小学数学知识点

时间:2024-09-18 14:24:41 数学 我要投稿

小学数学知识点

  在学习中,不管我们学什么,都需要掌握一些知识点,知识点就是掌握某个问题/知识的学习要点。想要一份整理好的知识点吗?下面是小编收集整理的小学数学知识点,希望对大家有所帮助。

小学数学知识点

  小学数学知识点 篇1

  一、升和毫升

  1、升:升是常用的容量单位。计量水、油、饮料等液体的多少,通常用升作单位,用L表示。

  2、毫升:计量比较少的液体,通常用毫升作单位,用mL(ml)表示。

  3、它们的进率是1000,即1升=1000毫升

  二、两、三位数除以两位数

  1、两、三位数除以整十数的估算:先用被除数的前两位除以除数,如果够除商就是两位数,如果不够,就看被除数的前三位,商是一位数。

  2、两、三位数除以两位数,可以用四舍五入法,把除数看作整十数来试商。四舍之后,除数小了,初商可能偏大,要调小;五入之后,除数大了,初商可能偏小,要调大;每次余下的数都要比除数小。

  3、被除数和除数同时乘或除以一个相同的数(0除外),商不变。

  4、验算:没有余数的除法,用商除数,看看是否等于被除数;

  有余数的除法,用商除数+余数,看看是否等于被除数。

  5、用除法解决周期现象中的问题比较方便。

  三、观察物体

  1、同样的物体,从不同的面看到的图形可能一样,也可能不一样;不同的物体从同一个面观察,看到的图形也有可能一样。

  2、从一个点最多只能看到物体的三个面。

  四、统计表和条形统计图

  1、统计表用表格呈现数据,条形统计图用直条呈现数据。

  2、统计表中合计是几个项目数量的总计。

  3、通常用画正字的方法来整理数据。

  4、求平均数的方法:、移多补少; 、先求和再求平均数 ( 平均数=总数量总个数)

  五、解决问题的策略

  1、步骤:、弄清题意,明确已知条件和所求问题;、分析数量关系,确定先算什么,再算什么;

  2、分析问题从问题想起,去寻找相关的已知条件,逐步解答问题。

  六、可能性

  1、一定、可能、不可能可以用来描述事件发生的可能性。

  2、有些事件发生的可能性是有大小。,数量多,可能性就大;数量少,可能性就小。

  七、整数四则混合运算

  1、在没有括号的算式里,有乘、除法和加、减法,要先算乘、除法,再算加、减法。

  2、算式里有括号,要先算括号里面的,括号里面也要先算乘、除法,再算加、减法。

  3、同级的运算,哪个在前就先算哪一个。

  八、垂直与平行线

  1、线段有两个端点,可测量;射线有一个端点,不可测量;直线没有端点,不可测量。

  2、连接两点的线段的长度叫作这两点间的距离。

  3、从一点引出的两条射线可以组成角。角有一个顶点和两条边。角的.两条边是射线。

  4、量角时要注意量角器的中心与顶点重合,0度刻度线与角的一条边重合。

  5、直角等于90度,平角等于180度,周角等于360度,锐角小于90度,钝角大于90度小于180度。

  锐角直角钝角平角周角。1个周角=2个平角=4个直角

  6、两条直线相交成直角,这两条直线互相垂直,其中一条是另一条直线的垂线,交点叫作垂足。

  7、从直线外一点到这条直线的垂直线段最短,这条垂直线段的长度叫作点到直线的距离。

  8、在一个平面内,不相交的两条直线互相平行,其中一条直线是另一条直线的平行线。

  小学数学知识点 篇2

  一、加法运算定律

  1、加法交换律:两个数相加,交换加数的位置,和不变。a+b=b+a

  2、加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。(a+b)+c=a+(b+c)加法的'这两个定律往往结合起来一起使用。如:165+93+35=93+(165+35)依据是什么?

  3、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和。a-b-c=a-(b+c)

  二、乘法运算定律:四年级数学运算定律知识点

  1、乘法交换律:两个数相乘,交换因数的位置,积不变。ab=ba

  2、乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以第一个数,积不变。(ab)c=a(bc)

  乘法的这两个定律往往结合起来一起使用。如:125788的简算

  3、乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这两个数相乘,再把积相加。(a+b)c=ac+bc(a-b)c=ac-bc

  小学数学知识点 篇3

  棱锥:棱锥是小学数学的基础内容,小学毕业试题中分值约为4分,多以选择题,填空题,判断题的形式出现,难易度属于简单。近几年主要考察:①棱锥的体积问题。②棱锥的侧面积问题。突破方法:牢固掌握有关棱锥的概念,边角之间的关系。这个要通过一定量的练习来掌握。

  认识位置与方向:认识位置与方向是小学数学的基础内容,小学毕业试题中分值约为3-6分,多以选择题,填空题,简答题的形式出现,难易度属于简单。近几年主要考察一下几个方面:①给出三视图,说出组成物体最少或最多立方体的个数。②给出物体,画出三视图。突破方法:①平时注意积累。②熟练掌握三视图的画法。

  图形的直观认识:图形的直观认识是小学数学的基础内容,小学毕业试题中分值约为6-12分,多以选择题,填空题,证明题的形式出现,难易度属于中等。主要考察一下几个方面:①圆的问题,多数是计算题。②三角形的计算问题。突破方法:①对圆的各个性质熟记,能简单画图。②熟练掌与三角形有关的性质等等。

  直线和线段:直线和线段是小学数学的基础内容,小学毕业试题中分值约为4-8分,多以选择题,填空题的形式出现,难易度属于简单。近几年主要考察一下几个方面:①线段长度的计算。②数轴上点的距离问题。突破方法:①掌握有关线段的'比,线段的中点的概念。②熟练掌握数轴概念。

  角的初步认识:角的初步认识是小学数学的基础内容,小学数学试题中分值约为3-6分,多以选择题,填空题的形式出现,难易度属于简单。近几年主要考察一下几个方面:①角的分类。②角的计算。突破方法:①牢固掌握有关角的概念。②熟练掌握角的计算问题,特别是是多个角的问题。

  长方形与正方形:长方形与正方形是小学数学的基础内容,小学毕业试题中分值约为5-10分,多以选择题,填空题,解答题的形式出现,难易度属于中等。近几年主要考察一下几个方面:①面积和周长问题。②体积,边长问题。突破方法:①牢固掌握有关长方形与正方形的概念:如边,对边,角等,特别是对角线的概念。②熟练掌握长方形与正方形的各种性质。

  平行四边形:平行四边形是小学数学的基础内容,小学毕业试题中分值约为4-8分,多以选择题,填空题,解答题的形式出现,难易度属于中等。近几年主要考察一下两个个方面:①平行四边形的周长与面积。②等腰梯形的周长和面积。突破方法:①牢固掌握有关平行四边形的性质。②等腰梯形的性质等等。三角形:三角形是小学几何的基础内容,也是最重要的部分之一。小学试题中分值约为7-13分,证明题的形式出现,难易度属于中等。近几年主要考察一下几个方面:①三角形的内角和,三角形的外角和,三角形的外角等等。②多边形的内角和及组合图形等等。突破方法:①牢固掌握有三角形的概念:如内角和,外角和,外角等,特别是三角形的各边之间的关系。②熟练掌握多边形的内角和,正多边形有关角的运算。在证明过程中特别注意步骤的合理性。

  圆:圆是小学数学的基础内容,小学毕业试题中分值约为4-8分,多以选择题,填空题,解答题的形式出现,难易度属于中等。近几年主要考察一下几个方面:①圆的面积。②圆的周长,有时用会降低题目的难度。突破方法:①牢固掌握有关圆的性质。②熟练掌握扇形,环形的面积公式。

  轴对称图形:轴对称图形是小学数学基础内容,小学毕业试题中分值约为4分,多以选择题,判断题的形式出现,难易度属于简单。近几年主要考察一下几个方面:①图形有几条对称轴。②轴对称和中心对称的综合应用。突破方法:①牢固掌握有关轴对称图形的概念。②平时注意积累,会区分轴对称图形和中心对称图形。

  作图题(操作题):作图题(操作题)是小学数学的基础内容,小学毕业试题中分值约为6分,多以选择题,填空题,简答题的形式出现,难易度属于难,近几年分值由增大的趋势。近几年主要考察一下几个方面:①图形的旋转问题。②影长问题。③平移图像的问题。突破方法:作图题试题开放,联系实际,要求学生进行多方位,多角度,多层次的探究,考查了学生思维的灵活性,发散性,创新性,平时注意动手总结。

  扩展阅读:

  小学数学知识点 篇4

  一、乘法的初步认识:

  1、意义:几个几相加用乘法计算。相同的加数×相同加数的个数。

  2、名称:乘数×乘数=积

  二、1-9的乘法口诀:熟记口诀,会口算乘法算式。

  1、补充口诀。

  2、根据口诀写出乘法算式、看图写乘法算式。

  三、解决问题。

  1、已知每个多少和个数,求一共多少?每个数量×个数=一共的数。

  2、加法和乘法对比解决问题:求一共有多少?

  理解题意、仔细审题、选择方法:看单位,分方法,单位相同用加法,单位不同用乘法。

  3、乘加、乘减的.算法多样化:根据不同的观察方位选用不同的解决问题。先算乘法,再算加、减。

  观察物体

  1、 辨认从不同位置(前面或正面、侧面或左面右面、后面)看到的简单物体的形状。

  2、 辨认从不同位置(正面、左侧面、上面)看到的简单几何体的形状。

  3、 用推理解决简单的问题。

  认识时间

  1、认识时间单位“分”:1分时间的长短,知道钟面上分针周1小格是1分,走一大格是5分,知道1小时=60分;

  2、认识几时几分:会认、读、写几时几分,和几时半,一刻等时间。时针在指几是几时,分针指几,就要几乘5,乘积就是几分。

  3、解决问题。

  小学二年级数学人民币换算练习题

  《元角分》换算练习题

  一、填空

  3元2角=( )角

  4元5角=( )角

  9元2角=( )角

  65角=( )元( )角

  1元=( )分

  24角=( )元( )角

  50分=( )角

  1元5角=( )角

  79角=( )元( )角

  4角8分=( )分

  64分=( )角( )分

  8元3角=( )角

  24角=( )元( )角

  1、人民币的单位有( )、( )、( )。

  2、以“元”为单位的人民币有( )、( )、( )、( )、( )、( )、( )。

  3、以“角”为单位的人民币有( )、( )、( )。

  4、以“分”为单位的人民币有( )、( )、( )。

  5、1元=( )角,1角=( )分

  6、1张1元可以换( )张2角;也可以换( )张5角。

  7、1张20元可以换( )张2元;也可以换( )张5元。

  9、一张10元可以换( )张1元和( )张5元。

  10、一张5角可以换( )张1角和( )张2角。

  11、一张10元可以换( )张2元或( )张5元。

  12、一张100元可以换( )张50元或( )张20元。

  13、 10张10元可以换成( )张50元。

  二、比较大小

  5元○45角 70角○7元

  2元5角○3元 77角○8元;

  0、50元○5分 0、08元○8角

  5角6分○65分 1元○100分;

  5元6角○65角 9元8角○10元

  5元6角○56角 3、00元○30角

  10、00元○10元 0、25元○5角

  1、50元○16角 2、50元○2元5分

  三、想一想

  1、一本书12、50元。你可以怎么付钱?

  (1)可以用( )张10元,( )张2元和( )张5角。

  (2)可以用( )张5元,( )张1元和( )张1角。

  (3)可以用( )张1元和( )张5角。

  2、一个书包的价格是25、50元?写出最简便的付钱方法。

  四、把下列价格按由高到低的顺序排列。

  2元9角,0、50元,3、00元,32分,4元

  ( )>( )>( )>( )>( )

  五、计算:

  1角5分-4分=( )角( )分

  4角+9角=( )角=( )元( )角

  1元-3角=( )角

  1角2分-6分=( )分

  1角5分-4分=( )角( )分

  4元3角-5角=( )角

  1元5角+2元5角=( )元

  3元4角-5角=( )元( )角

  4角+9角=( )元( )角

  4元5角+4角=( )元( )角

  6元5角+7角=( )元( )角

  5元7角-6角=( )元( )角

  小学数学知识点 篇5

  对于任意一个整数除以一个自然数,一定存在唯一确定的商和余数,使被除数=除数×商+余数(0≤余数除数),也就是说,整数a除以自然数b,一定存在唯一确定的q和r,使a=bq+r(0≤r

  我们把对于已知整数a和自然数b,求q和r,使a=bq+r(0≤r

  例如5÷7=0(余5),6÷6=1(余0),29÷5=5(余4).

  解决有关带余问题时常用到以下结论:

  (1)被除数与余数的差能被除数整除.即如果a÷b=q(余r),那么b|(a-r).

  因为a÷b=q(余r),有a=bq+r,从而a-r=bq,所以b|(a-r).

  例如39÷5=7(余4),有39=5×7+4,从而39-4=5×7,所以5|(39-4)

  (2)两个数分别除以某一自然数,如果所得的余数相等,那么这两个数的差一定能被这个自然数整除.即如果a1÷b=q1(余r),a2÷b=q2(余r),那么b|(a1-a2),其中a1≥a2.

  因为a1÷b=q1(余r),a2÷b=q2(余r),有a1=bq1+r,a2=bq2+r,从而a1-a2=(bql+r)-(bq2+r)=b(q1-q2),所以b|(a1-a2).

  例如,22÷3=7(余1),28÷3=9(余1),有22=3×7+1,28=3×9+1,从而28-22=3×9-3×7=3×(9-7),所以3|(28-22).

  (3)如果两个数a1和a2除以同一个自然数b所得的余数分别为r1和r2,r1与r2的和除以b的余数是r,那么这两个数a1与a2的和除以b的余数也是r.

  例如,18除以5的余数是3,24除以5的余数是4,那么(18+24)除以5的余数一定等于(3+4)除以5的余数(余2).

  (4)被除数和除数同时扩大(或缩小)相同的倍数,商不变,余数的也随着扩大(或缩小)相同的倍数.即如果a÷b=q(余r),那么(am)÷(bm)=q(余rm),(a÷m))÷(b÷m)=q(余r÷m)(其中m|a,m|b).

  例如,14÷6=2(余2),那么(14×8)÷(6×8)=2(余2×8),(14÷2)÷(6÷2)=2(余2÷2).

  下面讨论有关带余除法的'问题.

  例1 节日的街上挂起了一串串的彩灯,从第一盏开始,按照5盏红灯,4盏黄灯,3盏绿灯,2盏蓝灯的顺序重复地排下去,问第1996盏灯是什么颜色?

  分析:因为彩灯是按照5盏红灯,4盏黄灯,3盏绿灯,2盏蓝灯的顺序重复地排下去,要求第1996盏灯是什么颜色,只要用1996除以5+4+3+2的余数是几,就可判断第1996盏灯是什么颜色了.

  解:1996÷(5+4+3+2)=142…4

  所以第1996盏灯是红色.

  小学数学知识点 篇6

  1、理解比例的意义和基本性质,会解比例。

  2、理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。

  3、认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。

  4、解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。

  5、认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。

  6、渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育。

  7、比例的意义:表示两个比相等的式子叫做比例。如:2:1=6:

  8、组成比例的四个数,叫做比例的项。两端的两项叫做外项,中间的两项叫做内项。

  9、比例的性质:在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。例如:由3:2=6:4可知3×4=2×6;或者由x×1.5=y×1.2可知x:y=1.2:1.5。

  10、解比例:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。

  求比例中的未知项,叫做解比例。

  例如:3:x=4:8,内项乘内项,外项乘外项,则:4x=3×8,解得x=6。

  11、正比例和反比例:

  (1)成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。用字母表示y/x=k(一定)

  例如:

  ①速度一定,路程和时间成正比例;因为:路程÷时间=速度(一定)。

  ②圆的周长和直径成正比例,因为:圆的周长÷直径=圆周率(一定)。

  ③圆的面积和半径不成比例,因为:圆的面积÷半径=圆周率和半径的积(不一定)。

  ④y=5x,y和x成正比例,因为:y÷x=5(一定)。

  ⑤每天看的页数一定,总页数和天数成正比例,因为:总页数÷天数=每天看页数(一定)。

  (2)成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。用字母表示x×y=k(一定)

  例如:

  ①路程一定,速度和时间成反比例,因为:速度×时间=路程(一定)。

  ②总价一定,单价和数量成反比例,因为:单价×数量=总价(一定)。

  ③长方形面积一定,它的'长和宽成反比例,因为:长×宽=长方形的面积(一定)。

  ④40÷x=y,x和y成反比例,因为:x×y=40(一定)。

  ⑤煤的总量一定,每天的烧煤量和烧的天数成反比例,因为:每天烧煤量×天数=煤的总量(一定)。

  12、图上距离:实际距离=比例尺;

  例如:图上距离2cm,实际距离4km,则比例尺为2cm:4km,最后求得比例尺是1:200000。

  13、实际距离=图上距离÷比例尺;

  例如:已知图上距离2cm和比例尺,则实际距离为:2÷1/200000=400000cm=4km。

  14、图上距离=实际距离×比例尺;

  例如:已知实际距离4km和比例尺1:200000,则图上距离为:400000×1/200000=2(cm)

  1、根据方向和距离可以确定物体在平面图上的位置。

  2、在平面图上标出物体位置的方法:

  先用量角器确定方向,再以选定的单位长度为基准用直尺确定图上距离,最后找出物体的具体位置,并标上名称。

  3、描述路线图时,要先按行走路线确定每一个参照点,然后以每一个参照点建立方向标,描述到下一个目标所行走的方向和路程,即每一步都要说清是从哪儿走,向什么方向走了多远到哪儿。

  4、绘制路线图的方法:

  (1)确定方向标和单位长度。

  (2)确定起点的位置。

  (3)根据描述,从起点出发,找好方向和距离,一段一段地画。除第一段(以起点为参照点)外,其余每一段都要以前一段的终点为参照点。

  (4)以谁为参照点,就以谁为中心画出“十”字方向标,然后判断下一地点的方向和距离。

  小学数学知识点 篇7

  【数学公式】

  数量关系计算公式

  1、单价×数量=总价

  2、单产量×数量=总产量

  3、速度×时间=路程

  4、工效×时间=工作总量

  5、加数+加数=和

  6、一个加数=和—另一个加数

  7、被减数—减数=差

  8、减数=被减数—差

  9、被减数=减数+差

  10、因数×因数=积

  11、一个因数=积÷另一个因数

  12、被除数÷除数=商

  13、除数=被除数÷商

  14、被除数=商×除数

  15、有余数的除法:被除数=商×除数+余数

  一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5×6)

  1公里=1千米

  1千米=1000米

  1米=10分米

  1分米=10厘米

  1厘米=10毫米

  1平方米=100平方分米

  1平方分米=100平方厘米

  【珠算读写数】

  小小珠算真神奇,读数写数最容易。

  四位一级是关键,读写都从高位起。

  级前中0读一个,级末有0不读起。

  亿级万级仿个级,读完后面加单位。

  一级一级往下写,珠不靠梁0占位。

  【多位数的大小比较】

  多位数大小看位数,位数多的数就大。

  位数相同看高位,高位数大数就大。

  【分数大小的比较】

  分数大小的比较,分子、分母要记好。

  分母相同看分子,分子大的分数大。

  分子相同看分母,分母大的分数小。

  【列方程解应用题】

  列方程解应用题,抓住关键去分析。

  已知条件换成数,未知条件换字母。

  找齐相关代数式,连接起来读一读。

  【计量单位对口歌】

  小朋友,快排队,手拉手对单位。看谁说得快又对。

  人民币单位元、角、分,进率是10要牢记。

  1元得10角,1角得10分,1元等于100分。

  米、分米、厘米和毫米。

  单位是千米。

  1米=10分米,1分米=10厘米,1厘米=10毫米。

  米和千米也相临,进率1000是特例。

  吨与千克还有克,进率1000要牢记。

  形体单位更容易,相临100是面积,相临1000是体积。

  大单位,小单位,大小换算有规律。

  从大到小乘进率,小数点向右移;从小到大除以进率,小数点向左移。

  进率是10移一位,进率100移两位,进率1000移三位。以此类推。

  【分解质因数】

  分解质因数,方法是短除。

  除数是质数,商也是质数。

  表示的形式很简单:合数=质数×质数

  公约数、公倍数与互质数

  公约数,公倍数,关键要把“公”记住。

  公有的约数叫做公约数,公约数中的,就叫公约数。

  如果公约数只有1,它们就叫互质数。

  公有的倍数叫做公倍数。公倍数中最小的,就叫最小公倍数。

  求法有区别,千万别失误。

  短除只把除数乘,是求公约数。

  除数和商要连乘,是求最小公倍数。

  垂直平分线定理

  性质定理:在垂直平分线上的点到该线段两端点的距离相等;

  判定定理:到线段2端点距离相等的点在这线段的垂直平分线上

  角平分线:把一个角平分的.射线叫该角的角平分线。

  定义中有几个要点要注意一下的,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点

  性质定理:角平分线上的点到该角两边的距离相等

  判定定理:到角的两边距离相等的点在该角的角平分线上

  基本函数有哪些

  正弦:sine余弦:cosine(简写cos)

  正切:tangent(简写tan)

  余切:cotangent(简写cot)

  正割:secant(简写sec)

  余割:cosecant(简写csc)

  小学数学知识点 篇8

  1.分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。

  2.分数单位:把单位“1”平均分成若干份,表示其中一份的数,叫做分数单位。

  3.分数和除法的联系:分数的分子就是除法中的被除数,分母就是除法中的除数。

  分数和小数的联系:小数实际上就是分母是10、100、1000……的分数。

  分数和比的联系:分数的分子就是比的前项,分数的分母就是比的后项。

  4.分数的分类:分数可以分为真分数和假分数。

  5.真分数:分子小于分母的分数叫做真分数。真分数小于1。

  假分数:分子大于或等于分母的`分数叫做假分数。假分数大于或者等于1。

  6.最简分数:分子与分母互质的分数叫做最简分数。

  7.分数的基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。

  8.这样的分数可以化成有限小数:前提是这

  个分数要是最简分数,如果分母只含有2、5这2个质因数,这样的分数就能化成有限小数。

  9.百分数:表示一个数是另一个数的百分之几的数叫做百分数。百分数也叫做百分率或者百分比。百分数通常用“%”来表示。

  小学数学知识点 篇9

  1、在没有括号的算式里,如果只有加、减法,那么从左往右按顺序计算。

  2、在没有括号的算式里,如果只有乘、除法,那么从左往右按顺序计算。

  3、在没有括号的算式里,既有加、减法,又有乘、除法,那么先算乘、除法,再算加、减法。

  4、在有括号的算式里,先算括号里的算式,再算括号外面的算式。

  5、有关0的计算:

  (1)零加上任何数得原数。[0+5=5,8+0=8]

  (2)被减数等于减数,差为0。[5—5=0,7—7=0]

  (3)0与任何数相乘得0。[0×5=0,0×24=0]

  (4)0除于任何非0的数得0。[0÷18=0,0÷29=0]

  (5)0不能做除数。

  小学数学质数相关定理

  1、在一个大于1的数a和它2倍之间,即区间(a,2a)中必存在至少一个素数。

  2、存在任意长度的素数等差数列。(格林和陶哲轩,20xx年)

  3、一个偶数可以写成两个数字之和,其中每一个数字都最多只有9个质因数。(挪威布朗,1920年)

  4、一个偶数必定可以写成一个质数加上一个合成数,其中的因子个数有上界。(瑞尼,1948年)

  5、一个偶数必定可以写成一个质数加上一个最多由5个因子所组成的合成数。后来,有人简称这结果为(1+5)(中国,1968年)

  6、一个充分大偶数必定可以写成一个素数加上一个最多由2个质因子所组成的合成数。简称为(1+2)(中国陈景润)

  数学分数运算的法则

  同分母分数加减的法则

  同分母分数相加减,分母不变,只把分子相加减。

  同分母带分数加减的法则

  带分数相加减,先把整数部分和分数部分分别相加减,再把所得的数合并起来。

  异分母分数加减的法则

  异分母分数相加减,先通分,然后按照同分母分数加减的.法则进行计算。

  分数乘以整数的计算法则

  分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。

  分数乘以分数的计算法则

  分数乘以分数,用分子相乘的积作分子,分母相乘的积作分母。

  一个数除以分数的计算法则

  一个数除以分数,等于这个数乘以除数的倒数。

  小学数学知识点 篇10

  1.平均分的含义:每份分得同样的多,叫做平均分。除法就是用来解决平均分问题的。

  2.平均分里有两种情况:

  (1)把一些东西平均分成几份,求每份是多少;用除法计算,

  总数÷份数=每份数

  例:24本练习本,平均分给6人,每人分多少本?

  列式:

  (2)包含除(求一个数里面有几个几)把一个数量按每份是多少分成一份,求能平均分成几份;用除法计算,总数÷每份数=份数

  例:24本练习本,每人4本, 能分给多少人?

  列式:

  3、除法算式的读法:从左到右的顺序读,“÷”读作以,“=”读作等于,其他数字不变。

  4、除法算式各部分名称:被除数÷除数=商。

  例:42÷7=6 42是(被除数),7是( ),6是( );这个算式读作( )。

  5.一句口诀可以写四个算式。(乘数相同的除外)。

  例:用“三八二十四”这句口诀解决的算式是( )

  A、24÷6= B、4×6=

  C、24÷3= D、24÷4=

  6、用乘法口诀求商,想:除数×商=被除数。

  第三单元 图形的运动

  1、轴对称图形:沿一条直线对折,两边完全重合。对折后能够完全重合的图形是轴对称图形,折痕所在的直线叫对称轴。

  成轴对称图形的汉字:

  一,二,三,四,六,八,十,大,干,丰,土,士,中,田,由,甲,申,口,日,曰,木,目,森,谷,林,画,伞,王,人,非,菲,天,典,奠,旱,春,亩,目,山,单,杀,美,春,品,工,天,网,回,喜,莫,罪,夫,黑,里,亚。

  2、平移:当物体水平方向或竖直方向运动,并且物体的方向不发生改变,这种运动是平移。只有形状、大小、方向完全相同的图形通过平移才能互相重合。

  3、旋转:物体绕着某一点或轴进行圆周运动的现象就是旋转。

  (一)填空

  1、汽车在笔直的公路上行驶,车身的运动是( )现象

  2、长方形有( )条对称轴,正方形有( )条对称轴。

  3、小明向前走了3米,是( )现象。

  4、如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这样的图形叫做( )图形,这条直线就是( )

  (二)判断

  1、圆有无数条对称轴。( )

  2、张叔叔在笔直的公路上开车,方向盘的运动是旋转现象。( )

  3、所有的三角形都是轴对称图形。( )

  4、火箭升空,是旋转现象。( )

  5、树上的水果掉在地上,是平移现象 ( )

  (三)选择

  1、教室门的打开和关闭,门的运动是( )现象。

  A.平移 B旋转 C平移和旋转

  2、下面( )的运动是平移。

  A、旋转的呼啦圈 B、电风扇扇叶 C、拨算珠

  第四单元 表内除法二

  这单元主要是考口算题。有以下几种形式:

  1、用7、8、9的乘法口诀求商

  求商方法:想“除数×( )=被除数”,再根据乘法口诀计算得商。

  例.直接口算:28÷4 8÷8

  2、解决问题

  求一个数里有几个几,和把一个数平均分成几份,求每份是多少,都用除法计算。

  例.填空:45÷9=5 表示把( )平均分成( )份,每份是( );还表示( )里有( )个( );

  第五单元 混合运算

  1、同级运算:(连加,连减,连乘,连除,加减混合,乘除混合)

  在没有括号的算式里,只有加、减或只有乘、除法按照从左向右的顺序,依次计算。

  同级运算的类型:

  + +,- -,+ -,- +

  × ×,÷ ÷,× ÷,÷ ×

  例:

  23+6+18 97-34-28

  32+11-8 53-24+38

  2× 3 ×8 81÷9 ÷3

  2× 8÷4 72÷ 8×4

  2、非同级运算:(乘加,乘减,除加,除减)

  在没有括号的算式里,如果有乘、除法,又有加、减法,要先算乘、除法,再算加、减法。

  不同级运算的类型:

  × + , × -, + ×, - ×

  ÷ + , ÷ -, + ÷, - ÷

  例:

  5× 6 +14 3× 7-16

  3 + 5 ×9 45- 9×3

  45÷9+14 64÷ 8-8

  13 + 56÷7 64- 40 ÷8

  3、带小括号运算的类型:

  ×( + ), ×(-),

  ( + )÷, (- )÷。

  算式里有括号的,要先算括号里面的。

  例:

  6×(7 + 2) (24-18)×9

  ( 14+35 )÷7 (82-18 )÷8

  4.把两个算式合并成一个综合算式。(重点)。

  先看分步算式的第二步算式,再看其中第一个数和第二个数哪个数是前一步算式的结果,就用前一步算式替换掉那个数,其他的照写。当需要替换的是第二个数,必要时还需要加上小括号。

  例:6×7=42 42-15=27

  _____________________________

  15+9=24 24÷3=8 (强调括号不能忘)

  _____________________________

  36÷4=9 12+9=21

  _____________________________

  5.解决需要两步计算解决的问题。(要想好先算出什么,在解答什么)

  例:妈妈买回3捆铅笔,每捆8支,送给妹妹12支后,还剩多少支?

  先算____________________

  再算____________________

  例:学校买来80本科技书,分给六年级35本,剩下的分给其它5个年级,平均每个年级分到多少本?

  6.练习十三 第4题 (重点)

  第六单元 有余数的除法

  有余数的除法

  1、有余数的除法的意义:在平均分一些物体时,有时会有剩余。

  2、余数与除数的关系:在有余数的除法中,余数必须比除数小。最大的余数小于除数1,最小的余数是1。

  3、笔算除法的计算方法:

  (1)先写除号“厂”

  (2)被除数写在除号里,除数写在除号的左侧。

  (3)试商,商写在被除数上面,并要对着被除数的个位。

  (4)把商与除数的乘积写在被除数的下面,相同数位要对齐。

  (5)用被除数减去商与除数的乘积,如果没有剩余,就表示能除尽。

  4、有余数的除法的计算方法可以分四步进行:一商,二乘,三减,四比。

  (1)商:即试商,想除数和几相乘最接近被除数且小于被除数,那么商就是几,写在被除数的个位的上面。

  (2)乘:把除数和商相乘,将得数写在被除数下面。

  (3)减:用被除数减去商与除数的乘积,所得的差写在横线的下面。

  (4)比:将余数与除数比一比,余数必须必除数小。

  解决问题

  (1)余数比除数小。

  例:43÷7=()…( ) 余数可能是( )或者余数最大是( )

  (2)至少问题(进一法):商+1

  例:有27箱菠萝,王叔叔每次最多能运8箱。至少要运多少次才能运完这些菠萝。

  (3)最多问题(去尾法)

  例:小丽有10元钱,买3元一个的面包,最多能买几个?

  (4)用有余数除法的知识解决与按规律排列有关的问题。

  例:第68页 例6.

  (5)练习十五 第8题 第11题(特别讲,更要让学生弄懂,很可能会考)

  第七单元 万以内数的认识

  1、“一、十、百、千、万”是我们学过的五个计数单位,分别在个位、十位、百位、千位、万位上表示。相邻两个计数单位之间的进率是10。10个一是十,10个十是一百,10个一百是一千,10个一千是一万。

  万 千 百 十 个

  2、数位顺序表里:从右边起,第一位是个位,第二位是十位,第三位是百位,第四位是千位,第五位是万位。

  2、读数和写数都从高位起。万以内数的读法:读数时,要从高位读起,万位上是几就读几万,千位上是几就读几千,百位上是几就读几百,十位上是几就读几十,个位上是几就读几,中间有一个“0”或者连续两个“0”就只读一个“零”,末尾不管有几个0都不读。

  例:

  7438读作( )

  3604读作( )

  4900读作( )

  5002读作( )

  1050读作( )

  3、万以内数的写法:写数时,也要从高位写起,几个千就在千位上写几,几个百就在百位上写几,几个十就在十位上写几,几个一就在个位上写几,哪一位上一个数字也没有就写“0”占位。

  4、数的组成:就是看每个数位上是几,就有几个这样的计数单位组成。例:2647=( )+( )+( )+( )

  5、数的大小比较的方法:

  ①位数多的大于位数少的数;

  例:940()1899

  ②位数相同时,就比较最高位上的数字,数字大的这个数就大,反之就小;

  例:1350()2365

  ③如果最高位上的数字相同,就比较下一位上的数,依次类推。

  例:5940()5230

  6、最大的一位数:9,

  最小的一位数:1

  最大的两位数:99,

  最小的两位数:10

  两位数最高位是十位。

  最大的三位数:999,

  最小的三位数:100

  三位数最高位是百位。

  最大的四位数:9999,

  最小的四位数:1000

  四位数最高位是千位。

  最大的五位数:99999,

  最小的五位数:10000.

  五位数最高位是万位。最低位都是个位。

  7、近似数:与准确数很接近的整十、整百、整千的数。

  “大约”“可能”“大概”出现就是近似数。两位数的看个位上的数估算,三位数及三位数以上的看十位上的数估算。(四舍五入)

  (1)能判断那样的数是近似数?哪样的是准备数?

  (2)能找准一个数的近似数。

  8.整百、整千的.加减法。

  (1)不进位、不退位加减法 200+300= 3000+6000=

  600-400= 9000-5000=

  1400-400= 2600-20xx=

  (2)进位、退位加减法

  70+50 = 800+900=

  140-70= 1100-200=

  9.用估算策略解决问题。

  96页 例13(估大)

  练习19 第8题(估小)

  第八单元 克、千克

  1、质量的单位:克和千克。

  2、称较轻的物品的质量时,用“克”作单位;称较重的物品的质量时,用“千克”作单位。

  3、一个两分的硬币约是1克。两袋500克的盐约是1千克。

  4、1千克=1000克 1kg=1000g.

  进率是1000.

  延伸:

  1千克=1公斤、1公斤=2斤、1斤=500克、

  1斤=10两、1两=50克

  5、计算或者比较大小时,如果单位不同,就需要把单位统一。一般统一成单位“克”。

  3千克○3000克 900克○1千克

  6千克○5999克 1000克○1千克

  6.填合适的质量单位 (千克、克).

  7.简单的计算。

  60千克+35千克= 0克+38克=

  56千克÷7= 6克×8=

  52克-25克= 70千克-42千克=

  8.解决简单的问题

  (1) 1块橡皮重5克,6块这样的橡皮重多少克?

  (2)小华体重26千克,小方体重23千克,小华比小方重多少千克?小方比小华轻多少千克?

  第九单元 数学广角-推理

  1.简单推理:

  (1)两种:不是 就是

  例:硬币不是正面就是反面。

  (2)三种:确定 不是 就是

  109页例1

  2.稍复杂推理(阅读推理)

  方法:(1)抓住确定信息,进行推理。

  (2)用表格法去排除

  小学二年级数学下册知识点汇总2

  1.表内除法的知识点:

  (1)理解平均分的意义。会根据表内乘法,计算简单的除法。

  (2)会用乘法口诀求商。

  (3)根据乘除法的意义解决一些简单的乘除法应用题。

  (4)被除数÷除数=商

  被除数÷商=除数

  除数x商=被除数

  2.除法:是四则运算之一,已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。

  3.除法的性质

  一个数连续除以几个数,等于这个数除以那几个数的乘积,就是除法的性质。有时可以根据除法的性质来进行简便运算。

  如:300÷25÷4=300÷(25x4)

  4.除法公式

  (1)被除数÷除数=商

  (2)被除数÷商=除数

  (3)除数x商=被除数

  5.被除数

  除法运算中被另一个数所除的数,如24÷8=3.其中24是被除数。

  6. 除数

  在除法算式中,除号后面的数叫做除数。

  例:8÷2=4则2为除数。8为被除数。除数不能为0,否则没有意义。

  7.商:在一个除法算式里,被除数除数=商+余数,进而推导得出:商x除数+余数=被除数。

  8.完全商

  当数a除以数b(非0)能除得尽时,这时的商叫完全商。如:9÷3=3,3就是完全商。

  9.不完全商

  如果数a除以数b(非零)除不尽,得到的商就是不完全商。如:10÷3=3.....1,这里的3就是不完全商。

  10.被除数和商的关系

  被除数扩大(缩小)n倍,商也相应的扩大(缩小)n倍。

  除数扩大(缩小)n倍,相应的缩小(扩大)n倍)。

  11.2-6的乘法口诀

  2x2=4

  2x3=6 3x3=9

  2x4=8 3x4=12 4x4=16

  2x5=10 3x5=15 4x5=20 5x5=25

  2x6=12 3x6=18 4x6=24 5x6=30 6x6=36

  12. 直角:

  几何原本中的定义:当一条直线和另一条横的直线交成的邻角彼此相等时,这些角的每一个被叫做直角,而且称这一条直线垂直于另一条直线。

  一个直角等于90度,符号:Rt∠

  13.几何中的锐角:大于0°小于90°(直角)的角。

  两个锐角相加不一定大于直角,但一定小于平角。

  14.钝角:钝角大于直角(90%)小于平角(180%)的角叫做钝角。

  15.平移:平移是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。平移不改变图形的形状和大小。平移可以不是水平的。

  16.旋转:在平面内把一个图形绕点O旋转一个角度的图形变换叫做旋转,点O叫做旋转中心,旋转的角叫做旋转角,如果图形上的点P经过旋转变为点P’ ,那么这两个点叫做这个旋转的对应点。

  17.旋转的性质

  (1)对应点到旋转中心的距离相等。

  (2)对应点与旋转中心所连线段的夹角等于旋转角。

  (3)旋转前、后的图形全相等。

  18.旋转的三要素

  (1)旋转中心;

  (2)旋转方向;

  (3)旋转角度。

  注意:三要素中只要任意改变一个,图形就会不一样。

  旋转变换是由一个图形改变为另一个图形,在改变过程中心原图上所有的点都绕一个固定的点换同一方向,转动同一个角度。

  19.表内除法的知识点:

  (1)理解平均分的意义。会根据表内乘法,计算简单的除法。

  (2)会用乘法口诀求商。

  (3)根据乘除法的意义解决一些简单的乘除法应用题。

  (4)被除数÷除数=商

  被除数÷商=除数

  除数x商=被除数

  20.7. 8、9的乘法口诀

  7x7=49

  7x8=56 8x8=64

  7x9=63 8x9=72 9x9=81

  21.万以内的数的认识

  100=10个10(10个10相加的结果等于1000

  1000=10个100(10个100相加的结果等于1000)

  10000=10个1000(10个1000相加的结果等于10000)

  22克

  克为质量单位,符号g, 相等于千分之一干克.一克的重量大约相于一立方厘米水在室温的质量。

  1吨=1,000,000克(一百万克)

  1公斤(1千克)=1,000克(一千克)

  1市斤=500克(1克=0.002市斤)

  票写用

  1毫克=0.001克(1克=1000毫克)

  1微克=0.000001克(1克=1000000微克)

  1纳克=0.000000001克(1克=1000000000纳克)

  23.千克

  千克:(符号kg或kg)为国际单位制中量度质量的基本单位,千克也是日常生活中最常使用的基本单位。

  小学二年级数学下册知识点汇总3

  第一单元 长度单位

  1.常用的长度单位

  是:米、分米、厘米。米可以用字母“m”表示;分米可以用字母“dm ”来表示;厘米可以用字母“cm”来表示。

  2.测量较短物体通常用厘米作单位,测量较长物体通常用米作单位。

  3.米、分米和厘米的关系:

  1米=10分米 1分米=10厘米

  1米=10分米=100厘米 (重点)

  4.线段

  (1)线段的特点:

  ①线段是直的;

  ②线段有两个端点;

  ③线段有长有短,是可以量出长度的。

  (2)测量物体长度的方法:将物体的左端对准直尺的“0”刻度,看物体的右端对着直尺上的刻度是几,这个物体的长度就是几厘米。

  (3)测量物体的长度时,当不是从“0”刻度量起时,要用终点的刻度数减去起点的刻度数。

  (4)画线段的方法:先用笔对准尺子的’0”刻度,在它的上面点一个点,再对准要画到的长度的厘米刻度,在它的上面也点一个点,然后把这两个点连起来。

  第二单元 有余数的除法(重点)

  1.一个整数除以另一个不为0的整数,得到整数商以后还有余数,这样的除法叫做有余数的除法。

  2. 21÷5=4……1 读作:21除以5商4余1。

  3.在有余数的除法中,余数都比除数小。

  4.利用口诀求商:除数是几,就根据和几有关的乘法口诀求商。

  5.有余数除法应用题一定要在商和余数的后边都带上单位名称。

  6.有余数除法中,被除数=商×除数+余数

  7.(1)17名同学去划船,每条船最多只能坐4人,至少要租(5)条船。(进一法)

  (进一法)

  (2) 20米布,每6米做一套衣服,可以做(3)套衣服。(去尾法)

  第三单元 认识1000以内的数

  1.数数的方法:数比较大时可以一百一百地数,十个十个地数,零散的再一个一个地数,要根据具体的数目用不同的方法数数。

  2. 10个一是十 10个十是一百 10个一百是一千

  3.一个数从右边起第一位是个位,第二位是十位,第三位是百位。第四位是千位。

  4. 1000以内数的组成:百位上的数字表示几个百,十位上的数字表示几个十,个位上的数字表示几个一。

  5.读数的方法:

  从最高位读起,百位上是几读几百,十位上是几读几十,个位上是几就读几,中间有0读作零,末尾的0不读。

  6.写数的方法:

  哪一位上有几就在哪一位上写几;哪一位上一个数也没有就在哪一位上写0(0起占位的作用)。

  7.数的大小比较的方法:

  ①位数多的大于位数少的数;

  ②位数相同时,就比较最高位上的数字,数字大的这个数就大,反之就小;

  ③如果最高位上的数字相同,就比较下一位上的数,依次类推。

  8.最大的一位数

  最大的两位数:99,最小的两位数:10 两位数最高位是十位。

  最大的三位数:999,最小的三位数:100 三位数最高位是百位。

  最大的四位数:9999,最小的四位数:1000 四位数最高位是千位。

  9.算盘上每一档代表一个数位,计数时可在任选一档作个位。算珠都靠框时,表示算盘上没有拨上数。计数时拨珠靠梁,一个下珠表示1,一个上珠表示5。

  第四单元 千克和克

  1. 我们常用台秤和电子秤来测量物体有多重,计量比较轻物品的质量用克作单位。克用字母“g”表示,计量比较重物品的质量用千克作单位,千克用字母“Kg”表示。

  2. 1千克=1000克

  第五单元 四边形的认识

  1.四边形的特征:四边形有4条边,4个角。

  2.长方形的特征:长方形的对边相等,4个角都是直角。长方形长边的长叫做长,短边的长叫做宽。

  3.正方形的特征:正方形4条边相等,4个角都是直角。正方形每条边的长叫做边长。

  4.平行四边形的特征:平行四边形对边相等,易变形。

  第六单元 三位数加减三位数(重点)

  1.三位数加减三位数的笔算方法:

  (1)笔算加法:相同数位对齐,从个位加起,哪一位上的数加满几十,就向前一位进几。

  (2)笔算减法:相同数位对齐,从个位减起,哪一位上的数不够减,就从前一位退1当10,和本位上的数相加后再减。

  2.三位数加减三位数的验算方法:

  (1)加法的验算方法一:和减一个加数等于另一个加数;方法二:调换两个加数的位置再加一遍。

  (2)减法的验算方法一:差加减数等于被减数;方法二:被减数减差等于减数。

  3.在一个算式里,如果只有加减法,要按从左到右的顺序计算;如果有括号,要先算括号里面的。

  4.解决两步计算的问题,可以从已知条件入手,明确先求什么,再求什么;也可以从问题入手,明确要求什么,必须先知道什么。

  第七单元 时分秒(重点)

  1.钟面上有12个大格,60个小格,时针走一大格的时间是1小时,分针走1小格的时间是是1分钟,走一大格是5分钟,走一圈是60分钟。时针走1大格,分钍正好走一圈,是60分钟,所以 1小时=60分钟

  2.钟面上的时钍刚走过数字几,分针从12时起走了多少个小格,这时的时刻就是几时过几分,读作:几时几分。

  3.计算经过的时间,可以把时间分为几段,用加法计算经过时间;也可以用“经过的时间=结束时间-开始时刻”。

  4.秒针走1小格是1秒,1分=60秒。

  第八单元 探索乐园

  在排列时,要按一定的顺序进行,才不会重复或选漏。

  例如:

  1.用1、2、3三个数字组成不同的三位数可以有六种不同排法,分别是:123、132、213、231、312、321。

  2. 用0、1、2排成不同的三位数只有四种排法,分别是120、102、210、201,因为0不能在最高位百位上。

  3.三人过节打电话问候,只有三种打发。

  小学数学知识点 篇11

  1.奇偶性

  问题

  奇+奇=偶奇×奇=奇

  奇+偶=奇奇×偶=偶

  偶+偶=偶偶×偶=偶

  2.位值原则

  形如:abc=100a+10b+c

  3.数的整除特征:

  整除数特征

  2末尾是0、2、4、6、8

  3各数位上数字的和是3的倍数

  5末尾是0或5

  9各数位上数字的和是9的倍数

  11奇数位上数字的和与偶数位上数字的和,两者之差是11的倍数

  4和25末两位数是4(或25)的倍数

  8和125末三位数是8(或125)的倍数

  7、11、13末三位数与前几位数的差是7(或11或13)的倍数

  4.整除性质

  ①如果c|a、c|b,那么c|(ab)。

  ②如果bc|a,那么b|a,c|a。

  ③如果b|a,c|a,且(b,c)=1,那么bc|a。

  ④如果c|b,b|a,那么c|a.

  ⑤a个连续自然数中必恰有一个数能被a整除。

  5.带余除法

  一般地,如果a是整数,b是整数(b≠0),那么一定有另外两个整数q和r,0≤r

  当r=0时,我们称a能被b整除。

  当r≠0时,我们称a不能被b整除,r为a除以b的余数,q为a除以b的不完全商(亦简称为商)。用带余数除式又可以表示为a÷b=q……r,0≤r

  小学生奥数知识点

  数列求和:

  等差数列:在一列数中,任意相邻两个数的差是一定的,这样的一列数,就叫做等差数列。

  基本概念:首项:等差数列的第一个数,一般用a1表示;

  项数:等差数列的所有数的个数,一般用n表示;

  公差:数列中任意相邻两个数的差,一般用d表示;

  通项:表示数列中每一个数的公式,一般用an表示;

  数列的和:这一数列全部数字的和,一般用Sn表示。

  基本思路:等差数列中涉及五个量:a1,an,d,n,sn,通项公式中涉及四个量,如果己知其中三个,就可求出第四个;求和公式中涉及四个量,如果己知其中三个,就可以求这第四个。

  基本公式:通项公式:an=a1+(n-1)d;

  通项=首项+(项数一1)×公差;

  数列和公式:sn,=(a1+an)×n÷2;

  数列和=(首项+末项)×项数÷2;

  项数公式:n=(an+a1)÷d+1;

  项数=(末项-首项)÷公差+1;

  公差公式:d=(an-a1))÷(n-1);

  公差=(末项-首项)÷(项数-1);

  关键问题:确定已知量和未知量,确定使用的公式

  小学奥数几何知识点整理

  鸟头定理即共角定理。

  燕尾定理即共边定理的一种。

  共角定理:

  若两三角形有一组对应角相等或互补,则它们的面积比等于对应角两边乘积的比。

  共边定理:

  有一条公共边的三角形叫做共边三角形。

  共边定理:设直线AB与PQ交与M则S△PAB/S△QAB=PM/QM

  这几个定理大都利用了相似图形的方法,但小学阶段没有学过相似图形,而小学奥数中,常常要引入这些,实在有点难为孩子。

  为了避开相似,我们用相应的`底,高的比来推出三角形面积的比。

  例如燕尾定理,一个三角形ABC中,D是BC上三等分点,靠近B点。连接AD,E是AD上一点,连接EB和EC,就能得到四个三角形。

  很显然,三角形ABD和ACD面积之比是1:2

  因为共边,所以两个对应高之比是1:2

  而四个小三角形也会存在类似关系

  三角形ABE和三角形ACE的面积比是1:2

  三角形BED和三角形CED的面积比也是1:2

  所以三角形ABE和三角形ACE的面积比等于三角形BED和三角形CED的面积比,这就是传说中的燕尾定理。

  以上是根据共边后,高之比等于三角形面积之比证明所得。

  必须要强记,只要理解,到时候如何变形,你都能会做。至于鸟头定理,也不要死记硬背,掌握原理,用起来就会得心应手。

  小学数学知识点 篇12

  第一单元 数据整理与收集

  1.学会用“正”字记录数据。

  2.会数“正”,知道一个“正”字代表数量5。

  3.根据统计表,会解决问题。

  例:气象小组把6月份的`天气作了如下记录:

  (1) 把晴天、雨天、阴天的天数分别填在下面的统计表中。

  天气名称

  晴天

  雨天

  阴天

  天数

  (2) 从上表中可以看出:这个月中( )的天数最多,( )的天数最少。

  (3) 这个月中阴天有( )天。

  (4) 这个月中晴天比雨天多( )天。

  (5) 这个月中阴天比雨天多( )天。

  (6) 你还能提出什么问题?

  小学数学知识点 篇13

  1混合运算乘加、乘减、除加、除减的混合运算先算乘除,后算加减

  2带有小括号的混合运算有小括号时要先算小括号里面的。

  3、正确掌握“算式里既有加减法又有乘法,先算乘法,后算加减法”的运算顺序。

  4、能正确计算有关的两步式题。

  5、体会小括号在混合运算中的作用是改变运算顺序。

  6、掌握带小括号的混合运算的运算顺序:先算小括号里面的,后算小括号外面的。

  7、能正确计算带有小括号的运算。

  练习题

  一、把下面的算式按得数从大到小顺序排列

  24×5 25×4 45×2 42×5

  ( )>( )>( )>( )

  二、计算

  2400÷8+24×6=( ) 125×8-12÷6=( ) 8064÷(61-53)=( )

  三、在□里填上适当的数。

  (1)(45+□)÷4=18 (2)46÷2+□=49

  【参考答案】

  一、把下面的算式按得数从大到小顺序排列

  24×5 25×4 45×2 42×5

  ( 42×5 )>( 25×4 )>( 45×2 )>( 24×5 )

  二、计算

  2400÷8+24×6=( 444 ) 125×8-12÷6=( 998 ) 8064÷(61-53)=( 1008 )

  三、在□里填上适当的数。

  (1)(45+27)÷4=18 (2)46÷2+26=49

  整数与分数的比化简

  1、整数比的化简方法一:

  同时缩小法。根据比的基本性质,把比的前项、后项同时除以它们的最大公约数,使比化简。

  2、整数比的化简方法二:

  约分化简法。先把比改写成分数的`形式,然后根据分数的基本性质把这个分数进行约分,最后写成比的形式。

  3、分数比的化简方法一:

  把比的前、后项同时乘它们分母的最小公倍数。

  关系表达式

  1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数

  2、 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度

  4、单价×数量=总价总价÷单价=数量总价÷数量=单价

  5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率

  6、加数+加数=和和-一个加数=另一个加数

  7、被减数-减数=差被减数-差=减数差+减数=被减数

  8、因数×因数=积积÷一个因数=另一个因数

  9、被除数÷除数=商被除数÷商=除数商×除数=被除数

  小学数学知识点 篇14

  一、算术

  1、加法交换律:两数相加交换加数的位置,和不变。

  2、加法结合律:a + b = b + a

  3、乘法交换律:a b = b a

  4、乘法结合律:a b c = a (b c)

  5、乘法分配律:a b + a c = a b + c

  6、除法的性质:a b c = a (b c)

  7、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 0除以任何不是0的数都得0。 简便乘法:被乘数、乘数末尾有0的乘法,可以先把0前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。

  8、有余数的除法: 被除数=商除数+余数

  二、方程、代数与等式

  等式:等号左边的数值与等号右边的数值相等的式子叫做等式。 等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。

  方程式:含有未知数的等式叫方程式。

  一元一次方程式:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。学会一元一次方程式的例法及计算。即例出代有的算式并计算。

  代数: 代数就是用字母代替数。

  代数式:用字母表示的式子叫做代数式。如:3x =ab+c

  三、分数

  分数:把单位1平均分成若干份,表示这样的一份或几分的数,叫做分数。

  分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

  分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

  分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

  分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。

  分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

  倒数的概念:1.如果两个数乘积是1,我们称一个是另一个的倒数。这两个数互为倒数。1的倒数是1,0没有倒数。

  分数除以整数(0除外),等于分数乘以这个整数的倒数。

  分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小

  分数的除法则:除以一个数(0除外),等于乘这个数的倒数。

  真分数:分子比分母小的分数叫做真分数。

  假分数:分子比分母大或者分子和分母相等的`分数叫做假分数。假分数大于或等于1。

  带分数:把假分数写成整数和真分数的形式,叫做带分数。

  分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。

  四、体积和表面积

  三角形的面积=底高2。 公式 S= ah2

  正方形的面积=边长边长 公式 S= a2

  长方形的面积=长宽 公式 S= ab

  平行四边形的面积=底高 公式 S= ah

  梯形的面积=(上底+下底)高2 公式 S=(a+b)h2

  内角和:三角形的内角和=180度。

  长方体的表面积=(长宽+长高+宽高 ) 2 公式:S=(ab+ac+bc)2

  正方体的表面积=棱长棱长6 公式: S=6a2

  长方体的体积=长宽高 公式:V = abh

  长方体(或正方体)的体积=底面积高 公式:V = abh

  正方体的体积=棱长棱长棱长 公式:V = a3

  圆的周长=直径 公式:L=r

  圆的面积=半径半径 公式:S=r2

  圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=rh

  圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。 公式:S=ch+2s=ch+2r2

  圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh

  圆锥的体积=1/3底面积高。公式:V=1/3Sh

  五、数量关系计算公式

  单价数量=总价 单产量数量=总产量

  速度时间=路程 工效时间=工作总量

  加数+加数=和 一个加数=和+另一个加数

  被减数-减数=差 减数=被减数-差 被减数=减数+差

  因数因数=积 一个因数=积另一个因数

  被除数除数=商 除数=被除数商 被除数=商除数

【小学数学知识点】相关文章:

小学数学的知识点总结12-01

小学数学的知识点总结08-10

小学数学知识点09-06

小学数学必备知识点03-20

小学数学知识点详解08-15

小学数学简单的统计知识点06-15

小学数学知识点总结08-20

小学数学复习之小数知识点10-02

小学数学分数除法知识点10-10