03-01

化学知识点03-03

语文知识点03-03

《春》知识点02-28