小学数学知识点总结

时间:2024-09-17 13:48:15 数学 我要投稿

小学数学知识点总结15篇(集合)

  总结是在某一特定时间段对学习和工作生活或其完成情况,包括取得的成绩、存在的问题及得到的经验和教训加以回顾和分析的书面材料,通过它可以全面地、系统地了解以往的学习和工作情况,让我们来为自己写一份总结吧。那么我们该怎么去写总结呢?下面是小编为大家收集的小学数学知识点总结,欢迎阅读,希望大家能够喜欢。

小学数学知识点总结15篇(集合)

小学数学知识点总结1

  (一)口算除法

  1、整十数除整十数或几百几十的数的口算方法。

  (1)算除法,想乘法;比如60÷30=( )就可以想(2)×30=60

  (2)利用表内除法计算。利用除法运算的性质:将被除数和除数同时扩大或缩小相同的倍数,商不变。如:200÷50想20÷5=4,所以200÷50=4。

  2、两位数除两位数或三位数的估算方法:除法估算一般是把算式中不是整十数或几百几十的数用“四舍五入”法估算成整十数或几百几十的数,再进行口算。注意结果用“≈”号。

  (二)笔算除法

  1、除数是两位数的笔算除法计算方法:从被除数的高位除起,先用除数试除被除数的前两位,如果前两位数比除数小,就看前三位。除到被除数的哪一位,商就写在那一位的上面。每次除后余下的数必须比除数小。

  2、除数不是整十数的两位数的除法的试商方法:如果除数是一个接近整十数的两位数,就用“四舍五入”法把除数看做与它接近的整十数试商,也可以把除数看做与它接近的几十五,再利用一位数的乘法直接确定商。

  3、商一位数:

  (1)两位数除以整十数,如:62÷30;

  (2)三位数除以整十数,如:364÷70

  (3)两位数除以两位数,如:90÷29(把29看做30来试商)

  (4)三位数除以两位数,如:324÷81(把81看做80来试商)

  (5)三位数除以两位数,如:104÷26(把26看做25来试商)

  (6)同头无除商八、九,如:404÷42(被除数的位和除数的位一样,即“同头”,被除数的.前两位除以除数不够除,即“无除”,不是商8就是商9。)

  (7)除数折半商四五,如:252÷48(除数48的一半24,和被除数的前两位25很接近,不是商4就是商5。)

  4、商两位数:(三位数除以两位数)

  (1)前两位有余数,如:576÷18

  (2)前两位没有余数,如:930÷31

  5、判断商的位数的方法:

  被除数的前两位除以除数不够除,商是一位数;被除数的前两位除以除数够除,商是两位数。

  (三)商的变化规律

  1、商变化:

  (1)被除数不变,除数乘(或除以)几(0除外),商就除以(或乘)相同的数。

  (2)除数不变,被除数乘(或除以)几(0除外)商也乘(或除以)相同的数。

  2、商不变:被除数和除数同时乘(或除以)相同的数(0除外),商不变。

  (四)简便计算:同时去掉同样多的0,如9100÷700=91÷7=13

小学数学知识点总结2

  1、乘法的含义

  乘法是求几个相同加数连加的和的简便算法。如:计算:2+2+2=6,用乘法算就是:2×3=6或3×2=6.

  2、乘法算式的写法和读法

  ⑴连加算式改写为乘法算式的方法。求几个相同加数的和,可以用乘法计算。写乘法算式时,可以用乘法计算。写乘法算式时,可以先写相同的加数,然后写乘号,再写相同加数的个数,最后写等号与连加的和;也可以先写相同加数的个数,然后写乘号,再写相同加数,最后写等号与连加的和。

  如:4+4+4=12改写成乘法算式是4×3=12或3×4=12

  4 × 3 = 12或3 × 4 = 12

  ⑵乘法算式的'读法。读乘法算式时,要按照算式顺序来读。如:6×3=18读作:“6乘3等于18”。

  3、乘法算式中各部分的名称及实际表示的意义

  在乘法算式里,乘号前面的数和乘号后面的数都叫做“乘数”;等号后面的得数叫做“积”。

  4、乘法算式所表示的意义

  求几个相同加数的和,用乘法计算比较简单。一道乘法算式表示的就是几个相同加数连加的和。如:4×5表示5个4相加或4个5相加。

  5、加法写成乘法时,加法的和与乘法的积相同。

  6、乘法算式中,两个乘数交换位置,积不变。

  7、算式各部分名称及计算公式。

  乘法:乘数×乘数=积

  加法:加数+加数=和

  和—加数=加数

  减法:被减数—减数=差

  被减数=差+减数

  减数=被减数—差

  8、在9的乘法口诀里,几乘9或9乘几,都可看作几十减几,其中“几”是指相同的数。

  如:1×9=10—1 9×5=50—5

  9、看图,写乘加、乘减算式时:

  乘加:先把相同的部分用乘法表示,再加上不相同的部分。

  乘减:先把每一份都算成相同的,写成乘法,然后再把多算进去的减去。

  计算时,先算乘,再算加减。

  如:加法:3+3+3+3+2=14乘加:3×4+2=14乘减:3×5-1=14

  10、“几和几相加”与“几个几相加”有区别

  求几和几相加,用几加几;如:求4和3相加是多少?用加法(4+3=7)

  求几个几相加,用几乘几。

  如:求4个3相加是多少?(3+3+3+3=12或3×4=12或4×3=12)

  补充:几和几相乘,求积?用几×几.如:2和4相乘用2×4=8

  2个乘数都是几,求积?用几×几。如:2个8相乘用8×8=64

  11、一个乘法算式可以表示两个意义,如“4×2”既可以表示“4个2相加”,也可以表示“2个4相加”。

  “5+5+5”写成乘法算式是(3×5=15)或(5×3=15),

  都可以用口诀(三五十五)来计算,表示(3)个(5)相加

  3×5=15读作:3乘5等于15. 5×3=15读作:5乘3等于15

  第五单元观察物体

  1、从不同的角度观察同一物体,所看到的物体的形状一般是不同的;

  2、观察物体时,要抓住物体的特征来判断。

  3、观察长方体的某一面,看到的可能是长方形或正方形。观察正方形的某一面,看到的都是正方形

  4、观察圆柱体,看到的可能是长方形或圆形。观察球体,看到的都是圆形

  第七单元认识时间

  1、认识时间

  (1)钟面上有时针和分针,走得快的,较长的是分针;走得慢的,较短的是时针;

  (2)钟面上有12个大格,60个小格,1个大格有5个小格。时针走1大格是1小时,分针走1大格是5分钟。

  (3)时针走1大格分针要走一圈,所以1时=60分;

  (4)半小时=30分,一刻钟=15分钟

  (5)时间的读与写:如3:30,可以读作3时30分,也可以读作3点半;8时零5分应写作8:05。

  2、运用知识解决问题

  (1)要按着时间的先后顺序安排事件,时间上不能重复。

  (2)问过几分钟后是几时,先要读出现在是几时,再推算过几分钟后是几时几分。

  (3)时针和分针能形成直角的时刻是3时和9时。

  第八单元数学广角-搭配

  1、用两个不同的数字(0除外)组合时可以交换两个数字的位置;用三个不同的数字组合成两位数时,可以让每个数字(0除外)作十位数字,其余的两个数字依次和它组合。

  2、借用连线或者符号解答问题比较简单。

  3、排列与顺序有关,组合与顺序无关。

小学数学知识点总结3

  第一章————除法

  1、用乘法口诀做除法,余数一定要比除数小;

  2、应用题中,除数和余数的单位不一样;

  商的单位是问题的单位,余数的单位和被除数的单位相同;

  3、解决生活问题,如提的问题是“至少需要几条船?”,用进一法(用商加1)”,乘船、坐车、坐板凳等,读懂题目再作答。

  第二章————方向与位置(认识方向)

  1、地图上的方向口诀:上北下南,左西右东;

  辨认方向时要画方向标。

  2、“小猫在小狗的()方,()在小狗的东面”,是以小狗家为中心点,画出方位坐标,确定方向;

  “小猪在小马的()方”,“小马的()方是小猪”,是以小马家为中心点,画出方位坐标,确定方向。

  3、太阳早上从东边升起,西边落下;

  指南针一头指着(),一头指着()。小明早上面向太阳时,他的前面是(),后面是(),左面是(),右面是()

  4、当吹东南风时,红旗往()飘;

  吹西北风时,红旗往()飘。

  第三章————生活中的大数(认识10000以内的数)

  1、计数器上从右边数起第一位是()位,第二位是()位,第三位是()位,第四位是()位,千位的左边是()位,右边是()位。

  2、一个四位数最高位是()位,它的`千位是5,个位是2,其他的数位是0,它是()。

  3、在8536中,8在()位上,表示()。5在()位上,表示()。3在()位上,表示()。6在()位上,表示()。

  4、由三个千,五个一组成的数是(),由9个一,两个百和一个千组成的数是()。

  5、读数时,要从高读起,中间有一个或两个0,都只读一个0个“零”;

  末尾不管有几个“0”,都不读;

  写数,末尾不管有几个0,都不读。写数时,从高位写起,按照数位顺序表写,中间或末尾哪一位上没有数,就写“0”占位。

  6、10个十是(),10个一百是(),10个一千是(),100个一百是()。10000里面有()个百,1000里面有()个十。

  7、最大的三位数是(),最小的三位数是()。最大的四位数是(),最小的四位数是()。

  8、比较大小时,先比较位数,位数多的数就大,位数少的数就小;

  位数相同时,从最高位开始比较,最高位上的数字相同的,就比下一位,直到比出大小。从大到小用“>”,从小到大用“<”。

  第四章————测量1、毫米(mm)、厘米(cm)、分米(dm)、米(m),相邻单位之间的进率是“10”;

  2、1米=10分米,1分米=10厘米,1厘米=10毫米,1米=100厘米,1分米=100毫米,1000米=1千米;

  3、长度单位比较大小,首先要观察单位,换成统一的单位之后才能比较;

  4、长度单位的加减法,米加米,分米加分米.......就是把相同的单位进行加减。

  第五章————加与减1、口算整百加减整百时,想成几个百加减几个百,加减整十数的算理也相同。

  2、计算时要注意:(1)、相同数位要对齐,从个位算起。(2)、计算加法时,哪一位相加满十,要向前一位“进一”。(3)、计算减法时,哪一位不够减时,要向前一位“借1”,但是不要忘记退位时要减1;

  3、在估算中,如果估算到百位,就看十位数是多少,如果十位上的数大于5,则百位进1,十位和个位舍去,变为0,如估算678,就变为700;

  如果十位上的数小于5,则百位不变,十位和个位舍去,变为0,如估算607,就变为600;

  4、加数+加数=和一个加数=和-另一个加数如:()+156=368(用368-156计算)280+()=760(用760-280计算)

  5、被减数-减数=差被减数=减数+差减数=被减数-差如:()-156=368(用156+368计算)

  980-()=760(用980-760计算)

  6、加法的验算方法:(1)交换加数的位置,看和是否相同,(2)用和减去其中一个加数,看是否等于另一个加数;

  7、减法的验算方法:(1)用被减数减去差,看结果是否等于减数,(2)用减数加上差,看结果是否等于被减数。注意:运算时不要抄错数,也不要直接把验算结果抄上。

  第六章————认识角1、每个角都是由1个顶点和2条边组成;

  2、按角的大小,将角分为锐角、直角、钝角,所有的直角都相等,比直角小的是锐角,比直角大的是钝角。要知道一个角是什么角,可以用三角板上的直角比一比。

  3、比较角的大小时要注意:角的大小与边的长短无关,与角的张口大小有关,张口越大角就越大;

  4、正方形有四个直角,四条边都相等;

  长方形有四条边,四个直角,长方形的对边相等;

  5、平行四边形有四条边,有2个锐角,2个钝角,对边相等,对角相等。

  第七章————时、分、秒1、钟面上有12个大格,每个大格里有5个小格,一共有60个小格;

  2、秒针走一小格是1秒,走一大格是5秒,走一圈是60秒,就是1分钟;

  3、分针走一小格是1分,走一大格是5分,走一圈是60分,也就是1小时;

  4、时针走一大格是1小时,走一圈是12小时;

  5、时、分、秒相邻单位的进率是60;

  1时=60分1分=60秒6、比较时间,首先要观察,统一单位之后再比较大小。

  7、时间的加减:分减分,时减时,当分不够减时,要向前一位借1,化成60,再相加减;

  第八章————统计1、记录并学会计算,谁多,谁少。

小学数学知识点总结4

  竖式除法

  1、能正确掌握除法竖式的书写格式,掌握除法竖式的写法和每一步所表示的含义。

  2、进一步体会除法的意义。

  有余数的除法

  1、体会有余数除法的意义。

  2、积累正确的试商方法。

  4、能用竖式正确计算有余数除法,了解余数一定要比除数小。

  5、能运用有余数除法的知识解决一些简单的实际问题。

  分苹果(竖式除法)

  知识点:

  1、掌握表内除法竖式的书写格式。

  2、掌握除法竖式的写法和每一步所表示的含义。

  分橘子(有余数的除法(一))

  知识点:

  1、体会有余数除法的意义。

  2、会用竖式表示有余数的除法,了解余数一定要比除数小。

  分草莓(有余数的除法(二))

  知识点:

  1、掌握正确的试商方法。利用乘法口诀,两数相乘的积最接近被除数,而又比被除数小。

  2、能运用有余数除法的知识解决一些简单的实际问题。

  租船(有余数除法的应用(一))

  知识点:

  灵活运用有余数的除法的`有关知识解决生活中的简单实际问题。

  派车(有余数除法的应用(二))

  知识点:

  灵活运用有余数除法及相关知识解决生活中的简单实际问题。

  认识分米、毫米、千米

  1、分米用字母dm表示,1分米写成1dm

  2、毫米用字母mm表示,1毫米写成1mm

  3、千米用字母km表示,1千米写成1km

  米、分米、厘米、毫米、千米之间的换算

  1、1厘米=10毫米或1cm=10mm

  2、1分米=10厘米或1dm=10cm

  3、1米=100厘米或1m=100cm

  4、1米=10分米或1m=10dm

  5、1千米=1000米或1km=1000m

  感受1分米、1毫米、1千米间的实际长度

  1、一张IC卡的厚度大约是1毫米

  2、1扎的长度大约是1分米

  3、公共汽车两站地间的距离大约是1千米

  4、根据具体情境选择合适的长度单位

  铅笔有多长(分米、毫米的认识)

  知识点:

  通过实际测量,了解米、分米、厘米、毫米之间的关系。

  1分米=10厘米或1dm=10cm;

  1米=10分米或1m=10dm;

  1厘米=10毫米或1cm=10mm;

  2、知道1分米或1毫米的实际长度。

  3、能利用长度单位之间关系进行单位换算

  1千米有多长(千米的认识)

  知识点:

  1、体验1千米有多长。

  2、了解千米和米之间的关系;1千米=1000米或1km=1000m。

  3、能正确使用长度单位。

  认识角(角的初步认识)

  知识点:

  1、角是由一个顶点和两条直直的边组成的;

  2、角的各部分名称、记法和读法;

  3、能用角的符号(“∠”)表示角;

  4、会比较角的大小。了解角的大小与两边张口的大小有关,与边的长短无关;

  5、能辨认直角、锐角和钝角。

  长方形与正方形

  知识点:

  1、掌握长方形正方形的特征:长方形和正方形都有4条边,4个直角,长方形对边相等,正方形四条边都相等。

  2、初步了解长方形、正方形之间的联系:正方形是特殊的长方形。

  3、能在方格纸上画出长方形与正方形。

  平行四边形

  知识点:

  1、直观认识平行四边形,知道平行四边形有四条边、四个角,对边相等。

  2、初步了解长方形是特殊的平行四边形。

  欣赏与设计

  知识点:

  1、进一步掌握已学过的图形,感受图形之美。

  2、能用学过的图形在方格纸上设计图案,涂色时有一定规律性。

  认识新的数计数单位

  1、认识计数单位“千”“万”

  2、万以内计数单位间的关系

  3、万以内数位顺序表

  万以内数的。读写

  1、会读万以内的数

  2、会写万以内的数

  3、感受“满十进一”的十进制计数法

  万以内数比较大小

  1、会比较万以内数的大小

  2、会用符号表示万以内数的大小

  3、结合实际进行万以内数的估计。

  数一数(认识新的计数单位)

  知识点:

  1、认识计数单位“千”“万”。

  2、了解万以内计数单位间的关系:10个一是十;10个十是一百;10个一百是一千;10个一千是一万。

  3、掌握万以内数的数位顺序。从右起第一位开始依次为个位,十位,百位,千位,万位。

  4、结合具体情景,对“一千”和“一万”有具体的感受。

  5、初步感受“满十进一”的十进制计数法。

  拨一拨(万以内数的读写)

  知识点:

  1、会数数:一个一个地数;十个十个地数;一百一百地数等。

  2、会读万以内的数:从高位起,依次读出每个数位上的数,末尾有零都不读,中间有一个或两个零只读一个零。

  3、会写万以内的数:从高位起,依次写出每个数位上的数,哪位上一个单位也没有,就在那位上写零。

  4、初步感受“满十进一”的十进制计数法。

  比一比(万以内数比较大小)

  知识点:

  1、会比较万以内数的大小。方法:先比较数位的多少,数位多的数比较大,如果数位相同,先比最高位,最高位上的数相同,就比较下一位……

  2、能够用符号表示万以内数的大小。

  3、能结合实际进行万以内数的估计。

  统计表

  1、读懂信息

  2、分析信息、预测信息

  条形统计图

  1、读懂

  纵向:用直条的高矮表示(横向表示类别竖向表示数量)

  横向:用直条的长短表示(竖向表示类别横向表示数量)

  2、亲自经历收集数据

  3、绘制条形统计图并做出分析

  读统计图表(条形统计图)

  知识点:

  1、能读懂统计图表,从统计图表中获得信息。

  2、认识条形统计图,体会条形统计图能直观地表示数量的多少。

  3、能根据统计图表进行简单的分析。

  讨论(统计图表)

  知识点:

  1、对统计图表中的数据作初步的分析和预测。

  2、通过“泡豆芽”小实验记录的数据,能在方格纸上绘制统计图并作出分析。

  辨认方向

  1、给定一个方向,辨认其余的七个方向

  2、用八个方向的词语描述物体所在的位置

  认识路线

  1、会使用八个方向认识简单的路线图。

  2、路线图说出从出发地到目的地行走方向、距离和经过的地方。

  辨认方向

  知识点:

  1、结合具体情境给定一个方向(东、南、西或北),能辨认其余的七个方向,并能用这些词语描述物体所在的位置。

  2、能根据给定的一个方向,辨认地图中的其他七个方向。

  认识路线

  知识点:

  1、学会使用八个方向认识简单的路线图。

  2、能根据路线图说出从出发地到目的地行走的方向、距离和经过的地方。

小学数学知识点总结5

  准备课

  1、数一数

  数数:数数时,按一定的顺序数,从1开始,数到最后一个物体所对应的那个数,即最后数到几,就是这种物体的总个数。

  2、比多少

  同样多:当两种物体一一对应后,都没有剩余时,就说这两种物体的数量同样多。

  比多少:当两种物体一一对应后,其中一种物体有剩余,有剩余的那种物体多,没有剩余的那种物体少。

  比较两种物体的多或少时,可以用一一对应的方法。

  位置

  1、认识上、下

  体会上、下的含义:从两个物体的位置理解:上是指在高处的物体,下是指在低处的物体。

  2、认识前、后

  体会前、后的含义:一般指面对的方向就是前,背对的方向就是后。

  同一物体,相对于不同的参照物,前后位置关系也会发生变化。

  从而得出:确定两个以上物体的前后位置关系时,要找准参照物,选择的参照物不同,相对的前后位置关系也会发生变化。

  3、认识左、右

  以自己的左手、右手所在的位置为标准,确定左边和右边。右手所在的一边为右边,左手所在的一边为左边。

  要点提示:在确定左右时,除特殊要求,一般以观察者的左右为准。

  学好数学的方法和技巧总结

  主动预习

  预习的目的是主动获取新知识的过程,有助于调动学习积极主动性,新知识在未讲解之前,认真阅读教材,养成主动预习的习惯,是获得数学知识的重要手段。

  因此,要注意培养自学能力,学会看书。如自学例题时,要弄清例题讲的什么内容,告诉了哪些条件,求什么,书上怎么解答的,为什么要这样解答,还有没有新的解法,解题步骤是怎样的。抓住这些重要问题,动脑思考,步步深入,学会运用已有的.知识去独立探究新的知识。

  让数学课学与练结合

  在数学课上,光听是没用的。自己也要在草稿纸上练。当遇到不懂的难题时,一定要提出来,不能不懂装懂,否则考试遇到类似的题目就可能不会做。听老师讲课时一定要全神贯注,要注意细节问题。应抓住听课中的主要矛盾和问题,在听讲时尽可能与老师的讲解同步思考,必要时做好笔记。每堂课结束以后应深思一下进行归纳,做到一课一得。

  单项式书写格式

  1、数字写在字母的前面,应省略乘。[5a]、[16xy]等。

  2、π是常数,因此也可以作为系数。它不是未知数。

  3、若系数是带分数,要化成假分数。

  4、当一个单项式的系数是1或—1时,“1”通常省略不写,如[(—1)ab]写成[—ab]等。

  5、在单项式中字母不可以做分母,分子可以。

  6、单独的数“0”的系数是零,次数也是零。

  7、常数的系数是它本身,次数为零。

  8、如果是分数的多项式,那么他的系数就是他的分数常数,次数为最高次幂。

小学数学知识点总结6

  1.根据方向和距离可以确定物体在平面图上的位置。

  2.在平面图上标出物体位置的方法:

  先用量角器确定方向,再以选定的单位长度为基准用直尺确定图上距离,最后找出物体的具体位置,并标上名称。

  3.描述路线图时,要先按行走路线确定每一个参照点,然后以每一个参照点建立方向标,描述到下一个目标所行走的方向和路程,即每一步都要说清是从哪儿走,向什么方向走了多远到哪儿。

  4.绘制路线图的方法:

  (1)确定方向标和单位长度。

  (2)确定起点的`位置。

  (3)根据描述,从起点出发,找好方向和距离,一段一段地画。除第一段(以起点为参照点)外,其余每一段都要以前一段的终点为参照点。

  (4)以谁为参照点,就以谁为中心画出“十”字方向标,然后判断下一地点的方向和距离。

小学数学知识点总结7

  一、百分数的意义:

  表示一个数是另一个数的百分之几的数叫做百分数。百分数又叫百分比或百分率,百分数不能带单位。

  注意:百分数是专门用来表示一种特殊的倍比关系的,表示两个数的比。

  1、百分数和分数的区别和联系:

  (1)联系:都可以用来表示两个量的倍比关系。

  (2)区别:意义不同:百分数只表示倍比关系,不表示具体数量,所以不能带单位。分数不仅表示倍比关系,还能带单位表示具体数量。百分数的分子可以是小数,分数的'分子只可以是整数。

  注意:百分数在生活中应用广泛,所涉及问题基本和分数问题相同,分母是100的分数并不是百分数,必须把分母写成“%”才是百分数,所以“分母是100的分数就是百分数”这句话是错误的。“%”的两个0要小写,不要与百分数前面的数混淆。一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。一般出粉率在70%、80%,出油率在30%、40%。

  2、小数、分数、百分数之间的互化

  (1)百分数化小数:小数点向左移动两位,去掉“%”。

  (2)小数化百分数:小数点向右移动两位,添上“%”。

  (3)百分数化分数:先把百分数写成分母是100的分数,然后再化简成最简分数。

  (4)分数化百分数:分子除以分母得到小数,(除不尽的保留三位小数)然后化成百分数。

  (5)小数化分数:把小数成分母是10、100、1000等的分数再化简。

  (6)分数化小数:分子除以分母。

  二、百分数应用题

  1、求常见的百分率,如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几。

  2、求一个数比另一个数多(或少)百分之几,实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。

  求甲比乙多百分之几:(甲-乙)÷乙

  求乙比甲少百分之几:(甲-乙)÷甲

  3、求一个数的百分之几是多少。一个数(单位“1”)×百分率

  4、已知一个数的百分之几是多少,求这个数。

  部分量÷百分率=一个数(单位“1”)

  5、折扣、打折的意义:几折就是十分之几也就是百分之几十

  折扣、成数=几分之几、百分之几、小数

  八折=八成=十分之八=百分之八十=0.8

  八五折=八成五=十分之八点五=百分之八十五=0.85

  五折=五成=十分之五=百分之五十=0.5=半价

  6、利率

  (1)存入银行的钱叫做本金。

  (2)取款时银行多支付的钱叫做利息。

  (3)利息与本金的比值叫做利率。

  利息=本金×利率×时间

  税后利息=利息-利息的应纳税额=利息-利息×5%

  注:国债和教育储蓄的利息不纳税

  7、百分数应用题型分类

  (1)求甲是乙的百分之几——(甲÷乙)×100%=百分之几

  (2)求甲比乙多百分之几——(甲-乙)÷乙×100%

  (3)求甲比乙少百分之几——(乙-甲)÷乙×100%

小学数学知识点总结8

  (一)数与计算

  (1)20以内数的认识。加法和减法。数数。数的组成、顺序、大小、读法和写法。加法和减法。连加、连减和加减混合式题

  (2)100以内数的`认识。加法和减法。数数。个位、十位。数的顺序、大小、读法和写法。两位数加、减整十数和两位数加、减一位数的口算。两步计算的加减式题。

  (二)量与计量

  钟面的认识(整时)。人民币的认识和简单计算。

  (三)几何初步知识

  长方体、正方体、圆柱和球的直观认识。

  长方形、正方形、三角形和圆的直观认识。

  (四)应用题

  比较容易的加法、减法一步计算的应用题。多和少的应用题(抓有效信息的能力)

  (五)实践活动

  选择与生活密切联系的内容。例如根据本班男、女生人数,每组人数分布情况,想到哪些数学问题。

小学数学知识点总结9

  通过欣赏和设计图案的活动,进一步认识正方形、长方形、三角形和圆。

  小小运动会

  1、应用100以内的.进位加法与退位减法的计算方法进行正确的计算。

  2、经历与他人交流各自算法的过程,体会算法多样化。

  3、体会长方形、正方形、三角形和圆在生活中的普遍存在。

  4、能利用图形设计美丽的图案。

小学数学知识点总结10

  认识钟表:会认读整时、整时过一点或差一点到整时这三种时间。

  首先认识时针、分针

  时针:粗短;

  分针:细长

  认识整时技巧:分针指向12,时针指向几就是几时整。

  分针指着12,时针指着1就是1时。1:00

  分针指着12,时针指着2就是2时。2:00

  分针指着12,时针指着6就是6时。6:00

  分针指着12,时针指着8就是8时。8:00

  分针指着12,时针指着12就是12时。12:00

  注意:分针指在12附近,时针马上指着准确的数字,此时是“大约”几时整。

  在练习拨针时,时针和分针一定要拨到准确的位置上。

  时针和分针并没有正对着钟面上的`数,而是稍微偏了一点,像这种差一点不到几时,或是几时刚刚过一点,我们就不能说正好是几时,而应该说“大约是几时”。

  注意:“大约是几时”拨针时应该掌握在前后5分以内。

小学数学知识点总结11

  小学数学知识点全总结之一:运算定律

  加法交换律 a+b=b+a

  结合律 (a+b)+c=a+(b+c)

  减法性质 a-b-c=a-(b+c)

  a-(b-c)=a-b+c

  乘法交换律 a×b=b×a

  结合律 (a×b)×c=a×(b×c)

  分配律 (a+b)×c=a×c+b×c

  除法性质 a÷(b×c)=a÷b÷c

  a÷(b÷c)=a÷b×c

  (a+b)÷c=a÷c+b÷c

  (a-b)÷c=a÷c-b÷c

  商不变性质m≠0 a÷b=(a×m)÷(b×m) =(a÷m)÷(b÷m)

  ■积的变化规律:在乘法中,一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)相同的倍数。

  推广:一个因数扩大A倍,另一个因数扩大B倍,积扩大AB倍。

  一个因数缩小A倍,另一个因数缩小B倍,积缩小AB倍。

  ■商不变规律:在除法中,被除数和除数同时扩大(或缩小)相同的倍数,商不变。

  推广:被除数扩大(或缩小)A倍,除数不变,商也扩大(或缩小)A倍。

  被除数不变,除数扩大(或缩小)A倍,商反而缩小(或扩大)A倍。

  ■利用积的变化规律和商不变规律性质可以使一些计算简便。但在有余数的除法中要注意余数。

  如:8500÷200= 可以把被除数、除数同时缩小100倍来除,即85÷2= ,商不变,但此时的余数1是被缩小100被后的,所以还原成原来的余数应该是100。

  小学数学知识点全总结之二:简易方程

  ■用字母表示数

  用字母表示数是代数的基本特点。既简单明了,又能表达数量关系的.一般规律。

  ■用字母表示数的注意事项

  1、数字与字母、字母和字母相乘时,乘号可以简写成““或省略不写。数与数相乘,乘号不能省略。

  2、当1和任何字母相乘时,“ 1” 省略不写。

  3、数字和字母相乘时,将数字写在字母前面。

  ■含有字母的式子及求值

  求含有字母的式子的值或利用公式求值,应注意书写格式。

  ■等式与方程

  表示相等关系的式子叫等式。

  含有未知数的等式叫方程。

  判断一个式子是不是方程应具备两个条件:一是含有未知数;二是等式。所以,方程一定是等式,但等式不一定是方程。

  ■方程的解和解方程

  使方程左右两边相等的未知数的值,叫方程的解。

  求方程的解的过程叫解方程。

  在列方程解文字题时,如果题中要求的未知数已经用字母表示,解答时就不需要写设,否则首先演将所求的未知数设为x。

  ■解方程的方法

  1、直接运用四则运算中各部分之间的关系去解。如x-8=12

  加数+加数=和 一个加数=和-另一个加数

  被减数-减数=差 减数=被减数-差 被减数=差+减数

  被乘数×乘数=积 一个因数=积÷另一个因数

  被除数÷除数=商 除数=被除数÷商 被除数=除数×商

  2、先把含有未知数x的项看作一个数,然后再解,如3x+20=41

  先把3x看作一个数,然后再解。

  3、按四则运算顺序先计算,使方程变形,然后再解。如2.5×4-x=4.2,要先求出2.5×4的积,使方程变形为10-x=4.2,然后再解。

  4、利用运算定律或性质,使方程变形,然后再解。如:2.2x+7.8x=20

  先利用运算定律或性质使方程变形为(2.2+7.8)x=20,然后计算括号里面使方程变形为10x=20,最后再解。

小学数学知识点总结12

  一、圆的特征

  1、圆是平面内封闭曲线围成的平面图形。

  2、圆的特征:外形美观,易滚动。

  3、圆心O:圆中心的点叫做圆心.圆心一般用字母O表示。

  圆多次对折之后,折痕的相交于圆的中心即圆心。圆心确定圆的位置。

  半径r:连接圆心到圆上任意一点的线段叫做半径。在同一个圆里,有无数条半径,且所有的半径都相等。半径确定圆的大小。

  直径d:通过圆心且两端都在圆上的线段叫做直径。在同一个圆里,有无数条直径,且所有的直径都相等。直径是圆内最长的线段。

  同圆或等圆内直径是半径的2倍:d=2r或r=d÷2

  4、等圆:半径相等的圆叫做同心圆,等圆通过平移可以完全重合。同心圆:圆心重合、半径不等的两个圆叫做同心圆。

  5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的直线叫做对称轴。

  有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角。

  有二条对称轴的图形:长方形

  有三条对称轴的图形:等边三角形

  有四条对称轴的图形:正方形

  有无条对称轴的图形:圆,圆环

  6、画圆

  (1)圆规两脚间的距离是圆的半径。(2)画圆步骤:定半径、定圆心、旋转一周。

  二、圆的周长:

  围成圆的曲线的长度叫做圆的周长,周长用字母C表示。

  1、圆的周长总是直径的三倍多一些。

  2、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。

  即:圆周率π=周长÷直径≈3.14

  所以,圆的周长(c)=直径(d)×圆周率(π)—周长公式:c=πd,c=2πr

  圆周率π是一个无限不循环小数,3.14是近似值。

  3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。

  4、半圆周长=圆周长一半+直径=πr+d

  三、圆的面积s

  1、圆面积公式的推导

  如图把一个圆沿直径等分成若干份,剪开拼成长方形,份数越多拼成的图像越接近长方形。

  圆的半径=长方形的宽

  圆的周长的一半=长方形的长

  长方形面积=长×宽

  所以:圆的面积=圆的周长的一半(πr)×圆的半径(r)

  S圆=πr×r=πr2

  2、几种图形,在面积相等的情况下,圆的周长最短,而长方形的`周长最长;反之,在周长相等的情况下,圆的面积则,而长方形的面积则最小。

  周长相同时,圆面积,利用这一特点,篮子、盘子做成圆形。

  3、圆面积的变化的规律:半径扩大多少倍,直径、周长也同时扩大多少倍,圆面积扩大的倍数是半径、直径扩大的倍数的平方倍。

  4、环形面积=大圆–小圆=πR2-πr2

  扇形面积=πr2×n÷360(n表示扇形圆心角的度数)

  5、跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加上两条直跑道的和。因为两条直跑道长度相等,所以,起跑线不同,相邻两条跑道起跑线也不同,间隔的距离是:2×π×跑道宽度。

  一个圆的半径增加a厘米,周长就增加2πa厘米。

  一个圆的直径增加b厘米,周长就增加πb厘米。

  6、任意一个正方形的内切圆即圆的直径是正方形的边长,它们的面积比是4∶π。

  7、常用数据

  π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7

小学数学知识点总结13

  1、上、下

  (1)在具体场景中理解上、下的含义及其相对性。

  (2)能比较准确地确定物体上下的方位,会用上、下描述物体的相对位置。

  (3)培养学生初步的空间观念。

  2、前、后

  (1)在具体场景中理解前、后、最×的含义,以及前后的相对性。

  (2)能比较准确地确定物体前后的方位,会用前、后、最前、最后描述物体的相对位置。

  (3)培养学生初步的空间观念。

  加减法

  (一)本单元知识网络:

  (二)各课知识点:

  有几枝铅笔(加法的认识)

  知识点:

  1、初步了解加法的含义,会读、写加法算式,感悟把两个数合并在一起求一共是多少,用加法计算;

  2、初步尝试选择恰当的方法进行5以内的加法口算。

  3、第一次出现了图形应用题,要让学生学会看图形应用型题目,理解题目的意思。

  有几辆车(初步认识加法的交换律)

  3、左、右(1)在具体场景中理解左、右的`含义及其相对性。

  (2)能比较准确地确定物体左右的方位,会用左、右描述物体的位置。

  (3)培养学生初步的空间观念。

  4、位置

  (1)明确“横为行、竖为列”,并知道“第几行第几个”、“第几组第几个”的含义。

  (2)在具体情境中,会用2个数据(2个维度)描述人或物体的具体位置。

  (3)在具体情境中,能依据2个维度的数据找到人或物体的具体位置。

小学数学知识点总结14

  1、认钟表,时和分,先看时针几时过,再看分针数小格,几时几分合一起,快快说出时间来。

  2、寻找图形的变化规律,可从形状、颜色、个数的增减等方面去思考。

  3、数列之间有规律,观察相邻数变化,通过计算找规律,后面数据很明了。

  4、统计数据有方法,一个一个来点数,边数边来做记号,数出数量填图表。

  5、两位数加减一位数、整十数,小朋友请注意,数字符号须看清,相同数位才加、减。

  6、大面额的人民币换成小面额的人民币,用数得组成来思考,想打面额的`人民币里面有几个小面额的人民币的数。

  7、最小的两位数是10,地两位数是99。

  8、一个两位数,位是十位,一个三位数,位是百位。

  9、求一个加数,用和减另一个加数。求被减数,用差加减数。

  10、两数比多少,求相差数用减法,求大数用加法,求小数用减法。

  11、三数相加、减,凑十能简便,如果能凑十,先把它来算。两位数加一位数,先看清个位数,判断进位不进位,再确定十位数。

  12、写数也从高位起,哪位是几就写几。除开位,哪位一个也没有,就写零来占占位。

  13、两数比大小,先看位数来比较,位数多来数就大,位数相同从高位比。

  14、数字宝宝真奇妙,位数不同意不同,几在十位是几十,几在个位是几个。

  15、相近两数比多少,可用大数比小数多一些,小数比大数少一些来描述。

小学数学知识点总结15

  一、知识框架

  一级知识点数与代数二级知识点数的运算三级知识点

  1、列竖式计算除法。

  2、两位数除以一位数;

  除法的验算

  3、一步计算的问题

  4、两步计算的问题

  1、质量单位千克、克数与代数常见的量

  2、千克、克之间的换算,简单的实际问题

  3、24时计时法空间与图形空间与图形统计与概率图形的认识

  从三个方向观察用小正方体搭成的立体图形形状

  1.周长的认识

  2.长方形、正方形的周长计算描述事件发生的可能性。

  二、期末知识点

  第一单元除法(除法是乘法的逆运算)

  两位数除以一位数(商是两位数)的除法。是在二年级(上册)表内除法和二年级(下册)有余数除法的基础上安排的。

  1.计算:列竖式计算除法。

  2.口算:被除数十位和个位上的数分别除以除数都没有余数的除法,包括整十数除以一位数商是整十数。

  3.笔算:两位数除以一位数;除法的验算(用乘法验算)。

  4.估算:估计两位数除以一位数的商是几十多。

  5.一步计算的问题:在解决的实际问题中体会数量关系。总价÷单价=数量总价÷数量=单价

  6.两步计算的问题:先求总和或剩余是多少,再平均分的实际问题。

  练习:

  (1)用竖式计算,并验算:62÷266÷672÷347÷7

  (2)口算:36÷360÷268÷290÷3

  (3)列竖式计算:39÷389÷467÷274÷3

  (4)你能估算下面各题的商各是几十多吗?64÷584÷395÷481÷3

  (5)王老师用72元买笔记本,如果每本单价是2元,那么能买多少本?李老师用60元买了20本笔记本,那么每本笔记本多少钱?

  (6)一副乒乓球拍26元,一个乒乓球2元,用50元买一副乒乓球拍,剩下的`钱能够买几个乒乓球?第二单元认数1.认数、读数、写数。

  整千数:数位与顺序,认、读、写数,口算整千数的加、减法,解决实际问题。非整千数:认、读、写数,口算整千数加整百数及相应的减法,按顺序整理数。

  练习:

  (1)口算:201+4000800030006000201000+100

  (2)写一写:两个千加两个百加一个十是多少?

  (3)三千零二是由几个千和几个一组成?

  (4)9670是()位数,它的最高位是()位,7在()位上,个位上是()。

  2.大小比较

  比较大小时的数学思考,比较大小的实际应用,非整千数最接近几千。

  练习:

  比较大小:3650和2520,7890和8790第三单元千克和克

  千克和克都是质量单位,物体含有物质的多少是它的质量。我国人民在生活中习惯以“物体有多重”代替“质量是多少”,因此没有使用“质量”这个词,仍然讲“有多重”。

  1.称一个物体有多重,一般用千克为单位。

  2.净含量是指包装袋内物品实际有多重。

  3.千克可以用KG表示,又叫公斤。

  4.从秤上读出物品的重量。

  5.称比较轻的物品,一般用克为单位。

  6.认识天平。

  7.千克和克之间的关系。1千克=1000克。

  练习

  (1)一袋盐重500克,两袋盐重()克?

  (2)2千克=()克

  (3)9000克=()千克第四单元加和减

  1.口算两位数加、减。解决与“倍”或“差”有关的两步计算实际问题。

  练习

  口算:44+2532+5714+6876642.画线段图解决问题。

  练习

  手套的价格是12元,帽子的价格是手套的3倍,你能用线段画出来并算出帽子是多少钱吗?第五单元24时记时法。

  1.24时记时法及它与普通记时法(12时记时法)的联系

  2.联系实际问题求经过时间的基本思路与方法。包括:求整时到整时的经过时间,求非整点时刻间的经过时间。(利用线段图)。

  求经过时间:

  记忆:结束时刻开始时刻=经过时间到达的时刻出发的时刻=经过时间3.两种计时方式的转化。

  普通记时法与24时记时法的互相转化普通记时法24时记时法凌晨1时1时

  早晨5时5时上午8时8时中午12时12时下午1时13时下午2时14时晚上6时18时晚上7时19时晚上8时20时晚上9时21时

  深夜12时24时(也是第二天的0时)

  记忆:中午12时以后的时刻,用24时记时法表示,就用钟面上的时刻加上12时。中午12时以后的时刻,用普通记时法表示,就用时刻减去12时。

  练习

  (1)图书馆的的公告牌上面写着:借书时间:12:0013:30,15:4017:00。图书馆每天的借书时间是多长?

  (2)用二十四小时计时法表示,:下午2:00,晚上9:00第六单元长方形和正方形

  1.认识长方形和正方形。掌握长方形、正方形的边与角有什么特点。(长方形对边相等,四个角都是直角。正方形每条边都相等,四个角都是直角。通常把长方形的长边叫做长,短边叫做宽。把正方形的每一条边都叫做边长。)

  2.探索、理解周长的含义及计算方法。计算长方形和正方形的周长。(物体某个面上一周边线的长度就是该物体某个面的周长)。

  练习

  (1)篮球场长26米,宽14米,求篮球场的周长。

  (2)操场长150米,宽70米,小强绕操场跑一周,小强一共跑了多少米?

  第七单元乘法

  1.三位数乘一位数的基本方法。(在二年级下册已经学习了两位数乘一位数)

  2.三位数的中间或末尾是0时的乘法计算。3.连乘计算。练习:

  (1)200×3152×4261×3224×5(2)124×3×2115×2×4

  (3)一头牛一天吃20千克草,两头牛两天吃多少千克草?

  第八单元观察物体

  安排过一次“观察物体”,从物体(玩具、茶壶、汽车等)的前面、后面、左面、右面观察,并选择适宜的图形表示看到的物体的形状。本单元学习“观察物体”,从物体的正面、侧面和上面观察,并用视图表示看到的形状。

  1.在知道物体的前面、后面、左面、右面的基础上,认识物体的正面、侧面和上面。

  2.在不同的位置观察,看到的物体的面的个数往往是不相同的。

  3.进行简单几何体与其三视图之间的转化。

  第九单元统计与可能性

  学习简单的统计知识。

  练习

  (1)在一个口袋里放3个红球,一个黄球,从袋子里任意摸一个球,摸到红球的可能性大还是摸到黄球的可能性大?

  第十单元认识分数

  理解分数的意义,认、读、写简单的分数,同分母分数(分母小于10)的加减计算。

  1.分数的表示:分子、分母、分数线。

  2.同分母分数比较大小。

  3.同分母分数的加减。

【小学数学知识点总结】相关文章:

小学数学的知识点总结12-01

小学数学的知识点总结08-10

小学数学知识点总结08-20

小学数学知识点归纳总结03-06

【优秀】小学数学的知识点总结15篇08-10

小学数学知识点总结集锦03-10

小学数学知识点09-06

小学数学必备知识点03-20

数学高考知识点总结06-18

数学中考知识点总结07-16