数学 百文网手机站

八年级上册数学知识点

时间:2021-11-29 19:32:14 数学 我要投稿

北师大版八年级上册数学知识点

  升上八年级的学生应该如何学好数学这门课程呢?最基本的方法就是将课本知识梳理明白,理解清楚。下面是百分网小编为大家整理的北师大版八年级上册数学知识点,希望对大家有用!

北师大版八年级上册数学知识点

  北师大版八年级上册数学知识点

  1、三角形的概念:由不在同意直线上的三条线段首尾顺次相接所组成的图形叫做三角形。组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。

  2、三角形的分类

  三角形按边的关系分类如下:

  三角形 底和腰不相等的等腰三角形

  等边三角形 三角形按角的关系分类如下:

  三角形 锐角三角形(三个角都是锐角的三角形)

  钝角三角形(有一个角为钝角的三角形) 3、三角形有下面三个特性: (1)三角形有三条线段

  (2)三条线段不在同一直线上 三角形是封闭图形 (3)首尾顺次相接

  4、三角形的三边关系定理及推论

  (1)三角形三边关系定理:三角形的两边之和大于第三边。

  推论:三角形的两边之差小于第三边。

  (2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形;②当已知两边时,可确定第三边的范围;③证明线段不等关系。

  5、三角形的内角和定理及推论

  三角形的内角和定理:三角形三个内角和等于180°。三角形外角的和等于360°。 推论:①直角三角形的两个锐角互余;②三角形的一个外角等于和它不相邻的两个内角的和;③三角形的一个外角大于任何一个和它不相邻的内角。

  6、三角形中的主要线段

  (1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。

  (2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。 (3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。

  八年级数学知识总结

  约分与通分:

  1.约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分;

  分式约分:将分子、分母中的公因式约去,叫做分式的约分。分式约分的根据是分式的.基本性质,即分式的分子、分母都除以同一个不等于零的整式,分式的值不变。 约分的方法和步骤包括:

  (1)当分子、分母是单项式时,公因式是相同因式的最低次幂与系数的最大公约数的积;

  (2)当分子、分母是多项式时,应先将多项式分解因式,约去公因式。

  2.通分:根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通。 分式通分:将几个异分母的分式化成同分母的分式,这种变形叫分式的通分。

  (1)当几个分式的分母是单项式时,各分式的最简公分母是系数的最小公倍数、相同字母的最高次幂的所有不同字母的积;

  (2)如果各分母都是多项式,应先把各个分母按某一字母降幂或升幂排列,再分解因式,找出最简公分母;

  (3)通分后的各分式的分母相同,通分后的各分式分别与原来的分式相等;

  (4)通分和约分是两种截然不同的变形.约分是针对一个分式而言,通分是针对多个分式而言;约分是将一个分式化简,而通分是将一个分式化繁。 注意:

  (1)分式的约分和通分都是依据分式的基本性质;

  (2)分式的变号法则:分式的分子、分母和分式本身的符号,改变其中的任何两个,分式的值不变。

  (3)约分时,分子与分母不是乘积形式,不能约分.

  3.求最简公分母的方法是: (1)将各个分母分解因式; (2)找各分母系数的最小公倍数;

  (3)找出各分母中不同的因式,相同因式中取次数最高的,满足(2)(3)的因式之积即为各分式的最简公分母(求最简公分母在分式的加减运算和解分式方程时起非常重要的作用)。

  八年级上册数学知识点

  多边形

  1、 多边形的概念:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。 组成多边形的各条线段叫做多边形的边;每相邻两条边的公共端点叫做多边形的顶点;多边形相邻两边组成的角叫多边形的内角,一个n边形有n个内角;多边形的边与它的邻边的延长线组成的角叫做多边形的外角。 在定义中应注意:

  ①一些线段(多边形的边数是大于等于3的正整数); ②首尾顺次相连,二者缺一不可;

  ③理解时要特别注意“在同一平面内”这个条件,其目的是为了排除几个点不共面的情况,即空间多边形. 2、多边形的分类:

  多边形可分为凸多边形和凹多边形,画出多边形的任何一条边所在的直线,如果整个多边形都在这条直线的同一侧,则此多边形为凸多边形,反之为凹多边形。

  凸多边形 凹多边形 各个角都相等、各个边都相等的多边形叫做正多边形。

  3、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。 (1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形。

  (2)n边形共有条对角线。

  4、多边形的内角和外角

  (1)多边形的内角和公式:n边形的内角和为(n-2) ×180° (2)多边形的外角和等于360°,它与边数的多少无关。

【八年级上册数学知识点】相关文章:

数学八年级上册知识点12-07

数学上册知识点08-02

数学人教版八年级上册知识点07-31

数学八年级上册十三章知识点11-17

八年级数学上册知识点08-10

八年级上册重要的数学知识点11-02

八年级上册数学实数知识点07-04

数学八年级上册“近似数”知识点07-26

数学八年级上册知识点15篇01-23

八年级上册人教版数学知识点03-19