数学 百文网手机站

八年级上册数学知识点

时间:2022-04-02 16:42:36 数学 我要投稿

八年级上册数学知识点大全

  八年级的学生想快速提高数学成绩,前提就是学透课本知识,将学过的知识弄清楚,理明白。下面是小编为大家整理的八年级上册数学知识点大全,希望对大家有用!

八年级上册数学知识点大全

  八年级上册数学知识点 篇1

  一、函数:

  一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就有唯一的y值,那么我们称y是x的函数,其中x是自变量,y是因变量。

  二、自变量取值范围

  使函数有意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。

  三、函数的三种表示法

  (1)关系式(解析)法

  (2)列表法

  (3)图象法

  四、由函数关系式画其图像的一般步骤

  (1)列表:列表给出自变量与函数的一些对应值

  (2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点

  (3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

  五、正比例函数和一次函数

  1、正比例函数和一次函数的概念

  一般地,若两个变量x,y间的关系可以表示成ykxb(k,b为常数,k0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。

  特别地,当一次函数ykxb中的b=0时(即ykx)(k为常数,k0),称y是x的正比例函数。

  2、一次函数、正比例函数图像的主要特征:

  (1)正比例函数ykx的图像是经过原点(0,0),(1,b)的直线。

  b(2)一次函数ykxb的图像是经过点(﹣,0),(0,b)的直线; kx

  (3)一次函数y=kx+b的图像情况

  k>0,b>0 k>0,b

  (图像过一、二、三象限) (图像过一、四、三象限)

  x

  k0 k

  (图像过二、一、四象限) (图像过二、三、四象限)

  3、正比例函数ykx的性质

  (1)当k>0时,图像经过第一、三象限,y随x的增大而增大;

  (2)当k

  4、一次函数ykxb的性质

  (1)当k>0时,y随x的增大而增大

  (2)当k

  5、正比例函数和一次函数解析式的确定

  确定一个正比例函数,就是要确定正比例函数定义式ykx(k0)中的常数k。确定一个一次函数,需要确定一次函数定义式ykxb(k0)中的常数k和b。解这类问题的一般方法是待定系数法。

  6、一次函数与一元一次方程的关系:

  任何一个一元一次方程都可转化为:kx+b=0(k、b为常数,k≠0)的形式。而一次函数解析式形式正是y=kx+b(k、b为常数,k≠0).当函数值为0时,即kx+b=0就与一元一次方程完全相同.

  结论:由于任何一元一次方程都可转化为kx+b=0(k、b为常数,k≠0)的形式.所以解一元一次方程可以转化为:当一次函数值为0时,求相应的自变量的值.

  八年级上册数学知识点 篇2

  1、二元一次方程

  含有两个未知数,并且所含未知数的项的次数都是1的整式方程叫做二元一次方程。

  2、二元一次方程的解

  适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。

  3、二元一次方程组

  含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。

  4二元一次方程组的解

  二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。

  5、二元一次方程组的解法

  (1)代入(消元)法(2)加减(消元)法

  6、一次函数与二元一次方程(组)的关系:

  (1)一次函数与二元一次方程的关系:

  直线y=kx+b上任意一点的坐标都是它所对应的二元一次方程kx- y+b=0的解

  (2)一次函数与二元一次方程组的关系:

  ac1 二元一次方程组 1 x b 1 y c 1 的解可看作两个一次函数 1 ayx1 bb1axbyc1222 a2c和 y x 1 2 的图象的交点。 b2b2当函数图象有交点时,说明相应的二元一次方程组有解;当函数图象(直线)平行即

  无交点时,说明相应的二元一次方程组无解。

  八年级上册数学知识点 篇3

  1.三角形的概念

  由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形。

  2.三角形按边分类

  3.三角形三边的关系(重点)

  (1)三角形的任意两边之和大于第三边。

  三角形的任意两边之差小于第三边。(这两个条件满足其中一个即可)

  用数学表达式表达就是:记三角形三边长分别是a,b,c,则a+b>c或c-b

  (2)已知三角形两边的长度分别为a,b,求第三边长度的范围:|a-b|

  ①数三角形的个数方法:分类,不要重复或者多余

  ②给出三条线段的长度或者三条线段的比值,要求判断这三条线段能否组成三角形

  方法:最小边+较小边>最大边(最小两边之和>第三边)

  ③给出多条线段的长度,要求从中选择三条线段能够组成三角形

  方法:从所给线段的最大边入手,依次寻找较小边和最小边;直到找完为止,注意不要找重,也不要漏掉。

  ④已知三角形两边的长度分别为a,b,求第三边长度的范围

  方法:第三边长度的范围:|a-b|

  ⑤给出等腰三角形的两边长度,要求等腰三角形的底边和腰的长

  方法:因为不知道这两边哪条边是底边,哪条边是腰,所以要分类讨论,讨论完后要写“综上”,将上面讨论的结果做个总结。

  三角形的高、中线与角平分线

  1.三角形的高

  从△ABC的顶点向它的对边BC所在的直线画垂线,垂足为D,那么线段AD叫做△ABC的边

  BC上的高。

  三角形的三条高的交于一点,这一点叫做“三角形的垂心”。

  2.三角形的中线

  连接△ABC的顶点A和它所对的对边BC的中点D,所得的线段AD叫做△ABC的边BC上的中线。

  三角形三条中线的交于一点,这一点叫做“三角形的`重心”。三角形的中线可以将三角形分为面积相等的两个小三角形。

  3.三角形的角平分线

  ∠A的平分线与对边BC交于点D,那么线段AD叫做三角形的角平分线。要区分三角形的“角平分线”与“角的平分线”,其区别是:三角形的角平分线是条线段;角的平分线是条射线。三角形三条角平分线的交于一点,这一点叫做“三角形的内心”。

  八年级上册数学知识点 篇4

  一、勾股定理

  1、勾股定理

  直角三角形两直角边a,b的平方和等于斜边c的平方,即a2+b2=c2。

  2、勾股定理的逆定理

  如果三角形的三边长a,b,c有这种关系,那么这个三角形是直角三角形。

  3、勾股数

  满足的三个正整数,称为勾股数。

  常见的勾股数组有:(3,4,5);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);……(这些勾股数组的倍数仍是勾股数)。

  二、证明

  1、对事情作出判断的句子,就叫做命题。即:命题是判断一件事情的句子。

  2、三角形内角和定理:三角形三个内角的和等于180度。

  (1)证明三角形内角和定理的思路是将原三角形中的三个角凑到一起组成一个平角。一般需要作辅助。

  (2)三角形的外角与它相邻的内角是互为补角。

  3、三角形的外角与它不相邻的内角关系

  (1)三角形的一个外角等于和它不相邻的两个内角的和。

  (2)三角形的一个外角大于任何一个和它不相邻的内角。

  4、证明一个命题是真命题的基本步骤

  (1)根据题意,画出图形。

  (2)根据条件、结论,结合图形,写出已知、求证。

  (3)经过分析,找出由已知推出求证的途径,写出证明过程。在证明时需注意:①在一般情况下,分析的过程不要求写出来。②证明中的每一步推理都要有根据。如果两条直线都和第三条直线平行,那么这两条直线也相互平行。

  八年级上册数学知识点 篇5

  《反比例函数》知识点整理

  1、定义:形如y=(k为常数,k≠0)的函数称为反比例函数。

  2、其他形式xy=k(k为常数,k≠0)都是。

  3、图像:反比例函数的图像属于双曲线。

  反比例函数的图象既是轴对称图形又是中心对称图形。

  有两条对称轴:直线y=x和y=—x。对称中心是:原点。

  4、性质:当k>0时双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小。

  当k<0时双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。

  5、|k|的几何意义:表示反比例函数图像上的点向两坐标轴

  所作的垂线段与两坐标轴围成的矩形的面积。

  勾股定理

  1、勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。

  2、勾股定理逆定理:如果三角形三边长a,b,c满足a2+b2=c2。,那么这个三角形是直角三角形。

  3、经过证明被确认正确的命题叫做定理。

  我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理)

  四边形

  平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。

  平行四边形的性质:平行四边形的对边相等;

  平行四边形的对角相等。

  平行四边形的对角线互相平分。

  平行四边形的判定

  1、两组对边分别相等的四边形是平行四边形

  2、对角线互相平分的四边形是平行四边形;

  3、两组对角分别相等的四边形是平行四边形;

  4、一组对边平行且相等的四边形是平行四边形。

  三角形的中位线平行于三角形的第三边,且等于第三边的一半。

  直角三角形斜边上的中线等于斜边的一半。

  矩形的定义:有一个角是直角的平行四边形。

  矩形的性质:矩形的四个角都是直角;

  矩形的对角线平分且相等。AC=BD

  矩形判定定理:

  1、有一个角是直角的平行四边形叫做矩形。

  2、对角线相等的平行四边形是矩形。

  3、有三个角是直角的四边形是矩形。

  菱形的定义:邻边相等的平行四边形。

  菱形的性质:菱形的四条边都相等;

  菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

  菱形的判定定理:

  1、一组邻边相等的平行四边形是菱形。

  2、对角线互相垂直的平行四边形是菱形。

  3、四条边相等的四边形是菱形。

  S菱形=1/2×ab(a、b为两条对角线)

  正方形定义:一个角是直角的菱形或邻边相等的矩形。

  正方形的性质:四条边都相等,四个角都是直角。正方形既是矩形,又是菱形。

  正方形判定定理:

  1、邻边相等的矩形是正方形。

  2、有一个角是直角的菱形是正方形。

  梯形的定义:一组对边平行,另一组对边不平行的四边形叫做梯形。

  直角梯形的定义:有一个角是直角的梯形

  等腰梯形的定义:两腰相等的梯形。

  等腰梯形的性质:等腰梯形同一底边上的两个角相等;

  等腰梯形的两条对角线相等。

  等腰梯形判定定理:同一底上两个角相等的梯形是等腰梯形。

  解梯形问题常用的辅助线:如图

  线段的重心就是线段的中点。平行四边形的重心是它的两条对角线的交点。三角形的三条中线交于疑点,这一点就是三角形的重心。宽和长的比是(约为0.618)的矩形叫做黄金矩形。

  数据的分析

  1、算术平均数:

  2、加权平均数:加权平均数的计算公式。

  权的理解:反映了某个数据在整个数据中的重要程度。

  而是以比的或百分比的形式出现及频数分布表求加权平均数的方法。

  3、将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。

  4、一组数据中出现次数最多的数据就是这组数据的众数(mode)。

  5、一组数据中的最大数据与最小数据的差叫做这组数据的极差(range)。

  6、方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。

  7、平均数受极端值的影响众数不受极端值的影响,这是一个优势,中位数的计算很少不受极端值的影响。

  数学学习中常见问题分析

  大部分初二学生在学习中或多或少的都会积累一些问题,这些问题平时我们可能不是很在意,那么到了初二后就会突显出来。首先初二新生在学习数学的时候常遇到的就是对于知识点的理解不到位,还停留在一知半解的层次上面。有的初二学生在解答数学题的时候始终不能把握解题技巧,也就是说初二学生缺乏对待数学的举一反三能力。

  还有的初二学生在解答数学题时效率太低,无法再规定的时间内完成解题,对于初中的考试节奏还没办法适应。一些初二学生还没有养成一个总结归纳的习惯,不会归纳知识点,不会归纳错题。这些都是导致初二学生学不好数学的原因。

  数学学习技巧

  1、做好预习:

  单元预习时粗读,了解近阶段的学习内容,课时预习时细读,注重知识的形成过程,对难以理解的概念、公式和法则等要做好记录,以便带着问题听课。

  2、认真听课:

  听课应包括听、思、记三个方面。听,听知识形成的来龙去脉,听重点和难点,听例题的解法和要求。思,一是要善于联想、类比和归纳,二是要敢于质疑,提出问题。记,指课堂笔记——记方法,记疑点,记要求,记注意点。

  3、认真解题:

  课堂练习是最及时最直接的反馈,一定不能错过。不要急于完成作业,要先看看你的笔记本,回顾学习内容,加深理解,强化记忆。

  4、及时纠错:

  课堂练习、作业、检测,反馈后要及时查阅,分析错题的原因,必要时强化相关计算的训练。不明白的问题要及时向同学和老师请教了,不能将问题处于悬而未解的状态,养成今日事今日毕的好习惯。

  八年级上册数学知识点 篇6

  第一章 勾股定理

  定义:如果直角三角形两条直角边分别为a,b,斜边为c,即直角三角形两直角边的平方和等于斜边的平方。

  判定:如果三角形的三边长a,b,c满足a+b=c,那么这个三角形是直角三角形。定义:满足a+b=c的三个正整数,称为勾股数。

  第二章 实数

  定义:任何有限小数或无限循环小数都是有理数。无限不循环小数叫做无理数(有理数总可以用有限小数或无限循环小数表示)

  一般地,如果一个正数x的平方等于a,那么这个正数x就叫做a的算术平方根。特别地,我们规定0的算术平方根是0。

  一般地,如果一个数x的平方等于a,那么这个数x就叫做a的平方根(也叫二次方根)一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根。求一个数a的平方根的运算,叫做开平方,其中a叫做被开方数。

  一般地,如果一个数x的立方等于a,那么这个数x就叫做a的立方根(也叫做三次方根)。正数的立方根是正数;0的立方根是0;负数的立方根是负数。求一个数a的立方根的运算,叫做开立方,其中a叫做被开方数。有理数和无理数统称为实数,即实数可以分为有理数和无理数。

  每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。即实数和数轴上的点是一一对应的。

  在数轴上,右边的点表示的数比左边的点表示的数大。

  第三章 图形的平移与旋转

  定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。平移不改变图形的形状和大小。

  经过平移,对应点所连的线段平行也相等;对应线段平行且相等,对应角相等。

  在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称旋转中心,转动的角称为旋转角。旋转不改变图形的大小和形状。

  任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。

  第四章 四边形性质探索

  定义:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等,这个距离称为平行线之间的距离。

  平行四边形:两组对边分别平行的四边形。对边相等,对角相等,对角线互相平分。两组对边分别平行的四边形是平行四边形,两组对边分别相等的四边形是平行四边形,两条对角线互相平分的四边形是平行四边形,一组对边平行且相等的四边形是平行四边形

  菱形:一组邻边相等的平行四边形(平行四边形的性质)。四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。一组邻边相等的平行四边形是菱形,对角线互相垂直的平行四边形是菱形,四条边都相等的四边形是菱形。

  矩形:有一个内角是直角的平行四边形(平行四边形的性质)。对角线相等,四个角都是直角。有一个内角是直角的平行四边形是矩形,对角线相等的平行四边形是矩形。

  正方形:一组邻边相等的矩形。正方形具有平行四边形、菱形、矩形的一切性质。一组邻边相等的矩形是正方形,一个内角是直角的菱形是正方形。

  梯形:一组对边平行而另一组对边不平行的四边形。一组对边平行而另一组对边不平行的四边形是梯形。

  等腰梯形:两条腰相等的梯形。同一底上的两个内角相等,对角线相等。两腰相等的梯形是等腰梯形,

  同一底上两个内角相等的梯形是等腰梯形。

  直角梯形:一条腰和底垂直的梯形。一条腰和底垂直的梯形是直角梯形。

  多边形:在平面内,由若干条不在同一条直线上的线段首尾顺次相连组成的封闭图形叫做多边形。n边形的内角和等于(n-2)180

  多边形内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角。多边形的外角和都等于360。三角形、四边形和六边形都可以密铺。

  定义:在平面内,一个图形绕某个点旋转180,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。

  中心对称图形上的每一对对应点所连成的线段都被对称中心平分。

  第五章 位置的确定

  位置表示方法:方位角加距离;坐标;经纬度

  定义:在平面内,两条互相垂直且有公共原点的书轴组成平面直角坐标系。

  通常,两条数轴分别至于水平位置与铅直位置,取向右与向上方向分别为两条数轴的正方向。水平的数轴叫做x轴或横轴,铅直的数轴叫做y轴或纵轴,x轴和y统称坐标轴,它们的公共原点O称为直角坐标系的原点。

  图形随坐标变化:向上/下/左/右平移X个单位长度、横向/纵向拉长X倍、横向/纵向压缩X倍、放大/缩小了X倍、关于x/y轴成轴对称、关于原点O成中心对称

  第六章 一次函数

  定义:一般地,在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中是x自变量,y是因变量。

  若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称y是x的正比例函数。

  把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系中描出它的对应点,所有这些点组成的图形叫做该函数的图象。正比例函数y=kx的图象是经过原点(0,0)的一条直线。在一次函数y=kx+b中,

  当k0时,的值随值的增大而增大;当k0时,的值随值的增大而减小。

  第七章 二元一次方程组

  定义:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。像这样含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组 适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。解二元一次方程组的基本思路是“消元”把“二元”变为“一元”。以一个未知数代另一个未知数的解法称为代入消元法,简称代入法。通过两式加减消去其中一个未知数的解法称做加减消元法,简称加减法。

  第八章 数据的代表

  定义:一般地,对于n个数X1,X2,Xn,我们把1/n(X1+X2++Xn)叫做这个数的算术平均数,简称平均数,记为X。

  为A的三项测试成绩的加权平均数。

  一般地,个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数,一组数据出现次数最多的那个数据叫做这组数据的众数。

  八年级上册数学知识点 篇7

  1.基本概念:

  ⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。

  ⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称。

  ⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

  ⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角。

  ⑸等边三角形:三条边都相等的三角形叫做等边三角形。

  2.基本性质:

  ⑴对称的性质:

  ①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线。

  ②对称的图形都全等。

  ⑵线段垂直平分线的性质:

  ①线段垂直平分线上的点与这条线段两个端点的距离相等。

  ②与一条线段两个端点距离相等的点在这条线段的垂直平分线上。

  ⑶关于坐标轴对称的点的坐标性质

  ⑷等腰三角形的性质:

  ①等腰三角形两腰相等。

  ②等腰三角形两底角相等(等边对等角)。

  ③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合。

  ④等腰三角形是轴对称图形,对称轴是三线合一(1条)。

  ⑸等边三角形的性质:

  ①等边三角形三边都相等。

  ②等边三角形三个内角都相等,都等于60°

  ③等边三角形每条边上都存在三线合一。

  ④等边三角形是轴对称图形,对称轴是三线合一(3条)。

  3.基本判定:

  ⑴等腰三角形的判定:

  ①有两条边相等的三角形是等腰三角形。

  ②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)。

  ⑵等边三角形的判定:

  ①三条边都相等的三角形是等边三角形。

  ②三个角都相等的三角形是等边三角形。

  ③有一个角是60°的等腰三角形是等边三角形。

  4.基本方法:

  ⑴做已知直线的垂线:

  ⑵做已知线段的垂直平分线:

  ⑶作对称轴:连接两个对应点,作所连线段的垂直平分线。

  ⑷作已知图形关于某直线的对称图形:

  ⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短。

  数学整式的加减知识点

  1.整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。

  去括号法则:如果括号前是“十”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;如果括号前是“一”号,把括号和它前面的“一”号去掉,括号里各项都改变符号。

  2.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

  合并同类项:

  (1)合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。

  (2)合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

  (3)合并同类项步骤:

  a.准确的找出同类项。

  b.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。

  c.写出合并后的结果。

【八年级上册数学知识点大全】相关文章:

八年级数学上册知识点大全02-25

数学八年级上册知识点12-07

初二数学上册知识点总结大全11-23

初一上册数学知识点大全01-07

数学上册知识点08-02

八年级上册人教版数学知识点03-19

数学八年级上册知识点15篇01-23

数学八年级上册十三章知识点11-17

数学人教版八年级上册知识点07-31

数学知识点大全03-22