小学数学知识点总结

时间:2024-09-15 17:39:49 数学 我要投稿

(热)小学数学知识点总结15篇

  总结是对某一特定时间段内的学习和工作生活等表现情况加以回顾和分析的一种书面材料,它可以提升我们发现问题的能力,不如立即行动起来写一份总结吧。那么如何把总结写出新花样呢?以下是小编精心整理的小学数学知识点总结,仅供参考,大家一起来看看吧。

(热)小学数学知识点总结15篇

小学数学知识点总结1

第一单元 测量

  1、在生活中,测量比较短的物品,可以用(毫米、厘米、分米 )做单位;测量比较长的物体,常用( 米 )做单位;测量比较长的路程一般用( 千米 )做单位,千米也叫( 公里 )。10个100米就是1千米,1千米(公里)=1000米。

  2、1厘米的长度里有( 10 )小格,每个小格的长度( 相等 ),都是( 1 )毫米。所以,毫米是比厘米小的长度单位。1厘米=10毫米。

  3、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。

  4、10厘米的长度就是1分米,因此1分米=10厘米。1米=10分米。

  5、在计算长度时,只有相同的长度单位才能相加减。

  小技巧:换算长度单位时,把大单位换成小单位就在数字的末尾添加0(关系式中有几个0,就添几个0);把小单位换成大单位就在数字的末尾去掉0(关系式中有几个0,就去掉几个0)。

  6、长度单位的关系式有:

  ① 进率是10

  1 米 = 10 分米 1 分米 = 10 厘米 1 厘米 = 10 毫米

  10 分米=1 米 10 厘米= 1 分米 10 毫米= 1 厘米

  ② 进率是100

  1 米 = 100 厘米 1分米=100毫米 100 厘米=1 米 100毫米=1分米

  ③ 进率是1000

  1千米=1000米 1公里= 1000米 1000米=1千米 1000米 = 1公里

  7、当我们表示物体有多重时,通常要用到(质量单位 )。在生活中,称比较轻的物品的质量,可以用( 克 )做单位;称一般物品的质量,常用(千克 )做单位;计量较重的或大宗物品的质量,通常用( 吨 )做单位。

  小技巧:在“吨”与“千克”的换算中,把吨换算成千克,是在数字的末尾加上3个0;把千克换算成吨,是在数字的末尾去掉3个0。如:3吨=3000千克 5000千克=5吨

  7、(相邻)质量单位进率是1000 。

  1 吨 = 1000千克 1千克=1000克

  1000千克 = 1 吨 1000克=1千克

  第二单元 万以内的加法和减法(二)

  1、笔算加、减法要注意:

  (1)相同数位要对齐;

  (2)从个位算起;

  (3)哪一位上的数相加满十,就向前一位进1;哪一位上的数不够减,就从前一位退1作十再减。

  2、估算的方法:

  结合实际,把题目中的数分别看作与它接近的整百或整十的数,再通过口算确定它们的得数范围。

  3、加、减法验算的方法:

  (1)加法的验算:

  ①交换加数的位置再加一遍,看看两次相加的和是不是相同;

  ②用“和”减去“其中一个加数”,看看结果是不是等于“另一个加数”。

  (2)减法的验算:

  ①用“被减数”减去“差”,看看结果是不是等于“减数”;

  ②用“差”加“减数”,看看结果是不是等于“被减数”。

  第三单元 四边形

  1、由4条直的边和4个角组成的图形叫做四边形。

  2、四边形的特点:有四条直的边;有四个角。

  3、长方形的特点:长方形有两条长,两条宽,四个直角,对边相等。

  4、正方形的特点:有4个直角,4条边相等。

  5、长方形和正方形都是特殊的.平行四边形。

  6、平行四边形的特点:对边相等、对角相等。平行四边形容易变形。(三角形不容易变形)

  7、封闭图形一周的长度,就是它的周长。

  8、要求长方形的周长必须知道长方形的(长)和(宽);要求正方形的周长必须知道正方形的(边长)。

  9、公式。

  长方形的周长 = (长+宽)×2 长方形的长 = 周长÷2-宽 长方形的宽 = 周长÷2-长

  正方形的周长 = 边长×4 正方形的边长 = 周长÷4

  第四单元 有余数的除法

  1、余数和除数之间的关系:进行有余数的除法计算时,结果中的余数一定要比除数小。

  2、公式。

  被除数 =商×除数+余数 除数 = (被除数-余数)÷商 商 = (被除数-余数)÷除数

  第五单元 时分秒

  1、钟面上有3根针,它们是(时针)、(分针)和(秒针),其中走得最快的是(秒针),走得最慢的是(时针)。

  2、钟面上有( 12 )个数字,( 12 )个大格,( 60 )个小格;每两个数间是( 1 )个大格,也就是( 5 )个小格。

  3、时针走1大格是( 1 )小时;分针走1大格是( 5 )分钟,走1小格是( 1 )分钟;秒针走1大格是( 5 )秒钟,走1小格是( 1 )秒钟。

  4、时针走1大格,分针正好走( 1 )圈,分针走1圈是( 60 )分,也就是( 1 )小时。

  5、分针走1小格,秒针正好走( 1 )圈,秒针走1圈是( 60 )秒,也就是( 1 )分钟。

  6、时针从一个数走到下一个数是( 1小时 )。分针从一个数走到下一个数是( 5分钟)。秒针从一个数走到下一个数是( 5秒 )。

  7、公式。

  1时= 60分 1分= 60秒 半时= 30 分 60分=1时 60秒=1分 30 分=半时

  8、时间单位间的简单换算。

  例如:2时=( )分

  因为1时=60分,2时有2个60分,2×60=120,所以2时=(120)分。

  例如:180秒=( )分

  因为60秒=1分,180秒里面有3个60秒,所以180秒=(3)分。

  例如:1分35秒=( )秒

  因为1分=60秒,60+35=95,所以1分35秒=(95)秒。

  9、计算简单的经过时间:经过的时间=结束的时刻-开始的时刻。

  例如:小明晚上7:30开始写作业,8:40写完作业,小明完成作业用了多长时间?

  8:40-7:30=1小时10分

  第六单元 多位数乘一位数

  1、口算。

  整十、整百、整千的数乘一位数,可以先把题目转化成一位数乘一位数,直接用乘法口诀来算,算出积后,再看因数末尾共有几个0,就在积的末尾添上几个0。

  2、多位数乘一位数的计算方法:

  计算两、三位数乘一位数,都是把这个多位数的每个数位上的数依次乘一位数。哪一位上的乘积满几十,就要向前一位进几。

  3、0和任何数相乘都得0。

  4、多位数乘一位数的估算。

  把因数中的两位数或三位数看成和它最接近的整十、整百的数来与一位数相乘。

  如:48×9≈ 可以这样想:因为48接近50,50×9=450,所以48×9≈450

  第七单元 分数的初步认识

  1、分数的初步认识:

  (1)几分之一:把一个物体或图形平均分成几份,每份就是它的几分之一。

  (2)几分之几:有几个几分之一,就是几分之几。

  (3)分数的表示方法和各部分的名称:

  2 ……分子(表示取了其中的几份)

  ……分数线(表示平均分)

  5 ……分母(表示平均分成了几份)

  第八单元 可能性

  1、确定现象与不确定现象。

  (1)确定现象:事件发生的结果是确定的。(如:太阳不可能从西方升起;太阳每天从东方升起。)

  (2)不确定现象:事件发生的结果无法确定。(如:下星期一会下雨。)

  2、事件发生与否有三种情况。

  (1)一定(如:正方体一定有6个面。)

  (2)可能(如:明天可能是晴天。)

  (3)不可能(如:地球不可能绕着月球转。)

  3、事件发生的可能性是有大小的。

  例如:盒子里有10个红球,3个白球,红球与白球的数量不相等,那么摸到红球的可能性与摸到白球的可能性是不一样的。红球多,摸到红球的可能性较大;白球少,摸到白球的可能性就小。

  第九单元 数学广角

  简单的排列与组合:

  在解决问题时,要弄清楚实际问题与事物的顺序有没有关系,做到既不重复也不遗漏。

  1、与顺序有关的是排列数。例如:用数字卡片组数、排队、站不同位置照相、扮演不同的角色等问题。

  2、与顺序无关的是组合数。例如:衣服和早餐的搭配、行走路线的选择、两两通话、两两握手、安排比赛场次等问题。

小学数学知识点总结2

  通过欣赏和设计图案的活动,进一步认识正方形、长方形、三角形和圆。

  小小运动会

  1、应用100以内的进位加法与退位减法的计算方法进行正确的计算。

  2、经历与他人交流各自算法的过程,体会算法多样化。

  3、体会长方形、正方形、三角形和圆在生活中的`普遍存在。

  4、能利用图形设计美丽的图案。

小学数学知识点总结3

  第一单元 小数乘法

  1.小数乘整数:意义——求几个相同加数的和的简便运算。

  计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

  2.小数乘小数:意义——就是求这个数的几分之几是多少。

  计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

  规律: 一个数(0除外)乘大于1的数,积比原来的数大; 一个数(0除外)乘小于1的数,积比原来的数小。

  3.求近似数的方法一般有三种: ⑴四舍五入法;⑵进一法;⑶去尾法

  4.计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角。

  5.小数四则运算顺序跟整数是一样的。

  6.运算定律和性质: 加法: 加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 减法: 减法性质:a-b-c=a-(b+c)a-(b-c)=a-b+c 乘法: 乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c) 乘法分配律:(a+b)×c=a×c+b×c(a-b)×c=a×c-b×c 除法: 除法性质:a÷b÷c=a÷(b×c)

  7.小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。

  8.小数除以整数的计算方法:小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。

  9.除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。

  10.在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。五年级数学重要知识点

  11.除法中的变化规律: ①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。 ②除数不变,被除数扩大,商随着扩大。③被除数不变,除数缩小,商扩大。

  12.循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。循环节:一个循环小数的小数部分,依次不断重复出现的数字。如6.3232……的循环节是32.

  13.小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小数,叫做无限小数。

  14.从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。

  15.在含有字母的式子里,字母中间的乘号可以记作“?”,也可以省略不写。加号、减号除号以及数与数之间的乘号不能省略。

  16.a×a可以写作a?a或a2,读作a的平方。 2a表示a+a

  17.方程:含有未知数的等式称为方程。 使方程左右两边相等的未知数的值,叫做方程的解。 求方程的解的过程叫做解方程。

  18.解方程原理:天平平衡。等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。

  19.10个数量关系式: 加法:和=加数+加数 一个加数=和-两一个加数 减法:差=被减数-减数 被减数=差+减数 减数=被减数-差乘法:积=因数×因数 一个因数=积÷另一个因数 除法:商=被除数÷除数 被除数=商×除数 除数=被除数÷商

  20.所有的方程都是等式,但等式不一定都是等式。

  21.公式:长方形:周长=(长+宽)×2 【长=周长÷2-宽; 宽=周长÷2-长】 字母公式:C=(a+b)×2 面积=长×宽 字母公式:S=ab正方形:周长=边长×4 字母公式:C=4a 面积=边长×边长 字母公式:S=a 平行四边形:面积=底×高 字母公式: S=ah 三角形:面积=底×高÷2【底=面积×2÷高; 高=面积×2÷底】 字母公式: S=ah÷2 梯形: 面积=(上底+下底)×高÷2 字母公式: S=(a+b)h÷2【上底=面积×2÷高-下底,下底=面积×2÷高-上底; 高=面积×2÷(上底+下底)】

  22.平行四边形面积公式推导:剪拼、平移 平行四边形可以转化成一个长方形; 长方形的长相当于平行四边形的底; 长方形的宽相当于平行四边形的高;长方形的面积等于平行四边形的面积; 因为长方形面积=长×宽,所以平行四边形面积=底×高。

  23.三角形面积公式推导:旋转 两个完全一样的.三角形可以拼成一个平行四边形; 平行四边形的底相当于三角形的底; 平行四边形的高相当于三角形的高;平行四边形的面积等于三角形面积的2倍; 因为平行四边形面积=底×高,所以三角形面积=底×高÷2

  24.梯形面积公式推导:旋转 两个完全一样的梯形可以拼成一个平行四边形; 平行四边形的底相当于梯形的上下底之和; 平行四边形的高相当于梯形的高;平行四边形面积等于梯形面积的2倍; 因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2

  25.等底等高的平行四边形面积相等;等底等高的三角形面积相等; 等底等高的平行四边形面积是三角形面积的2倍。

  26.长方形框架拉成平行四边形,周长不变,面积变小。

  27.组合图形:转化成已学的简单图形,通过加、减进行计算。

  28.平均数=总数量÷总份数

  29.中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一般水平更合适。

  30.数不仅可以用来表示数量和顺序,还可以用来编码。

  31.由6位组成: 前2位表示省(直辖市、自治区) 前3位表示邮区 前4位表示县(市) 最后2位表示投递局

  32.身份证号码:18位 倒数第二位的数字用来表示性别,单数表示男,双数表示女。

小学数学知识点总结4

  (一)数与计算

  (1)20以内数的认识。加法和减法。数数。数的组成、顺序、大小、读法和写法。加法和减法。连加、连减和加减混合式题

  (2)100以内数的认识。加法和减法。数数。个位、十位。数的顺序、大小、读法和写法。两位数加、减整十数和两位数加、减一位数的口算。两步计算的`加减式题。

  (二)量与计量

  钟面的认识(整时)。人民币的认识和简单计算。

  (三)几何初步知识

  长方体、正方体、圆柱和球的直观认识。

  长方形、正方形、三角形和圆的直观认识。

  (四)应用题

  比较容易的加法、减法一步计算的应用题。多和少的应用题(抓有效信息的能力)

  (五)实践活动

  选择与生活密切联系的内容。例如根据本班男、女生人数,每组人数分布情况,想到哪些数学问题。

小学数学知识点总结5

  角:

  (1)角的静态定义:具有公共端点的两条不重合的射线组成的图形叫做角。

  这个公共端点叫做角的顶点,这两条射线叫做角的两条边。

  (2)角的动态定义:一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角。

  所旋转射线的端点叫做角的顶点,开始位置的射线叫做角的始边,终止位置的射线叫做角的终边

  角的符号:∠

  角的种类:角的大小与边的长短没有关系;角的大小决定于角的.两条边张开的程度,张开的越大,角就越大,相反,张开的越小,角则越小。

  在动态定义中,取决于旋转的方向与角度。

  角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种。

  以度、分、秒为单位的角的度量制称为角度制。此外,还有密位制、弧度制等。

  (1)锐角:大于0°,小于90°的角叫做锐角。

  (2)直角:等于90°的角叫做直角。

  (3)钝角:大于90°而小于180°的角叫做钝角。

  乘法:

  乘法是指一个数或量,增加了多少倍。例如4乘5,就是4增加了5倍率,也可以说成5个4连加。

  乘法算式中各数的名称:

  “×”是乘号,乘号前面和后面的数叫做因数,“=”是等于号,等于号后面的数叫做积。

  例:10(因数)×(乘号)200(因数)=(等于号)20xx(积)

  平行:

  在平面上两条直线、空间的两个平面或空间的一条直线与一平面之间没有任何公共点时,称它们平行。如图直线AB平行于直线CD,记作AB∥CD。平行线永不相交。

  垂直:

  两条直线、两个平面相交,或一条直线与一个平面相交,如果交角成直角,叫做互相垂直。

  平行四边形:

  在同一平面内有两组对边分别平行的四边形叫做平行四边形。

  梯形:

  梯形是指一组对边平行而另一组对边不平行的四边形。

  平行的两边叫做梯形的底边,其中长边叫下底,短边叫上底;也可以单纯的认为上面的一条叫上底,下面一条叫下底。不平行的两边叫腰;夹在两底之间的垂线段叫梯形的高。

  除法:

  除法法则:除数是几位,先看被除数的前几位,前几位不够除,多看一位,除到哪位,商就写在哪位上面,不够商一,0占位。余数要比除数小,如果商是小数,商的小数点要和被除数的小数点对齐;如果除数是小数,要化成除数是整数的除法再计算。

小学数学知识点总结6

  一、圆的特征

  1、圆是平面内封闭曲线围成的平面图形。

  2、圆的特征:外形美观,易滚动。

  3、圆心O:圆中心的点叫做圆心.圆心一般用字母O表示。

  圆多次对折之后,折痕的相交于圆的中心即圆心。圆心确定圆的位置。

  半径r:连接圆心到圆上任意一点的线段叫做半径。在同一个圆里,有无数条半径,且所有的半径都相等。半径确定圆的大小。

  直径d:通过圆心且两端都在圆上的线段叫做直径。在同一个圆里,有无数条直径,且所有的直径都相等。直径是圆内最长的线段。

  同圆或等圆内直径是半径的2倍:d=2r或r=d÷2

  4、等圆:半径相等的圆叫做同心圆,等圆通过平移可以完全重合。同心圆:圆心重合、半径不等的两个圆叫做同心圆。

  5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的直线叫做对称轴。

  有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角。

  有二条对称轴的图形:长方形

  有三条对称轴的图形:等边三角形

  有四条对称轴的图形:正方形

  有无条对称轴的图形:圆,圆环

  6、画圆

  (1)圆规两脚间的距离是圆的半径。(2)画圆步骤:定半径、定圆心、旋转一周。

  二、圆的`周长:

  围成圆的曲线的长度叫做圆的周长,周长用字母C表示。

  1、圆的周长总是直径的三倍多一些。

  2、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。

  即:圆周率π=周长÷直径≈3.14

  所以,圆的周长(c)=直径(d)×圆周率(π)—周长公式:c=πd,c=2πr

  圆周率π是一个无限不循环小数,3.14是近似值。

  3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。

  4、半圆周长=圆周长一半+直径=πr+d

  三、圆的面积s

  1、圆面积公式的推导

  如图把一个圆沿直径等分成若干份,剪开拼成长方形,份数越多拼成的图像越接近长方形。

  圆的半径=长方形的宽

  圆的周长的一半=长方形的长

  长方形面积=长×宽

  所以:圆的面积=圆的周长的一半(πr)×圆的半径(r)

  S圆=πr×r=πr2

  2、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则,而长方形的面积则最小。

  周长相同时,圆面积,利用这一特点,篮子、盘子做成圆形。

  3、圆面积的变化的规律:半径扩大多少倍,直径、周长也同时扩大多少倍,圆面积扩大的倍数是半径、直径扩大的倍数的平方倍。

  4、环形面积=大圆–小圆=πR2-πr2

  扇形面积=πr2×n÷360(n表示扇形圆心角的度数)

  5、跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加上两条直跑道的和。因为两条直跑道长度相等,所以,起跑线不同,相邻两条跑道起跑线也不同,间隔的距离是:2×π×跑道宽度。

  一个圆的半径增加a厘米,周长就增加2πa厘米。

  一个圆的直径增加b厘米,周长就增加πb厘米。

  6、任意一个正方形的内切圆即圆的直径是正方形的边长,它们的面积比是4∶π。

  7、常用数据

  π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7

小学数学知识点总结7

  1、上、下

  (1)在具体场景中理解上、下的含义及其相对性。

  (2)能比较准确地确定物体上下的方位,会用上、下描述物体的相对位置。

  (3)培养学生初步的空间观念。

  2、前、后

  (1)在具体场景中理解前、后、最×的含义,以及前后的.相对性。

  (2)能比较准确地确定物体前后的方位,会用前、后、最前、最后描述物体的相对位置。

  (3)培养学生初步的空间观念。

  加减法

  (一)本单元知识网络:

  (二)各课知识点:

  有几枝铅笔(加法的认识)

  知识点:

  1、初步了解加法的含义,会读、写加法算式,感悟把两个数合并在一起求一共是多少,用加法计算;

  2、初步尝试选择恰当的方法进行5以内的加法口算。

  3、第一次出现了图形应用题,要让学生学会看图形应用型题目,理解题目的意思。

  有几辆车(初步认识加法的交换律)

  3、左、右(1)在具体场景中理解左、右的含义及其相对性。

  (2)能比较准确地确定物体左右的方位,会用左、右描述物体的位置。

  (3)培养学生初步的空间观念。

  4、位置

  (1)明确“横为行、竖为列”,并知道“第几行第几个”、“第几组第几个”的含义。

  (2)在具体情境中,会用2个数据(2个维度)描述人或物体的具体位置。

  (3)在具体情境中,能依据2个维度的数据找到人或物体的具体位置。

小学数学知识点总结8

  1、用竖式计算两位数加法时:①相同数位对齐,加号写在高位下行之前。

  ②用尺子画横线。

  ③从个位加起

  ④如果个位满10,向十位进1,写在个位、十位之间,

  不进位不写1

  用竖式计算两位数减法时:①相同数位对齐,减号写在高位下行之前。

  ②用尺子画横线。

  ③从个位减起

  ④如果个位不够减,从十位退1,到个位作10再减(借一要在头上写点),计算时十位要记得减去退掉的1。不借位不写点

  ⑤得数写在横式上

  2、估算:把一个接近整十整百的数看作整十整百来计算。

  方法:个位小于5的少看,个位等于或大于5的多看,看成最为接近的整十或整百数。“四舍五入”

  如:49+42≈9028+45+24≈10098—17≈80

  50 4030 50 20100 20更深一步的估计是能够估出比80大

  注:当问题里出现“大约”两个字时,就需要估算。

  3、求“一个已知数”比“另一个已知数”多多少、少多少?用减法计算,用“比”字两边的较大数减去较小数。

  4、多几、少几已知的问题。比谁少几,就用谁减去几;未知数比谁多几,就用谁加上几。

  方法:①根据已知,判断出与要求的未知,谁多谁少②求多的用加法,求少的用减法

  基数和序数的区别

  一、意思不同

  基数是集合论中刻画任意集合大小的一个概念。两个能够建立元素间一一对应的集合称为互相对等集合。例如3个人的集合和3匹马的集合可以建立一一对应,是两个对等的集合。序数是在基数的基础上再增加一层意思。

  二、用处不同

  基数可以比较大小,可以进行运算。

  例如:

  设|A|=a,|B|=β,定义a+β=|{(a,0):a∈A}∪{(b,1):b∈B}|。另,a与β的积规定为|AxB|,A×B为A与B的笛卡儿积。

  序数,汉语表示序数的方法较多。通常是在整数前加“第”,如:第一,第二。也有单用基数的。如:五行:一曰水,二曰火,三曰木,四曰金,五曰土。

  三、写法

  基数:1、2、3

  序数:第1、第2、第3

  数与计算知识点

  1、分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。

  2、分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的'积作分子,分母相乘的积作分母。但分子分母不能为零。

  3、分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。

  4、分数乘整数:数形结合、转化化归

  5、倒数:乘积是1的两个数叫做互为倒数。

小学数学知识点总结9

  1、乘法的含义

  乘法是求几个相同加数连加的和的简便算法。如:计算:2+2+2=6,用乘法算就是:2×3=6或3×2=6.

  2、乘法算式的写法和读法

  ⑴连加算式改写为乘法算式的方法。求几个相同加数的和,可以用乘法计算。写乘法算式时,可以用乘法计算。写乘法算式时,可以先写相同的加数,然后写乘号,再写相同加数的个数,最后写等号与连加的和;也可以先写相同加数的个数,然后写乘号,再写相同加数,最后写等号与连加的和。

  如:4+4+4=12改写成乘法算式是4×3=12或3×4=12

  4 × 3 = 12或3 × 4 = 12

  ⑵乘法算式的读法。读乘法算式时,要按照算式顺序来读。如:6×3=18读作:“6乘3等于18”。

  3、乘法算式中各部分的名称及实际表示的意义

  在乘法算式里,乘号前面的数和乘号后面的数都叫做“乘数”;等号后面的得数叫做“积”。

  4、乘法算式所表示的`意义

  求几个相同加数的和,用乘法计算比较简单。一道乘法算式表示的就是几个相同加数连加的和。如:4×5表示5个4相加或4个5相加。

  5、加法写成乘法时,加法的和与乘法的积相同。

  6、乘法算式中,两个乘数交换位置,积不变。

  7、算式各部分名称及计算公式。

  乘法:乘数×乘数=积

  加法:加数+加数=和

  和—加数=加数

  减法:被减数—减数=差

  被减数=差+减数

  减数=被减数—差

  8、在9的乘法口诀里,几乘9或9乘几,都可看作几十减几,其中“几”是指相同的数。

  如:1×9=10—1 9×5=50—5

  9、看图,写乘加、乘减算式时:

  乘加:先把相同的部分用乘法表示,再加上不相同的部分。

  乘减:先把每一份都算成相同的,写成乘法,然后再把多算进去的减去。

  计算时,先算乘,再算加减。

  如:加法:3+3+3+3+2=14乘加:3×4+2=14乘减:3×5-1=14

  10、“几和几相加”与“几个几相加”有区别

  求几和几相加,用几加几;如:求4和3相加是多少?用加法(4+3=7)

  求几个几相加,用几乘几。

  如:求4个3相加是多少?(3+3+3+3=12或3×4=12或4×3=12)

  补充:几和几相乘,求积?用几×几.如:2和4相乘用2×4=8

  2个乘数都是几,求积?用几×几。如:2个8相乘用8×8=64

  11、一个乘法算式可以表示两个意义,如“4×2”既可以表示“4个2相加”,也可以表示“2个4相加”。

  “5+5+5”写成乘法算式是(3×5=15)或(5×3=15),

  都可以用口诀(三五十五)来计算,表示(3)个(5)相加

  3×5=15读作:3乘5等于15. 5×3=15读作:5乘3等于15

  第五单元观察物体

  1、从不同的角度观察同一物体,所看到的物体的形状一般是不同的;

  2、观察物体时,要抓住物体的特征来判断。

  3、观察长方体的某一面,看到的可能是长方形或正方形。观察正方形的某一面,看到的都是正方形

  4、观察圆柱体,看到的可能是长方形或圆形。观察球体,看到的都是圆形

  第七单元认识时间

  1、认识时间

  (1)钟面上有时针和分针,走得快的,较长的是分针;走得慢的,较短的是时针;

  (2)钟面上有12个大格,60个小格,1个大格有5个小格。时针走1大格是1小时,分针走1大格是5分钟。

  (3)时针走1大格分针要走一圈,所以1时=60分;

  (4)半小时=30分,一刻钟=15分钟

  (5)时间的读与写:如3:30,可以读作3时30分,也可以读作3点半;8时零5分应写作8:05。

  2、运用知识解决问题

  (1)要按着时间的先后顺序安排事件,时间上不能重复。

  (2)问过几分钟后是几时,先要读出现在是几时,再推算过几分钟后是几时几分。

  (3)时针和分针能形成直角的时刻是3时和9时。

  第八单元数学广角-搭配

  1、用两个不同的数字(0除外)组合时可以交换两个数字的位置;用三个不同的数字组合成两位数时,可以让每个数字(0除外)作十位数字,其余的两个数字依次和它组合。

  2、借用连线或者符号解答问题比较简单。

  3、排列与顺序有关,组合与顺序无关。

小学数学知识点总结10

  1.认识人民币的单位元、角、分和它们的十进关系,认识各种面值的人民币,能看懂物品的单价,会进行简单的.计算。

  2.结合自己的生活经验和已经掌握的100以内数的知识,学习、认识人民币,一方面初步知道人民币的基本知识和懂得如何使用人民币,提高社会实践能力;另一方面加深对100以内数的概念的理解。

  3.体会数概念与现实生活的密切联系。

  4.认识各种面值的人民币,并会进行简单的计算。

  5.使学生认识人民币的单位元、角、分,知道1元=10角,1角=10分。

  6.通过购物活动,使学生初步体会人民币在社会生活、商品交换中的功能和作用并知道爱护人民币。

小学数学知识点总结11

  1、认钟表,时和分,先看时针几时过,再看分针数小格,几时几分合一起,快快说出时间来。

  2、寻找图形的变化规律,可从形状、颜色、个数的增减等方面去思考。

  3、数列之间有规律,观察相邻数变化,通过计算找规律,后面数据很明了。

  4、统计数据有方法,一个一个来点数,边数边来做记号,数出数量填图表。

  5、两位数加减一位数、整十数,小朋友请注意,数字符号须看清,相同数位才加、减。

  6、大面额的`人民币换成小面额的人民币,用数得组成来思考,想打面额的人民币里面有几个小面额的人民币的数。

  7、最小的两位数是10,地两位数是99。

  8、一个两位数,位是十位,一个三位数,位是百位。

  9、求一个加数,用和减另一个加数。求被减数,用差加减数。

  10、两数比多少,求相差数用减法,求大数用加法,求小数用减法。

  11、三数相加、减,凑十能简便,如果能凑十,先把它来算。两位数加一位数,先看清个位数,判断进位不进位,再确定十位数。

  12、写数也从高位起,哪位是几就写几。除开位,哪位一个也没有,就写零来占占位。

  13、两数比大小,先看位数来比较,位数多来数就大,位数相同从高位比。

  14、数字宝宝真奇妙,位数不同意不同,几在十位是几十,几在个位是几个。

  15、相近两数比多少,可用大数比小数多一些,小数比大数少一些来描述。

小学数学知识点总结12

  一、百分数的意义:

  表示一个数是另一个数的百分之几的数叫做百分数。百分数又叫百分比或百分率,百分数不能带单位。

  注意:百分数是专门用来表示一种特殊的倍比关系的,表示两个数的比。

  1、百分数和分数的区别和联系:

  (1)联系:都可以用来表示两个量的倍比关系。

  (2)区别:意义不同:百分数只表示倍比关系,不表示具体数量,所以不能带单位。分数不仅表示倍比关系,还能带单位表示具体数量。百分数的分子可以是小数,分数的.分子只可以是整数。

  注意:百分数在生活中应用广泛,所涉及问题基本和分数问题相同,分母是100的分数并不是百分数,必须把分母写成“%”才是百分数,所以“分母是100的分数就是百分数”这句话是错误的。“%”的两个0要小写,不要与百分数前面的数混淆。一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。一般出粉率在70%、80%,出油率在30%、40%。

  2、小数、分数、百分数之间的互化

  (1)百分数化小数:小数点向左移动两位,去掉“%”。

  (2)小数化百分数:小数点向右移动两位,添上“%”。

  (3)百分数化分数:先把百分数写成分母是100的分数,然后再化简成最简分数。

  (4)分数化百分数:分子除以分母得到小数,(除不尽的保留三位小数)然后化成百分数。

  (5)小数化分数:把小数成分母是10、100、1000等的分数再化简。

  (6)分数化小数:分子除以分母。

  二、百分数应用题

  1、求常见的百分率,如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几。

  2、求一个数比另一个数多(或少)百分之几,实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。

  求甲比乙多百分之几:(甲-乙)÷乙

  求乙比甲少百分之几:(甲-乙)÷甲

  3、求一个数的百分之几是多少。一个数(单位“1”)×百分率

  4、已知一个数的百分之几是多少,求这个数。

  部分量÷百分率=一个数(单位“1”)

  5、折扣、打折的意义:几折就是十分之几也就是百分之几十

  折扣、成数=几分之几、百分之几、小数

  八折=八成=十分之八=百分之八十=0.8

  八五折=八成五=十分之八点五=百分之八十五=0.85

  五折=五成=十分之五=百分之五十=0.5=半价

  6、利率

  (1)存入银行的钱叫做本金。

  (2)取款时银行多支付的钱叫做利息。

  (3)利息与本金的比值叫做利率。

  利息=本金×利率×时间

  税后利息=利息-利息的应纳税额=利息-利息×5%

  注:国债和教育储蓄的利息不纳税

  7、百分数应用题型分类

  (1)求甲是乙的百分之几——(甲÷乙)×100%=百分之几

  (2)求甲比乙多百分之几——(甲-乙)÷乙×100%

  (3)求甲比乙少百分之几——(乙-甲)÷乙×100%

小学数学知识点总结13

  第一单元大数的认识

  1.10个一万是十万,10个十万是一百万,10个一百万是一千万,10个一千万是一亿。

  相邻两个计数单位之间的进率是“十”,这种计数方法叫做十进制计数法。

  特别注意:计数单位与数位的区别。

  2、在用数字表示数的时候,这些计数单位要按照一定的顺序排列起来,它们所占的位置叫做数位。

  3、位数:一个数含有几个数位,就是几位数,如652100是个六位数。

  4、按照我国的计数习惯,从右边起,每四个数位是一级。

  6、亿以上数的读法:

  ①先分级,从高位开始读起。先读亿级,再读万级,最后读个级。

  ②亿级的数要按照个级的数的读法来读,再在后面加上一个“亿”字。万级的数要按照个级的数的读法来读,再在后面加上一个“万”字。

  ③每级末尾不管有几个0,都不读。其他数位有一个“0”或连续几个“0”,都只读一个“0”。

  7、亿以上数的写法:

  ①从最高位写起,先写亿级,再写万级,最后写个级。

  ②哪个数位上一个单位也没有,就在那个数位上写0。

  8、比较数的大小:

  ①位数不同的两个数,位数多的数比较大。

  ②位数相同的两个数,从最高位开始比较。

  9、求近似数:

  省略万位后面的尾数,要看千位上的数;省略亿位后面的尾数,要看千万位上的数。

  这种求近似数的方法叫“四舍五入法”,是“舍”还是“入”,要看省略的尾数最高位上的数是小于5还是等于或大于5。小于5就舍去尾数,等于或大于5就向前一位进1,再舍去尾数。

  10、表示物体个数:1,2,3,4,5,6,7,8,9,10,…….都是自然数。一个物体也没有,用0来表示,0也是自然数。所有的自然数都是整数。

  11、最小的自然数是0,没有最大的自然数,自然数的个数是无限的。

  12、每相邻的两个计数单位之间的进率都是十,这种计数方法叫做十进制计数法。

  13、ON╱CE:开关及清除屏键,清除显示屏上的内容。

  AC:清除键,清除所有内容。

  第二单元公顷和平方千米

  1、边长是100米的正方形面积是1公顷。

  1公顷=10000平方米

  2、边长是1千米的正方形面积是1平方千米。

  1平方千米=1000000平方米

  1平方千米=100公顷

  3、从大单位变到小单位,乘以进率。

  从小单位变到大单位,除以进率。

  4、国土面积(中国、省、市、区等)、海洋面积等特别大的面积适合用平方千米。如

  香港特别行政区的面积约1100。

  广场、校园等稍大土地面积适合用公顷。如天安门广场的占地面积大约是44;

  操场、教室等较小的面积适合用平方米。如一个教室的面积约60;

  5、长方形面积=长×宽

  正方形面积=边长×边长

  第三单元角的度量

  1、直线、射线、线段

  直线:可以向两端无限延伸,没有端点。

  射线:可以向一端无限延伸,只有一个端点。

  线段:不能延伸,有两个端点,线段是直线的一部分。

  2、直线、射线与线段有什么联系和区别?

  ①、直线和射线都可以无限延伸,因此无法量出长短。

  ②、线段可以量出长度。

  ③、线段有两个端点,直线没有端点,射线只有一个端点。

  4、角的计量单位是“度”,用符号“°”表示。  3、从一点引出两条射线所组成的图形叫做角。

  将圆平均分成360份,每一份所对的角的大小是l度,记做1°。

  5、角的大小与角两边的长短没关系。角的大小与叉开的大小有关系,叉开得越大,角越大。

  6、度量角的工具叫量角器。

  7、量角的步骤:

  ①把量角器的'中心与角的顶点重合,0°刻度线与角的一条边重合。

  ②角的另一条边所对的量角器上的刻度,就是这个角的度数。

  8、角可以看作由一条射线绕着它的端点,从一个位置旋转到另一个位置所成的图形。

  9、一条射线绕它的端点旋转半周,形成的角叫做平角。1平角=180°

  10、一条射线绕它的端点旋转一周,形成的角叫做周角。1周角=360°

  1周角=2平角=4直角1直角=90°

  11、小于90度的角叫做锐角,大于90度而小于180度的角叫做钝角。

  锐角<直角<钝角<平角<周角

  12、画角的步骤:

  (1)画一条射线,使量角器的中心和射线的端点重合,0°刻度线和射线重合。

  (2)在量角器上找到要画的角的度数(如65°)的地方,并点一个点。

  (3)以画出的射线的端点为端点,通过刚画的点再画一条射线。

  13、经过一点可以画无数条直线;经过两个点,只能画一条直线。

  14、用三角板可以画的角:180°165°150°135°120°105°90°75°60°45°30°15°

  第四单元三位数乘两位数

  1、三位数乘两位数的笔算方法:

  先用两位数个位上的数去乘三位数,积的末位和两位数的个位对齐;再用两位数十位上的数去乘三位数,积的末位和两位数的十位对齐;最后把两次乘得的积加起来。

  2、积的变化规律:

  一个因数不变,另一个因数乘(或除以)几(0除外),积也乘(或除以)几。

  3、每件商品的价钱,叫做单价;买了多少,叫做数量;一共用的价钱,叫做总价。

  单价×数量=总价

  单价=总价÷数量

  数量=总价÷单价

  4、一共行了多长的路,叫做路程;每小时(或每分钟等)行的路程,叫做速度;行了几小时(或几分钟等),叫做时间。

  速度×时间=路程

  速度=路程÷时间

  时间=路程÷速度

  5、速度单位通常有:千米/时、米/分、米/秒等。

  第五单元平行四边形和梯形

  1、在同一个平面内不相交的两条直线叫做平行线,也可以说这两条直线互相平行。

  记作:a‖b读作:a平行于b

  2、两条直线相交成直角,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。记作:a⊥b读作:a垂直于b

  3、从直线外一点到这条直线所画的垂直线段最短,它的长度叫做这点到直线的距离。

  4、与两条平行线互相垂直的线段长度都相等。或者说:两条平行线之间的距离处处相等。经过直线上一点(或外一点)作垂线,可以画一条。

  5、同一平面内,与同一条直线平行(或垂直)的两条直线也互相平行。

  6、从平行四边形一条边上的一点向对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高,垂足所在的边叫做平行四边形的底。

  7、一个长方形,用两手捏住长方形的两个对角,向相反方向拉,可以拉成不同形状的平行四边形,但是周长不变。

  8、平行四边形的特点:容易变形。例如:伸缩门、升降机

  9、平行四边形和梯形有无数条高。

  10、两腰相等的梯形叫做等腰梯形。特点:两腰相等,两底角相等。

  11、有一个角是直角的梯形叫做直角梯形。特点:有一条腰就是梯形的高。

  12、从梯形上底任取一个点,向下底引一条垂线,这个点和垂足之间的线段叫做梯形的高。

  13、两个完全一样的三角形可以拼成一个平行四边形。

  两个完全一样的梯形可以拼成一个平行四边形。

  两个完全一样的直角梯形可以拼成一个长方形或平行四边形。

  14、长方形是特殊的平行四边形,正方形是特殊的平行四边形。正方形是特殊的长方形。

  15、三角形三个内角的和是180°,四边形四个内角的和是360°。

  16、四边形小结:

  两组对边分别平行的四边形叫做平行四边形;

  只有一组对边平行的四边形叫梯形。

  两腰相等的梯形叫做等腰梯形。

  有一个角是直角的梯形叫做直角梯形。

  四个角都是直角的四边形叫长方形。

  四个角都是直角,并且四条边都相等的四边形叫正方形。

  第六单元除数是两位数的除法

  1、去0法:被除数和除数的末尾同时去掉相同个数的0,商不变。

  2、除数是两位数的除法的计算方法:

  从被除数的高位除起,先用除数试除被除数的前两位数,如果它比除数小,再试除前三位数。

  除到被除数的哪一位,就在那一位上写商。

  求出每一位商,余下的数必须比除数小。

  3、商的变化规律:

  被除数和商的变化相同。除数和商的变化相反。

  商不变的性质:被除数和除数同时乘(或除以)一个相同的数(0除外),商不变。

  除数×商+余数=被除数

  (被除数-余数)÷商=除数

  第七单元条形统计图

  1、条形统计图的特点:能直观的看出各种数量的大小,便于比较。

  2、在绘制条形统计图时,条形图一格表示几,要根据具体情况来确定

  第八单元数学广角--优化

  1、沏茶问题:

  合理安排时间的过程:(1)明确完成一项工作要做哪些事情;(2)明确每项事情各需要多少时间;(3)合理安排工作的顺序,明确先做什么,后做什么,哪些事情可以同时做。

  2、烙饼问题:烙饼的最优方案是每一次尽可能的让锅里按要求放最多的饼,这样既没有浪费资源,又节省时间。

  3、对策论问题:解决同一个问题有不同的策略,要学会寻找最优方案。可以用列举法选择最优方案。

  四年级数学的学习方法

  1.预习的习惯

  预习是学生在学习新知识前,通过自学对新知识有初步的认识,形成一定的表象,这对于学生在课中学习新知识时,是很有帮助的。而且学生有了一定的预习基础后,教师在教学时就能有的放矢,更多地让学生通过尝试来获取新知识,可以更多的发挥学生的主体性。

  而实际情况,当今的学生中养成预习习惯的还不够普遍,当然这是有一个过程的,这其中固然有学生自身的因素,但我们教师、家长也有不可推卸的责任。

  因此,要培养学生的预习习惯,老师和家长首先要起到引导作用,有意识的引导学生如何去预习,教给他们预习的方法。在上新课之前,可以提出几个能引起学生的注意的问题作为预习的作业,如要求读、划、问、查,提高学生预习的兴趣。结合课文背景、内容查找相关的资料,使学生很容易理解课文的内容,我们现在学的课文有很多都距离孩子们很远,这就需要背景的查找来辅助学习,加深理解。

  这样坚持较长一段时间之后,学生对预习就有了一定的习惯性。其次,学生本身也要有一定的学习自觉性,在预习中有不懂的地方打个问号,核心重点的地方或较难理解的地方打个*号等等。

  作为家长也可以和孩子一起预习,有些问题孩子会主动向你询问,上网的查询还需要家长的辅导。在上课时,因为学生做了充分的预习,那么他的思维会紧跟着教师,不是老师引着走,而是进行互动的学习。只要学校家庭共同联合,孩子的预习习惯一定会很好地养成,这对于他今后的学习有很大的帮助。

  2.听讲的习惯

  上课专心听讲,集中注意力,这是保证课堂35分钟效率的最低要求。它包括两个方面的要求,一是认真听教师讲课并观察教师的教具演示过程、板书内容、讲课的动作及表情等等,理解教师讲课的内容。老师在讲课时,较多采用动作信号,往往一个动作、一个手势,一个眼神就可能是个问题。

  因此,学生只有在认真听讲的基础上,才能回答我的动作问题,或领会一个手势所表示的意思。二是注意听同学的发言,同学在回答老师提出的问题时,要注意听,边听边想,同学回答得对或不对,如果不对,错在什么地方;如果让自己回答,该怎样说好。

  边听边思考,同意的可以轻轻点头表示赞同,若需要补充或者有不同的看法时,要积极大胆的举手站起来发表自己的意见,这样可以沟通同学之间的信息,取长补短,促进学生听懂教学内容。

  3.课堂上说的习惯

  上课积极回答问题、大胆发言,既可以培养学生的口语表达能力,有培养了学生的思维能力。因此,在学生回答问题时,首先要求语言要完整,不要语无伦次;其次,如果学生回答错了或回答不完整,老师要鼓励学生,表扬他敢于说的勇敢的精神,不让学生觉得回答问题是种压力而不敢说、不肯说。

  所以,在班上,学生回答问题时会说“我认为”“我补充谁的问题”……显得非常自信,有时像开辩论会一样,一个个争先恐后的表达自己的观点。这样,学习的主动权就还给了学生,教师只是一个组织者。

  4.做作业的习惯

  总体来说,学生的作业书写较好,但是要做到持之以恒那是要有恒心的。现在有的学生做作业只是为了应付教师,有的回家马马虎虎做好就出去玩了;有的一边做作业一边看电视;有的一有不懂得题目,就马上问家长,自己不动脑筋;有的甚至不完成作业……因此,要培养学生的良好的作业习惯,应该从几方面着手。

  (1)培养按时完成作业的习惯,要求学生当天的作业当天完成。

  (2)独立完成作业,遇到困难想办法自已解决,不能依赖他人。

  (3)做完作业认真检查。

  作为一些作业常迟交的学生的家长可以相机地抽查孩子的书包,或者和别的学生交流后,再来询问。只有多督促,多提醒,才能让学生改掉迟交或者不叫不交的不良习惯。

小学数学知识点总结14

  1、一个因数是两位数的乘法法则

  (1)、先用两位数个位上的数去乘另一个因数,得数的末位和两位数个位对齐;

  (2)、再用两位数的十位上的数去乘另一个因数,得数的末位和两位数十位对齐;

  (3)、然后把两次乘得的数加起来。

  2、除数是两位数的除法法则

  (1)、从被除数高位起,先用除数试除被除数前两位,如果它比除数小,(2)、除到被除数的哪一位就在哪一位上面写商;

  (3)、每求出一位商,余下的数必须比除数小。

  3、万级数的读法法则

  (1)、先读万级,再读个级;

  (2)、万级的数要按个级的读法来读,再在后面加上一个“万”字;

  (3)、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。

  4、多位数的读法法则

  (1)、从高位起,一级一级往下读;

  (2)、读亿级或万级时,要按照个级数的读法来读,再往后面加上“亿”或“万”字;

  (3)、每级末尾的0都不读,其它数位有一个0或连续几个0都只读一个零。

  5、计算小数乘法,先按照乘法的法则算出积,再看因数中一共几位小数,就从积的右边起数出几位,点上小数点。

  6、除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数小数点对齐,如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。

  7、除数是小数的除法,先移动除数小数点,使它变成整数;除数的`小数点向右移几位,被除数小数点也向右移几位(位数不够在被除数末尾用0补足)然后按照除数是整数的小数除法进行计算。

  8、同分母分数相加减,分母不变,只把分子相加减。

  9、带分数相加减,先把整数部分和分数部分分别相加减,再把所得的数合并起来。

  10、分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。

  11、异分母分数相加减,先通分,然后按照同分母分数加减的法则进行计算。

  12、围成一个图形所有边长的总和就是这个图形的周长。

  13、求一个数的近似数时,看被省略的尾数最高位上的数是几,如果是4或者比4小,就把尾数舍去,如果是5或者比5大,去掉尾数后,要在它的前一位加1。这种求近似数的方法,叫做四舍五入法。

  14、两个数相加,交换加数的位置后,它的和不变,这叫做加法交换律。

  15、三个数相乘,先把前两个数相乘,再同第三个数相乘,或者先把后两个数相乘,再同第一个数相乘,它们的积不变,这叫乘法结合律。

  16、已知两个因数的积与其中的一个因数,求另一个因数的运算叫除法。

  17、积=因数×因数 一个因数=积÷另一个因数。

  18、面积计量单位及进率:

  平方千米、公顷、平方米、平方分米、平方厘米

  1平方千米=100公顷

  1平方千米=1000000平方米

  1公顷=10000平方米

  1平方米=100平方分米

  1平方分米=100平方厘米

  19、质量单位及进率:

  吨、千克、公斤、克

  1吨=1000千克

  1千克=1公斤

  1千克=1000克

  20、体积容积计量单位及进率:

  立方米、立方分米、立方厘米、升、毫升

  1立方米=1000立方分米

  1立方分米=1000立方厘米

  1立方分米=1升 1立方厘米=1毫升

  21、长度计量单位及进率:

  千米(公里)、米、分米、厘米、毫米

  1千米=1公里 1千米=1000米

  1米=10分米 1分米=10厘米

  1厘米=10毫米

  22、长方形面积=长×宽,计算公式S=ab

  23、正方形面积=边长×边长,计算公式S=a×a=a2

  24、长方形周长=(长+宽)×2,计算公式C=(a+b)×2

  25、正方形周长=边长×4,计算公式C=4a

  26、平行四边形面积=底×高,计算公式S=ah

  27、三角形面积=底×高÷2,计算公式S=a×h÷2

  28、梯形面积=(上底+下底)×高÷2,计算公式S=(a+b)×h÷2

  29、长方体体积=长×宽×高,计算公式V=abh

  30、圆的面积=圆周率×半径平方,计算公式V=πr2

  31、正方体体积=棱长×棱长×棱长,计算公式V=a3

  32、长方体和正方体的体积都可以写成底面积×高,计算公式V=sh

  34、圆柱的体积=底面积×高,计算公式V=sh

  35、比的前项和后项同时乘以或者同时除以相同的数(0除外)比值不变,这叫比的基本性质。

  小学数学的学习方法

  1、求教与自学相结合,在学习过程中,既要争取教师的指导和帮助,但是又不能处处依靠教师。必须自己主动地去学习、去探索、去获取,应该在自己认真学习和研究的基础上去寻求教师和同学的帮助。

  2、学用结合,勤于实践,在学习过程中,要准确地掌握抽象概念的本质含义。了解从实际模型中抽象为理论的演变过程;对所学理论知识,要在更大范围内寻求它的具体实例,使之具体化,尽量将所学的理论知识和思维方法应用于实践。

  3、学习与思考相结合,在学习过程中,对课本的内容要认真研究,提出疑问,追本穷源。对每一个概念、公式、定理都要弄清其来龙去脉、前因后果,内在联系,以及蕴含于推导过程中的数学思想和方法。

  4、博观约取,由博返约,课本是学生获得知识的主要来源,但不是唯一的来源。在学习过程中,除了认真研究课本外,还要阅读有关的课外资料,来扩大知识领域。

  5、及时复习,增强记忆。课堂上学习的内容,必须当天消化,要先复习,后做练习。复习工作必须经常进行,每一单元结束后,应将所学知识进行概括整理,使之系统化、深刻化。

  6、学习中的总结和评价,是学习的继续和提高,它有利于知识体系的建立、解题规律的掌握、学习方法和态度的调整和评判能力的提高。在学习过程中,应注意总结听课、阅读和解题中的收获和体会。

小学数学知识点总结15

  (一)口算除法

  1、整十数除整十数或几百几十的数的口算方法。

  (1)算除法,想乘法;比如60÷30=( )就可以想(2)×30=60

  (2)利用表内除法计算。利用除法运算的性质:将被除数和除数同时扩大或缩小相同的倍数,商不变。如:200÷50想20÷5=4,所以200÷50=4。

  2、两位数除两位数或三位数的估算方法:除法估算一般是把算式中不是整十数或几百几十的数用“四舍五入”法估算成整十数或几百几十的数,再进行口算。注意结果用“≈”号。

  (二)笔算除法

  1、除数是两位数的笔算除法计算方法:从被除数的高位除起,先用除数试除被除数的前两位,如果前两位数比除数小,就看前三位。除到被除数的哪一位,商就写在那一位的上面。每次除后余下的`数必须比除数小。

  2、除数不是整十数的两位数的除法的试商方法:如果除数是一个接近整十数的两位数,就用“四舍五入”法把除数看做与它接近的整十数试商,也可以把除数看做与它接近的几十五,再利用一位数的乘法直接确定商。

  3、商一位数:

  (1)两位数除以整十数,如:62÷30;

  (2)三位数除以整十数,如:364÷70

  (3)两位数除以两位数,如:90÷29(把29看做30来试商)

  (4)三位数除以两位数,如:324÷81(把81看做80来试商)

  (5)三位数除以两位数,如:104÷26(把26看做25来试商)

  (6)同头无除商八、九,如:404÷42(被除数的位和除数的位一样,即“同头”,被除数的前两位除以除数不够除,即“无除”,不是商8就是商9。)

  (7)除数折半商四五,如:252÷48(除数48的一半24,和被除数的前两位25很接近,不是商4就是商5。)

  4、商两位数:(三位数除以两位数)

  (1)前两位有余数,如:576÷18

  (2)前两位没有余数,如:930÷31

  5、判断商的位数的方法:

  被除数的前两位除以除数不够除,商是一位数;被除数的前两位除以除数够除,商是两位数。

  (三)商的变化规律

  1、商变化:

  (1)被除数不变,除数乘(或除以)几(0除外),商就除以(或乘)相同的数。

  (2)除数不变,被除数乘(或除以)几(0除外)商也乘(或除以)相同的数。

  2、商不变:被除数和除数同时乘(或除以)相同的数(0除外),商不变。

  (四)简便计算:同时去掉同样多的0,如9100÷700=91÷7=13

【小学数学知识点总结】相关文章:

小学数学的知识点总结12-01

小学数学的知识点总结08-10

小学数学知识点总结08-20

小学数学知识点归纳总结03-06

【优秀】小学数学的知识点总结15篇08-10

小学数学知识点总结集锦03-10

小学数学知识点09-06

小学数学必备知识点03-20

数学高考知识点总结06-18

数学中考知识点总结07-16