- 八年级上册数学知识重点归纳 推荐度:
- 相关推荐
八年级数学知识重点归纳
知识概念是学习数学的基础,我们在学习数学的过程中必须要弄清楚它的本质,想知道八年级有哪些知识概念吗?下面是百分网小编为大家整理的八年级数学知识总结,希望对大家有用!
八年级数学知识
函数及图象的复习要点
1、规定了原点、正方向和单位长度的直线叫数轴。数轴上的点与实数一一对应。数轴上的点A、B的坐标为x1、x2, 则AB= 。
2、具有公共原点且互相垂直的两条数轴就构成平面直角坐标系。坐标平面内的点与有序实数对一一对应。
3、坐标轴上的点不属于任何象限。x轴上的点纵坐标y=0;y轴上的点横坐标x=0。
第一象限内的点x>0,y>0;第二象限内的点x<0,y>0;第三象限内的点x<0,y<0;第四象限内的点x>0,y<0;
由此可知,x轴上方的点,纵坐标y>0;x轴下方的点,纵坐标y<0;y轴左边的点,横坐标x<0;y轴右边的点,横坐标x>0.
4、关于某坐标轴对称的点,这个轴的坐标不变,另一个轴的坐标互为相反数。关于原点对称的点,纵、横坐标都互为相反数。关于第一、三象限角平分线对称的点,横纵坐标交换位置;关于第二、四象限角平分线上对称的点,不但横纵坐标交换位置,而且还要变成相反数。
5、第一、三象限角平分线上的点,横纵坐标相等;第二、四象限角平分线上的点,横纵坐标互为相反数。
6、在一个变化过程中,存在两个变量x、y,对于x的每一个取值,y都有唯一的一个值与之对应,我们就说y是x的函数。x是自变量,y是因变量。 函数的表示方法有:解析式法、图象法、列表法。
7、函数自变量的取值范围:
①函数的解析式是整式时,自变量可取全体实数;
②函数的解析式是分式时,自变量的取值应使分母≠0;
③函数的解析式是二次根式时,自变量的取值应使被开方数≥0.
④函数的解析式是负整指数和零指数时,底数≠0;
⑤对于反映实际问题的函数关系,应使实际问题有意义.
8、如果y=kx + b ( k、b是常数,k≠0),那么,y叫x的一次函数。如果y=kx (k是常数,k 0),那么,y叫x的正比例函数。
9、点在函数的图象上的代数意义是:这一点的坐标满足函数的解析式。两个函数有交点的代数意义是:两个函数的解析式组成的方程组的解就是交点的坐标。
10、一次函数y=kx+b的性质:
(1)一次函数图象是过 两点的一条直线,|k|的值越大,图象越靠近于y轴。
(2)当k>0时,图象过一、三象限,y随x的增大而增大;从左至右图象是上升的(左低右高);
(3)当k<0时,图象过二、四象限,y随x的增大而减小。从左至右图象是下降的(左高右低);
(4)当b>0时,与y轴的交点(0,b)在正半轴;当b<0时,与y轴的交点(0,b)在负半轴。当b=0时,一次函数就是正比例函数,图象是过原点的一条直线
(5)几条直线互相平行时 ,k值相等而b不相等。
11、如果y=kx ( k是常数,k≠0),那么,y叫x的反比例函数。
八年级数学必备知识
全等三角形
1、判断正确或错误的句子叫做命题.正确的命题称为真命题,错误的命题称为假命题.
2、命题是由题设、结论两部分组成的.题设是已知事项;结论是由已知事项推出的事项.常可写成“如果……,那么……”的形式.用“如果”开始的部分就是题设,而用“那么”开始的部分就是结论.
3、直角三角形的两个锐角互余.
4、三角形全等的判定:
方法1:如果两个三角形有两边及其夹角分别对应相等,那么这两个三角形全等.简记为S.A.S.(或边角边).
方法2:如果两个三角形有两个角及其夹边分别对应相等,那么这两个三角形全等.简记为A.S.A.(或角边角)
方法3:如果两个三角形有两个角和其中一个角的对边分别对应相等,那么这两个三角形全等.简记为A.A.S.(或角角边).
方法4:如果两个三角形的三条边分别对应相等,那么这两个三角形全等.简记为S.S.S(或边边边).
方法5(只能用于直角三角形):如果两个直角三角形的斜边和一条直角边分别对应相等,那么这两个直角三角形全等.简记为H.L.(或斜边、直角边).
5、一般来说,在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论是第二个命题的题设,那么这两个命题叫做互逆命题.如果把其中一个命题叫做原命题,那么另一命题就叫做它的逆命题.
6、如果一个定理的逆命题也是定理,那么这两个定理叫做互逆定理,其中的一个定理叫做另一个定理的逆定理.
7、如果一个三角形有两个角相等,那么这两个角所对的边也相等.(简写成“等角对等边”)
8、如果三角形的一条边的平方等于另外两条边的平方和,那么这个三角形是直角三角形.(勾股定理的逆定理)
9、角平分线上的点到这个角的两边的距离相等.到一个角两边的距离相等的点在这个角的平分线上.
10、线段的垂直平分线上的点到这条线段的两个端点的距离相等;到一条线段的两个端点的距离相等的点在这条线段的垂直平分线上。
八年级数学常考知识
数据的整理与初步处理
1、平均数=总量÷总份数。数据的平均数只有一个。
一般说来,n个数 、 、…、 的平均数为 =1n(x1+x2+…xn)
一般说来,如果n个数据中,x1出现f1次,x2出现f2次,xk出现fk次,且f1+f2+… +fk=n则这n个数的平均数可表示为x=x1f1+x2f2+…xkfkn。其中fin是xi的权重(i=1,2…k)。
加权平均数是分析数据的又一工具。当考虑不同权重时,决策者的结论就有可能随之改变。
2、将一组数据按由小到大(或由大到小)的顺序排列(即使有相等的数据也要全部参加排列),如果数据的个数是奇数,那么中位数就是中间的那个数据。如果数据的个数是偶数,那么中位数就是中间的两个数据的平均数。一组数据的中位数只有一个,它可能是这组数据中的一个数据,也可能不是这组数据中的数据.
3、一组数据中出现的次数最多的数据就是众数。一组数据可以有不止一个众数,也可以没有众数(当某一组数据中所有数据出现的次数都相同时,这组数据就没有众数).
4、一组数据中的最大值减去最小值就是极差:极差=最大值-最小值
5、我们通常用 表示一组数据的方差,用 表示一组数据的平均数, 、 、…、 表示各个原始数据.则 ( 平方单位)
求方差的方法:先求平均数,再求偏差,然后求偏差的平方和,最后再平均数
6、求出的方差再开平方,这就是标准差。
7、平均数、极差、方差、标准差的变化规律
一组数据同时加上或减去一个数,极差不变,平均数加上或减去这个数,方差不变,标准差不变
一组数据同时乘以或除以一个数,极差和平均数都乘以或除以这个数,方差乘以或除以该数的平方,标准差乘以或除以这个数。
一组数据同时乘以一个数a,然后在加上一个数b,极差乘以或除以这个数a,平均数乘以或除以这个数a,再加上b,方差乘以a的平方,标准差乘以|a|. (加减的数都不为0)
八年级数学知识
一、函数:
一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。
二、自变量取值范围
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。
三、函数的三种表示法及其优缺点
(1)关系式(解析)法
两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。
(2)列表法
把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图象法
用图象表示函数关系的方法叫做图象法。
四、由函数关系式画其图像的一般步骤
(1)列表:列表给出自变量与函数的一些对应值
(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点
(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
五、正比例函数和一次函数
1、正比例函数和一次函数的概念
一般地,若两个变量x,y间的关系可以表示成(k,b为常数,k0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。
特别地,当一次函数中的b=0时(即)(k为常数,k0),称y是x的正比例函数。
2、一次函数的图像:所有一次函数的图像都是一条直线
3、一次函数、正比例函数图像的主要特征:一次函数的图像是经过点(0,b)的直线;正比例函数的图像是经过原点(0,0)的直线。
第七章知识点
1、二元一次方程
含有两个未知数,并且所含未知数的项的次数都是1的整式方程叫做二元一次方程。
2、二元一次方程的解
适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。
3、二元一次方程组
含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。
4、二元一次方程组的解
二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。
5、二元一次方程组的解法
(1)代入(消元)法(2)加减(消元)法
第八章知识点
1、刻画数据的集中趋势(平均水平)的量:平均数、众数、中位数
2、平均数
(2)加权平均数:
3、众数
一组数据中出现次数最多的那个数据叫做这组数据的众数。
4、中位数
一般地,将一组数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。
【八年级数学知识重点归纳】相关文章:
八年级上册数学知识重点归纳07-06
物理知识重点归纳11-08
定语从句重点归纳03-23
数学知识点归纳03-13
数学知识点归纳06-21
大学英语重点句型归纳04-19
八年级数学知识点归纳12-29
八年级上册生物重点知识归纳07-21
八年级下册政治重点知识归纳01-31
高考数学知识点归纳09-16