八年级上册数学知识点总结
数学虽然是理科,但是想学好数学,离不开知识点的理解和记忆,你知道八年级上册的数学有哪些知识点吗?下面是百分网小编为大家整理的八年级上册数学知识归纳,希望对大家有用!
八年级上册必备数学知识
全等三角形
一、全等形
能够完全重合的两个图形叫做全等形。
二、全等三角形
1.全等三角形:能够完全重合的两个三角形叫做全等三角形。 (两个三角形全等,互相重合的顶点叫做对应点,互相重合的边叫做对应边,互相重合的角叫做对应角。 )
2.全等三角形的符号表示、读法 :△ABC与△A′B′C′全等记作△ABC≌△A′B′C′,“≌”读作“全等于”。
(两个三角形全等时,通常把对应顶点的字母写在对应的位置上,这样对应的两个字母为端点的线段是对应边;对应的三个字母表示的角是对应角)。
3.全等三角形的性质 :全等三角形的对应边相等,对应角相等。
二、三角形全等的判定:
1.三边对应相等的两个三角形全等,简写成“边边边”或“SSS”。
2.两边和他们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS”。
3.两角和他们的夹边对应相等的两个三角形全等,简写成“角边角”或“ASA”。
4.两个角和其中一个角的对边对应相等的两个三角形全等,简写成“角角边”或“AAS”。
5.斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”或“HL”。
(SSA、八年级上册数学知识不能识别两个三角形全等,识别两个三角形全等时,必须有边的参与,如果有两边和一角对应相等时,角必须是两边的夹角。)
八年级上册数学要点
一、轴对称
1.轴对称图形 :如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就叫做对称轴。折叠后重合的点是对应点,叫做对称点。
2.线段的垂直平分线 :经过线段中点并且垂直于这条
线段的直线,叫做这条线段的垂直平分线
3.轴对称的性质:1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。(或者说轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线. )
4.线段垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等。(或者说与一条线段两个端点距离相等的点,在这条线段的垂直平分线上)。
二、作轴对称图形
1.归纳1:由一个平面图形可以得到它关于一条直线L成对称轴的图形,这个图形与原图形的大小、形状,完全相同。新图形上的每一点,都是原图形上某一点关于直线L的对称点。连接任意一对对应点的线段都被对称轴垂直平分。
2.归纳2:几何图形都可以看做由点组成,我们只要分别做出这些点关于对称轴的对应点,再连接这些对应点,就可以得以原图形的轴对称图形;对于一些由直线、线段或射线组成的图形,只要做出图形中的一些特殊点(如线段的端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形。
轴对称变换 :由一个平面图形得到它的轴对称图形叫做轴对称变换。
3.用坐标表示轴对称:(1)点P(x,y)关于x轴对称的点的坐标为P′(x,-y);(2)点P(x,y)关于y轴对称的点的'坐标为P″(-x,y)。
八年级必考的数学知识
实数
一、算术平方根
1.算术平方根:如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,记作√a。0的算术平方根为0;
2.平方根:如果一个数x的平方等于a,即x2=a,那么数x就叫做a的平方根(或二次方根)。
3.开平方:求一个数a的平方根的运算(与平方互为逆运算)
4.平方根性质:正数有2个平方根(一正一负),它们是互为相反数;负数没有平方根。
二、立方根
1.立方根:如果一个数x的立方等于a,即x3=a,那么数x就叫做a的立方根(或三次方根)。
2.开立方:求一个数a的立方根的运算(与立方互为逆运算)。
3.立方根性质:正数的立方根是正数;负数的立方根是负数。0的立方根是0;
三、实数
1.无理数:无限不循环小数。如:π、√2、√3
【八年级上册数学知识点总结】相关文章:
数学八年级上册知识点12-07
数学上册知识点08-02
八年级上册数学知识点归纳总结11-24
苏教版八年级上册数学知识点总结10-16
初二数学上册知识点总结07-03
初三数学上册知识点总结07-17
初三数学上册知识点总结11-18
八年级上册重要的数学知识点11-02
八年级上册数学实数知识点07-04