八年级下册数学重点知识归纳

时间:2023-06-27 14:17:13 满全 数学 我要投稿
  • 相关推荐

八年级下册数学重点知识归纳

  很多八年级的学生在学习数学的时候,经常埋头题海苦苦挣扎,其实学好数学最重要的是先将基本概念和公式弄明白。下面是百分网小编为大家整理的八年级数学重点知识,希望对大家有用!

八年级下册数学重点知识归纳

  八年级下册数学知识

  1.无限小数都是无理数无限小数分:为无限循环小数和无限不循环小数,其中无限循环小数是有理数,只有无限不循环的小数才是无理数。

  2.无理数包括正无理数、负无理数和零。受思维习惯的影响,有些同学错误认为正无理数与负无理数之间应有零,零也是无理数,其实零是一个有理数,因此,无理数只分为正无理数和负无理数两类。

  3.带根号的数是无理数。是有理数2, 是有理数-2,可见带根号的数不一定是无理数。

  4.无理数是用根号形式表示的数。是无理数,但并不是用根号形式表示的,再如:0.1010010001(两个1之间依次多一个),亦为不带根号的无理数。

  5.无理数是开方开不尽的数。无理数并非由开方的结果来定义的,事实上,如 ,0.232232223,等无理数,都不是由开方得到的。

  6.两个无理数的和、差、积、商仍是无理数。两个无理数的和,差,积,商不一定是无理数,如:等都是有理数。

  7.无理数与有理数的乘积是无理数。这种说法是错误的!由 等似乎易见无理数与有理数的积是无理数,就下肯定结论,错了!如 等足以推翻以上结论。

  8.有些无理数是分数。因为分数属于有理数,且无理数与有理数是两类不同的数,所以说,无理数不可能写成分数,当然,有些无理数可以借助分数线来表示。如 ,但一定要注意它并不是分数。

  9.无理数比有理数少。这种说法错误,无理数在人们生产和生活中使用的少一些,但并不是说无理数就少一些,我们平常的计算中没有特别需要时,习惯地把一些无理数按要求通过取近似值的方法用有理数来表示,这样似乎就觉得使用无理数少一些,实际上,无理数也有无限个且比有理数多得多。

  10.一个无理数的平方一定是有理数。这种说法错误,不要误认为只有 等无理数,如 等也是无理数,显然 等不是有理数。

  八年级数学必考知识

  全等三角形

  (一)、基本概念

  1、“全等”的理解全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;

  即能够完全重合的两个图形叫全等形。同样我们把能够完全重合的两个三角形叫做全等三角形。

  2、全等三角形的性质

  (1)全等三角形对应边相等;(2)全等三角形对应角相等;

  3、全等三角形的判定方法

  (1)三边对应相等的两个三角形全等。

  (2)两角和它们的夹边对应相等的两个三角形全等。

  (3)两角和其中一角的对边对应相等的两个三角形全等。

  (4)两边和它们的夹角对应相等的两个三角形全等。

  (5)斜边和一条直角边对应相等的两个直角三角形全等。

  4、角平分线的性质及判定

  性质:角平分线上的点到这个角的两边的距离相等

  判定:到一个角的两边距离相等的点在这个角平分线上

  (二)灵活运用定理

  证明两个三角形全等,必须根据已知条件与结论,认真分析图形,准确无误的确定对应边及对应角;去分析已具有的条件和还缺少的条件,并会将其他一些条件转化为所需的条件,从而使问题得到解决。运用定理证明三角形全等时要注意以下几点。

  1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。

  2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。

  3、要善于灵活选择适当的方法判定两个三角形全等。

  (1)已知条件中有两角对应相等,可找:

  ①夹边相等(ASA)

  ②任一组等角的对边相等(AAS)

  (2)已知条件中有两边对应相等,可找

  ①夹角相等(SAS)

  ②第三组边也相等(SSS)

  (3)已知条件中有一边一角对应相等,可找

  ①任一组角相等(AAS或ASA)

  ②夹等角的另一组边相等(SAS)

  八年级数学知识要点

  因式分解

  (1)因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式。

  (2)公因式:一个多项式每一项都含有的相同的因式叫做这个多项式的公因式。

  (3)确定公因式的方法:公因数的系数应取各项系数的最大公约数;字母取各项的相同字母,而且各字母的指数取次数最低的。

  (4)提公因式法:一般地,如果多项式的各项有公因式可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法。

  (5)提出多项式的公因式以后,另一个因式的确定方法是:用原来的多项式除以公因式所得的商就是另一个因式。

  (6)如果多项式的第一项的系数是负的,一般要提出“—”号,使括号内的第一项的系数是正的,在提出“—”号时,多项式的各项都要变号。

  (7)因式分解和整式乘法的关系:因式分解和整式乘法是整式恒等变形的正、逆过程,整式乘法的结果是整式,因式分解的结果是乘积式。

  (8)运用公式法:如果把乘法公式反过来,就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法。

  (9)平方差公式:两数平方差,等于这两数的和乘以这两数的差,字母表达式:a2—b2=(a+b)(a—b)

  (10)具备什么特征的两项式能用平方差公式分解因式

  ①系数能平方,(指的系数是完全平方数)

  ②字母指数要成双,(指的指数是偶数)

  ③两项符号相反。(指的两项一正号一负号)

  (11)用平方差公式分解因式的关键:把每一项写成平方的形式,并能正确地判断出a,b分别等于什么。

  (l2)完全平方公式:两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。字母表达式:a2±2ab+b2=(a±b)2

  一、函数:

  一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。

  二、自变量取值范围

  使函数有意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。

  三、函数的三种表示法及其优缺点

  (1)关系式(解析)法

  两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。

  (2)列表法

  把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

  (3)图象法

  用图象表示函数关系的方法叫做图象法。

  四、由函数关系式画其图像的一般步骤

  (1)列表:列表给出自变量与函数的一些对应值

  (2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点

  (3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

  五、正比例函数和一次函数

  1、正比例函数和一次函数的概念

  一般地,若两个变量x,y间的关系可以表示成(k,b为常数,k0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。

  特别地,当一次函数中的b=0时(即)(k为常数,k0),称y是x的正比例函数。

  2、一次函数的图像:所有一次函数的图像都是一条直线

  3、一次函数、正比例函数图像的主要特征:一次函数的图像是经过点(0,b)的直线;正比例函数的图像是经过原点(0,0)的直线。

  第七章知识点

  1、二元一次方程

  含有两个未知数,并且所含未知数的项的次数都是1的整式方程叫做二元一次方程。

  2、二元一次方程的解

  适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。

  3、二元一次方程组

  含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。

  4、二元一次方程组的解

  二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。

  5、二元一次方程组的解法

  (1)代入(消元)法(2)加减(消元)法

  第八章知识点

  1、刻画数据的集中趋势(平均水平)的量:平均数、众数、中位数

  2、平均数

  (2)加权平均数:

  3、众数

  一组数据中出现次数最多的那个数据叫做这组数据的众数。

  4、中位数

  一般地,将一组数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。

【八年级下册数学重点知识归纳】相关文章:

初二数学下册重点难点知识归纳02-17

八年级下册政治重点知识归纳01-25

八年级数学知识重点归纳12-02

八年级数学重点知识归纳12-02

初中数学圆知识点重点归纳01-26

八年级上册数学重点知识归纳12-01

八年级上册数学知识重点归纳12-02

考研数学复习的重点知识该如何归纳12-06

高三数学重点知识点归纳07-23