(优选)小学数学知识点总结15篇
总结就是把一个时段的学习、工作或其完成情况进行一次全面系统的总结,通过它可以正确认识以往学习和工作中的优缺点,是时候写一份总结了。你想知道总结怎么写吗?以下是小编整理的小学数学知识点总结,仅供参考,希望能够帮助到大家。
小学数学知识点总结1
一、知识框架
一级知识点数与代数二级知识点数的运算三级知识点
1、列竖式计算除法。
2、两位数除以一位数;
除法的验算
3、一步计算的问题
4、两步计算的问题
1、质量单位千克、克数与代数常见的量
2、千克、克之间的换算,简单的实际问题
3、24时计时法空间与图形空间与图形统计与概率图形的认识
从三个方向观察用小正方体搭成的立体图形形状
1.周长的认识
2.长方形、正方形的周长计算描述事件发生的可能性。
二、期末知识点
第一单元除法(除法是乘法的逆运算)
两位数除以一位数(商是两位数)的除法。是在二年级(上册)表内除法和二年级(下册)有余数除法的基础上安排的。
1.计算:列竖式计算除法。
2.口算:被除数十位和个位上的数分别除以除数都没有余数的除法,包括整十数除以一位数商是整十数。
3.笔算:两位数除以一位数;除法的验算(用乘法验算)。
4.估算:估计两位数除以一位数的商是几十多。
5.一步计算的问题:在解决的实际问题中体会数量关系。总价÷单价=数量总价÷数量=单价
6.两步计算的问题:先求总和或剩余是多少,再平均分的实际问题。
练习:
(1)用竖式计算,并验算:62÷266÷672÷347÷7
(2)口算:36÷360÷268÷290÷3
(3)列竖式计算:39÷389÷467÷274÷3
(4)你能估算下面各题的商各是几十多吗?64÷584÷395÷481÷3
(5)王老师用72元买笔记本,如果每本单价是2元,那么能买多少本?李老师用60元买了20本笔记本,那么每本笔记本多少钱?
(6)一副乒乓球拍26元,一个乒乓球2元,用50元买一副乒乓球拍,剩下的钱能够买几个乒乓球?第二单元认数1.认数、读数、写数。
整千数:数位与顺序,认、读、写数,口算整千数的加、减法,解决实际问题。非整千数:认、读、写数,口算整千数加整百数及相应的减法,按顺序整理数。
练习:
(1)口算:201+4000800030006000201000+100
(2)写一写:两个千加两个百加一个十是多少?
(3)三千零二是由几个千和几个一组成?
(4)9670是()位数,它的最高位是()位,7在()位上,个位上是()。
2.大小比较
比较大小时的数学思考,比较大小的实际应用,非整千数最接近几千。
练习:
比较大小:3650和2520,7890和8790第三单元千克和克
千克和克都是质量单位,物体含有物质的多少是它的质量。我国人民在生活中习惯以“物体有多重”代替“质量是多少”,因此没有使用“质量”这个词,仍然讲“有多重”。
1.称一个物体有多重,一般用千克为单位。
2.净含量是指包装袋内物品实际有多重。
3.千克可以用KG表示,又叫公斤。
4.从秤上读出物品的重量。
5.称比较轻的物品,一般用克为单位。
6.认识天平。
7.千克和克之间的关系。1千克=1000克。
练习
(1)一袋盐重500克,两袋盐重()克?
(2)2千克=()克
(3)9000克=()千克第四单元加和减
1.口算两位数加、减。解决与“倍”或“差”有关的两步计算实际问题。
练习
口算:44+2532+5714+6876642.画线段图解决问题。
练习
手套的价格是12元,帽子的价格是手套的3倍,你能用线段画出来并算出帽子是多少钱吗?第五单元24时记时法。
1.24时记时法及它与普通记时法(12时记时法)的联系
2.联系实际问题求经过时间的基本思路与方法。包括:求整时到整时的经过时间,求非整点时刻间的经过时间。(利用线段图)。
求经过时间:
记忆:结束时刻开始时刻=经过时间到达的时刻出发的时刻=经过时间3.两种计时方式的转化。
普通记时法与24时记时法的互相转化普通记时法24时记时法凌晨1时1时
早晨5时5时上午8时8时中午12时12时下午1时13时下午2时14时晚上6时18时晚上7时19时晚上8时20时晚上9时21时
深夜12时24时(也是第二天的0时)
记忆:中午12时以后的时刻,用24时记时法表示,就用钟面上的时刻加上12时。中午12时以后的时刻,用普通记时法表示,就用时刻减去12时。
练习
(1)图书馆的的公告牌上面写着:借书时间:12:0013:30,15:4017:00。图书馆每天的借书时间是多长?
(2)用二十四小时计时法表示,:下午2:00,晚上9:00第六单元长方形和正方形
1.认识长方形和正方形。掌握长方形、正方形的边与角有什么特点。(长方形对边相等,四个角都是直角。正方形每条边都相等,四个角都是直角。通常把长方形的`长边叫做长,短边叫做宽。把正方形的每一条边都叫做边长。)
2.探索、理解周长的含义及计算方法。计算长方形和正方形的周长。(物体某个面上一周边线的长度就是该物体某个面的周长)。
练习
(1)篮球场长26米,宽14米,求篮球场的周长。
(2)操场长150米,宽70米,小强绕操场跑一周,小强一共跑了多少米?
第七单元乘法
1.三位数乘一位数的基本方法。(在二年级下册已经学习了两位数乘一位数)
2.三位数的中间或末尾是0时的乘法计算。3.连乘计算。练习:
(1)200×3152×4261×3224×5(2)124×3×2115×2×4
(3)一头牛一天吃20千克草,两头牛两天吃多少千克草?
第八单元观察物体
安排过一次“观察物体”,从物体(玩具、茶壶、汽车等)的前面、后面、左面、右面观察,并选择适宜的图形表示看到的物体的形状。本单元学习“观察物体”,从物体的正面、侧面和上面观察,并用视图表示看到的形状。
1.在知道物体的前面、后面、左面、右面的基础上,认识物体的正面、侧面和上面。
2.在不同的位置观察,看到的物体的面的个数往往是不相同的。
3.进行简单几何体与其三视图之间的转化。
第九单元统计与可能性
学习简单的统计知识。
练习
(1)在一个口袋里放3个红球,一个黄球,从袋子里任意摸一个球,摸到红球的可能性大还是摸到黄球的可能性大?
第十单元认识分数
理解分数的意义,认、读、写简单的分数,同分母分数(分母小于10)的加减计算。
1.分数的表示:分子、分母、分数线。
2.同分母分数比较大小。
3.同分母分数的加减。
小学数学知识点总结2
第一单元 数据整理与收集
1.学会用“正”字记录数据。
2.会数“正”,知道一个“正”字代表数量5。
3.根据统计表,会解决问题。
4.数据收集---整理---分析表格。
第二单元 表内除法(一)
1.平均分的含义:把一些物品分成几份,每份分得同样的多,叫做平均分。
除法就是用来解决平均分问题的。
2.平均分里有两种情况:
(1)把一些东西平均分成几份,求每份是多少;用除法计算,
总数÷份数=每份数
例:24本练习本,平均分给6人,每人分多少本?
列式:24÷6=4
(2)包含除(求一个数里面有几个几)把一个数量按每份是多少分成一份,求能平均分成几份;用除法计算,总数÷每份数=份数
例:24本练习本,每人4本,能分给多少人?
列式:24÷4=6
3、除法算式的含义:只要是平均分的过程,就可以用除法算式表示。
除法算式的读法:从左到右的顺序读,“÷”读作除以,“=”读作等于,其他数字不变。
例如:12÷4=3读作(12除以4等于3)
例:42÷7=6 42是(被除数),7是(除数),6是(商;这个算式读作(42除以7等于6 )。
4、除法算式各部分名称:在除法算式中,除号前面的数就被除数,除号后面的数叫除数,所得的数叫商。
被除数÷除数=商。变式:被除数÷商=除数(如何求被除数,想:除数×商=被除数。)
5.用2~6的乘法口诀求商
1、求商的方法:
(1)用平均分的方法求商。
(2)用乘法算式求商。
(3)用乘法口诀求商。
2、用乘法口诀求商时,想除数和几相乘的被除数。
一句口诀可以写四个算式。(乘数相同的除外)。
例:用“三八二十四”这句口诀
A、24÷3=8 B、3×8=24
C、24÷3=8 D、24÷8=3
计算方法:12÷4=( )时,想:( )四十二,所以商是( ).
6.解决问题
1、解决有关平均分问题的方法:
总数÷每份数=份数、总数÷份数=每份数、
因数×因数=积、一个因数=积÷另一个因数
2、用乘法和除法两步计算解决实际问题的方法:
(1)所求问题要求求出总数,用乘法计算;
(2)所求问题要求求出份数或每份数,用除法计算。
(3)8个果冻,每2个一份,能分成几份?求8里有几个2,用除法计算。
(4)24里面有( )个4,,20里面有( )个5。(用除法计算。)
(5)最小公倍数问题:一堆水果,3个人正好分完,4个人也正好分完,问这堆水果最少有几个?
第三单元 图形的运动
1、轴对称图形:沿一条直线对折,两边完全重合。对折后能够完全重合的图形是轴对称图形,折痕所在的直线叫对称轴。
成轴对称图形的汉字:
一,二,三,四,六,八,十,大,干,丰,土,士,中,田,由,甲,申,口,日,曰,木,目,森,谷,林,画,伞,王,人,非,菲,天,典,奠,旱,春,亩,目,山,单,杀,美,春,品,工,天,网,回,喜,莫,罪,夫,黑,里,亚。
2、平移:当物体水平方向或竖直方向运动,并且物体的方向不发生改变,这种运动是平移。只有形状、大小、方向完全相同的图形通过平移才能互相重合。
(记住:平移只能上下移动或左右移动)
3、旋转:体绕着某一点或轴进行圆周运动的现象就是旋转。(例如:旋转木马、转动的风扇、转动的`车轮等)
(一)填空
1、汽车在笔直的公路上行驶,车身的运动是( )现象
2、教室门的打开和关闭,门的运动是( )现象。
A.平移 B旋转 C平移和旋转
3、下面( )的运动是平移。
A、旋转的呼啦圈 B、电风扇扇叶 C、拨算珠
第四单元 表内除法(二)
这单元主要是考口算题。有以下几种形式:
1、用7、8、9的乘法口诀求商
求商方法:想“除数×( )=被除数”,再根据乘法口诀计算得商。
例.直接口算:28÷4 8÷8
2、解决问题
求一个数里有几个几,和把一个数平均分成几份,求每份是多少,都用除法计算。
例.填空:45÷9=5表示把( )平均分成( )份,每份是( );还表示( )里有( )个( );
第五单元 混合运算
一、混合计算
混合运算,先乘除,后加减,有括号的要先算括号里面的。
只有加、减法或只有乘、除法,都要从左到右按顺序计算。
二、解决两步计算的实际问题
1、想好先解决什么问题,再解决什么问题。
2、可以画图帮助分析。
3、可以分布计算,也可以列综合算式。
请画出先算哪一步,再算哪一步(并标上1和2)
1、同级运算的类型:
例: 23+6+18 32+11-8 53-24+38 2× 8÷4 72÷ 8×4
2、不同级运算的类型:
例:5× 6 +14 3× 7-16 3 + 5 ×9 45- 9×3 45÷9+14 64÷ 8-8
3、带小括号运算的类型:方法:算式里有括号的,要先算括号里面的。
例: 6×(7 + 2) (24-18)×9 ( 14+35 )÷7 (82-18 )÷8
4.把两个算式合并成一个综合算式。(重点)。
弄清楚哪个数是前一步算式的结果,就用前一步算式替换掉那个数,其他的照写。当需要替换的是第二个数,必要时还需要加上小括号。
例:15+9=24 24÷3=8 (强调括号不能忘)_____________________________
5.解决需要两步计算解决的问题。(要想好先算出什么,在解答什么)
例:妈妈买回3捆铅笔,每捆8支,送给妹妹12支后,还剩多少支?
先算____________________再算____________________
例:学校买来80本科技书,分给六年级35本,剩下的分给其它5个年级,平均每个年级分到多少本?
6.练习十三 第4题 (重点)
1.我们一共要烤90个面包,每次能烤9个,已经烤了36个,剩下的还要烤几次?
2.我们家原来有25只兔子,又买了15只,一共有8个笼子,平均每个笼子放几只?
3.小明有4套明信卡,每套8张,他把其中的5张送给了好朋友,还剩下几张?
4.工人叔叔要挖总长60米的水沟,已经挖好了15米,剩下的要用5天挖完,平均每天挖多少米?
第六单元 有余数的除法
有余数的除法
1、有余数的除法的意义:在平均分一些物体时,有时会有剩余。
2、余数与除数的关系:在有余数的除法中,余数必须比除数小。
最大的余数小于除数1,最小的余数是1。
3、笔算除法的计算方法:
(1)先写除号“厂”
(2)被除数写在除号里,除数写在除号的左侧。
(3)试商,商写在被除数上面,并要对着被除数的个位。
(4)把商与除数的乘积写在被除数的下面,相同数位要对齐。
(5)用被除数减去商与除数的乘积,如果没有剩余,就表示能除尽。
4、有余数的除法的计算方法可以分四步进行:一商,二乘,三减,四比。
(1)商:即试商,想除数和几相乘最接近被除数且小于被除数,那么商就是几,写在被除数的个位的上面。
(2)乘:把除数和商相乘,将得数写在被除数下面。
(3)减:用被除数减去商与除数的乘积,所得的差写在横线的下面。
(4)比:将余数与除数比一比,余数必须必除数小。
5、解决问题
根据除法的意义,解决简单的有余数的除法的问题,要根据实际情况,灵活处理余数。
(1)余数比除数小。
例:43÷7=()…( )余数可能是( )或者余数最大是( )
(2)至少问题(进一法):商+1
例:有27箱菠萝,王叔叔每次最多能运8箱。至少要运多少次才能运完这些菠萝。
(3)最多问题(去尾法)
例:小丽有10元钱,买3元一个的面包,最多能买几个?
课例:
1. 22个学生去划船,每条船最多坐4人,他们至少要租多少条船?
22÷4=5(条)……2(人)
答:他们至少要租6条船。
第七单元 万以内数的认识
一、1000以内数的认识
1、10个一百就是一千。
2、读数时,要从高位读起。百位上是几就几百,十位上几就几十,个位上是几就读几中间有一个0,就读“零”,末尾不管有几个0,都不读。【例如:20xx读作二千零三,2300读作二千三百】
3、写数时,要从高位写起,几个百就在百位写几,几个十就在十位写几,几个一就在个位写几,哪一位上一个数也没有就写0占位。 【例如:三千五百写作3500,三千零六十九写作3069】
4、数的组成:看每个数位上是几,就由几个这样的计数单位组成。例:2369由( )个千、( )个百、( )个十和( )个一组成的。
二、10000以内数的认识
1、10个一千是一万。
2、万以内数的读法和写法与1000以内的数读法和写法相同。
3、最小两位数是10,最大的两位数是99;最小三位数是100,最大的三位数是999;最小四位数是1000,最大的四位数是9999;最小的五位数是10000,最大的五位数是99999。
三、整百、整千数加减法
1、整百、整千加减法的计算方法。
(1)把整百、整千数看成几个百,几个千,然后相加减。
(2)先把0前面的数相加减,再在得数末尾添上与整百、整千数相同个数的0。
2、估算
把数看做它的近似数再计算。
四、10000以内数的大小比较的方法:
(1)位数多的数就大,例如453 < 1000
(2)如果位数相同,就比较最高位上的数字,数字大的这个数就大,反之就小;例如 357 < 978
(3)如果最高位上的数字相同,就比较下一位上的数,依次类推。246 > 219
补充:
1、相邻两个计数单位之间的进率是10。记:一个一个地数,10个一是( )。一十一十地数,10个十是( )。一百一百地数,10个一百是( )。一千一千地数,10个一千是( )。
2.在数位顺序表中,从右边起,第一位是(个位),第二位是(十位),第三位是(百位),第四位是(千位),第五位是(万位)。
3、数的组成:就是看每个数位上是几,就有几个这样的计数单位组成。
例:2647=( )+( )+( )+( )
4、用估算策略解决问题。
96页 例13(估大)
练习19 第8题(估小)
第八单元 克、千克
1.(千克)和(克)都是国际上通用的质量单位。计量比较重的物品,常用“千克”(kg)作单位。
2、称较轻的物品的质量时,用“克”作单位;称较重的物品的质量时,用“千克”作单位。
3、一个两分的硬币约是1克。两袋500克的盐约是1千克。
4、1千克=1000克 1kg=1000g.进率是1000.( 1千克=1公斤、1公斤=2斤、1斤=500克、
1斤=10两、1两=50克)
5、计算或者比较大小时,如果单位不同,就需要把单位统一。一般统一成单位“克”。
估计物品有多重,要结合物品的大小、质地等因素。
小学数学知识点总结3
小学数学知识点全总结之一:运算定律
加法交换律 a+b=b+a
结合律 (a+b)+c=a+(b+c)
减法性质 a-b-c=a-(b+c)
a-(b-c)=a-b+c
乘法交换律 a×b=b×a
结合律 (a×b)×c=a×(b×c)
分配律 (a+b)×c=a×c+b×c
除法性质 a÷(b×c)=a÷b÷c
a÷(b÷c)=a÷b×c
(a+b)÷c=a÷c+b÷c
(a-b)÷c=a÷c-b÷c
商不变性质m≠0 a÷b=(a×m)÷(b×m) =(a÷m)÷(b÷m)
■积的变化规律:在乘法中,一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)相同的倍数。
推广:一个因数扩大A倍,另一个因数扩大B倍,积扩大AB倍。
一个因数缩小A倍,另一个因数缩小B倍,积缩小AB倍。
■商不变规律:在除法中,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
推广:被除数扩大(或缩小)A倍,除数不变,商也扩大(或缩小)A倍。
被除数不变,除数扩大(或缩小)A倍,商反而缩小(或扩大)A倍。
■利用积的变化规律和商不变规律性质可以使一些计算简便。但在有余数的除法中要注意余数。
如:8500÷200= 可以把被除数、除数同时缩小100倍来除,即85÷2= ,商不变,但此时的余数1是被缩小100被后的,所以还原成原来的余数应该是100。
小学数学知识点全总结之二:简易方程
■用字母表示数
用字母表示数是代数的基本特点。既简单明了,又能表达数量关系的一般规律。
■用字母表示数的注意事项
1、数字与字母、字母和字母相乘时,乘号可以简写成““或省略不写。数与数相乘,乘号不能省略。
2、当1和任何字母相乘时,“ 1” 省略不写。
3、数字和字母相乘时,将数字写在字母前面。
■含有字母的式子及求值
求含有字母的式子的值或利用公式求值,应注意书写格式。
■等式与方程
表示相等关系的式子叫等式。
含有未知数的等式叫方程。
判断一个式子是不是方程应具备两个条件:一是含有未知数;二是等式。所以,方程一定是等式,但等式不一定是方程。
■方程的.解和解方程
使方程左右两边相等的未知数的值,叫方程的解。
求方程的解的过程叫解方程。
在列方程解文字题时,如果题中要求的未知数已经用字母表示,解答时就不需要写设,否则首先演将所求的未知数设为x。
■解方程的方法
1、直接运用四则运算中各部分之间的关系去解。如x-8=12
加数+加数=和 一个加数=和-另一个加数
被减数-减数=差 减数=被减数-差 被减数=差+减数
被乘数×乘数=积 一个因数=积÷另一个因数
被除数÷除数=商 除数=被除数÷商 被除数=除数×商
2、先把含有未知数x的项看作一个数,然后再解,如3x+20=41
先把3x看作一个数,然后再解。
3、按四则运算顺序先计算,使方程变形,然后再解。如2.5×4-x=4.2,要先求出2.5×4的积,使方程变形为10-x=4.2,然后再解。
4、利用运算定律或性质,使方程变形,然后再解。如:2.2x+7.8x=20
先利用运算定律或性质使方程变形为(2.2+7.8)x=20,然后计算括号里面使方程变形为10x=20,最后再解。
小学数学知识点总结4
1、上、下
(1)在具体场景中理解上、下的含义及其相对性。
(2)能比较准确地确定物体上下的方位,会用上、下描述物体的相对位置。
(3)培养学生初步的空间观念。
2、前、后
(1)在具体场景中理解前、后、最×的含义,以及前后的相对性。
(2)能比较准确地确定物体前后的方位,会用前、后、最前、最后描述物体的相对位置。
(3)培养学生初步的.空间观念。
加减法
(一)本单元知识网络:
(二)各课知识点:
有几枝铅笔(加法的认识)
知识点:
1、初步了解加法的含义,会读、写加法算式,感悟把两个数合并在一起求一共是多少,用加法计算;
2、初步尝试选择恰当的方法进行5以内的加法口算。
3、第一次出现了图形应用题,要让学生学会看图形应用型题目,理解题目的意思。
有几辆车(初步认识加法的交换律)
3、左、右(1)在具体场景中理解左、右的含义及其相对性。
(2)能比较准确地确定物体左右的方位,会用左、右描述物体的位置。
(3)培养学生初步的空间观念。
4、位置
(1)明确“横为行、竖为列”,并知道“第几行第几个”、“第几组第几个”的含义。
(2)在具体情境中,会用2个数据(2个维度)描述人或物体的具体位置。
(3)在具体情境中,能依据2个维度的数据找到人或物体的具体位置。
小学数学知识点总结5
小学数学知识点全总结之一:运算定律
加法交换律 a+b=b+a
结合律 (a+b)+c=a+(b+c)
减法性质 a-b-c=a-(b+c)
a-(b-c)=a-b+c
乘法交换律 a×b=b×a
结合律 (a×b)×c=a×(b×c)
分配律 (a+b)×c=a×c+b×c
除法性质 a÷(b×c)=a÷b÷c
a÷(b÷c)=a÷b×c
(a+b)÷c=a÷c+b÷c
(a-b)÷c=a÷c-b÷c
商不变性质m≠0 a÷b=(a×m)÷(b×m) =(a÷m)÷(b÷m)
■积的变化规律:在乘法中,一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)相同的倍数.
推广:一个因数扩大A倍,另一个因数扩大B倍,积扩大AB倍.
一个因数缩小A倍,另一个因数缩小B倍,积缩小AB倍.
■商不变规律:在除法中,被除数和除数同时扩大(或缩小)相同的'倍数,商不变.
推广:被除数扩大(或缩小)A倍,除数不变,商也扩大(或缩小)A倍.
被除数不变,除数扩大(或缩小)A倍,商反而缩小(或扩大)A倍.
■利用积的变化规律和商不变规律性质可以使一些计算简便.但在有余数的除法中要注意余数.
如:8500÷200= 可以把被除数、除数同时缩小100倍来除,即85÷2= ,商不变,但此时的余数1是被缩小100被后的,所以还原成原来的余数应该是100.
小学数学知识点全总结之二:简易方程
■用字母表示数
用字母表示数是代数的基本特点.既简单明了,又能表达数量关系的一般规律.
■用字母表示数的注意事项
1、数字与字母、字母和字母相乘时,乘号可以简写成““或省略不写.数与数相乘,乘号不能省略.
2、当1和任何字母相乘时,“ 1” 省略不写.
3、数字和字母相乘时,将数字写在字母前面.
■含有字母的式子及求值
求含有字母的式子的值或利用公式求值,应注意书写格式
■等式与方程
表示相等关系的'式子叫等式.
含有未知数的等式叫方程.
判断一个式子是不是方程应具备两个条件:一是含有未知数;二是等式.所以,方程一定是等式,但等式不一定是方程.
■方程的解和解方程
使方程左右两边相等的未知数的值,叫方程的解.
求方程的解的过程叫解方程.
■在列方程解文字题时,如果题中要求的未知数已经用字母表示,解答时就不需要写设,否则首先演将所求的未知数设为x.
■解方程的方法
1、直接运用四则运算中各部分之间的关系去解.如x-8=12
加数+加数=和 一个加数=和-另一个加数
被减数-减数=差 减数=被减数-差 被减数=差+减数
被乘数×乘数=积 一个因数=积÷另一个因数
被除数÷除数=商 除数=被除数÷商 被除数=除数×商
2、先把含有未知数x的项看作一个数,然后再解.如3x+20=41
先把3x看作一个数,然后再解.
3、按四则运算顺序先计算,使方程变形,然后再解.如2.5×4-x=4.2,
要先求出2.5×4的积,使方程变形为10-x=4.2,然后再解.
4、利用运算定律或性质,使方程变形,然后再解.如:2.2x+7.8x=20
先利用运算定律或性质使方程变形为(2.2+7.8)x=20,然后计算括号里面使方程变形为10x=20,最后再解.
小学数学知识点全总结之三:比和比例
■比和比例应用题
在工业生产和日常生活中,常常要把一个数量按照一定的比例来进行分配,这种分配方法通常叫“按比例分配”.
■解题策略
按比例分配的有关习题,在解答时,要善于找准分配的总量和分配的比,然后把分配的比转化成分数或份数来进行解答
■正、反比例应用题的`解题策略
1、审题,找出题中相关联的两个量
2、分析,判断题中相关联的两个量是成正比例关系还是成反比例关系.
3、设未知数,列比例式
4、解比例式
5、检验,写答语
小学数学知识点总结6
1、人民币的单位有:元、角、分,相邻单位的进率是10,即1元=10角,1角=10分。
2、人民币按制作材料分为纸币和硬币两种,按单位分为元币、角币和分币三种。其中元币共有七种,分别是1元、2元、5元、10元、20元、50元和100元;角币共有三种,分别是1角、2角和5角;分币也有三种,分别是1分、2分和5分。
3、人民币的.换算:
(1)2元8角=(28)角
2元10角=(30)角
(2)2元8角=(2.80)元
2元10角=(3)元
(3)2.15元=(2)元(1)角(5)分
12.00元=(12)元
(4)0.70元=(7)角
0.05元=(5)分
4、换钱
(1)换成一种:1张10元可以换(5)张2元
(2)换两种以上:1张10元可以换(4)张2元和(2)张1元
5、解决问题类型:
毛巾8元5角,香皂4元8角,牙膏5元,牙刷2元6角
(1)牙膏和牙刷一共多少钱?
5元+2元6角=7元6角
答:牙膏和牙刷一共要7元6角。
(2)牙膏比牙刷贵多少钱?
5元—2元6角=2元4角
答:牙膏比牙刷贵2元4角。
(3)香皂比毛巾便宜多少钱?
8元5角—4元8角=3元7角
答:香皂比毛巾便宜3元7角。
(4)用10元钱买毛巾和牙刷,够吗?
8元5角+2元6角=11元1角
10元
答:不够。
(5)用10元钱买一块香皂,应找回多少钱?
10元—4元8角=5元2角
答:应找回5元2角。
(6)用10元钱买毛巾和香皂够吗?如果不够,还差多少钱?
8元5角+4元8角=13元3角
13元3角—10元=3元3角
答:不够,还差3元3角。
(7)20元钱能买哪些东西,应找回多少钱?
8元5角+4元8角+5元=18元3角
20元—18元3角=1元2角
答:20元可以买毛巾、香皂和牙膏,应找回1元2角。
小学数学知识点总结7
一生活中的数
(一)本单元知识网络:
(二)各课知识点:
可爱的校园(数数)
知识点:
1、按一定顺序手口一致地数出每种物体的个数。
2、能用1-10各数正确地表述物体的数量。
快乐的家园(10以内数的认识)
知识点:
1、能形象理解数“1”既可以表示单个物体,也可以表示一个集合。
2、在数数过程中认识1-10数的符号表示方法。
3、理解1~10各数除了表示几个,还可以表示第几个,从而认识基数与序数的联系与区别:基数表示数量的多少,序数表示数量的顺序。
玩具(1~5的认识与书写)
知识点:
1、能正确数出5以内物体的个数。
2、会正确书写1-5的`数字。
小猫钓鱼(0的认识)
知识点:
1、认识“0”的产生,理解“0”的含义,0即可以表示一个物体也没有,也可以表示起点和分界点。
2、学会读、写“0”。
文具(6~10的认识与书写)
知识点:
1、能正确数出数量是6-10的物体的个数。
2、会读写6—10的数字。
小学数学知识点总结8
一、认识数
(一)、有趣的“0”“一年级0”可以表示没有,“0”可以参加计算,“0”在数中起到占位作用,“0”可以表示起点,表示0度。
(二)、基数与序数表示物体的多少时,用的是基数;表示物体排列的次序时,用的是序数。基数与序数不同,基数表示物体的多少,序数表示物体的排列次序。
二、数一数
(一)、数简单图形数零乱放置的物体或数某一类图形的个数时,应先将所有物体依次标上序号,可以按照序号,顺序观察,数准指定的图形。注意对于同一个物体,从不同的角度去观察,观察的结果也会不同。因此在数简单图形时,要善于从不同的角度观察问题、分析问题。
(二)、数复杂图形数复杂图形时可以按大小分类来数。
(三)、数数按条件的要求去数。
三、比较数列
比一比当比较的2个对象整齐的排列时,很容易采用连线比的方法比较出谁多谁少。如果比较的2个对象是杂乱排列的,可以通过数数目的方法进行比较。也可以采用分段比的方法。
四、动手做
(一)、摆一摆要善于寻找不同的方法。
(二)、移一移
五、找规律
(一)、图形变化的规律观察图形的变化,可以从图形的形状、位置、方向、数量、大小、颜色等方面入手,从中寻找规律。
(二)、数列的规律数列就是按一定规律排成的一列数。怎样寻找已知数列的规律,并按规律填出指定的某个数是解题的关键。
(三)、数表的规律把一些数按照一定的规律,填在一个图形固定的位置上,再把按照这一规律填出的图形排列起来。从给出的图形中寻找规律,按照规律填图是解题的关键。
六、填一填
(一)、填数字给出的算式是一组,不同算式中相同图形中所填的数字是相同的。在做这些题时,不要为只填出一个答案而满足,应找出所有的答案。如果不必要一一列出时,应给以说明,这才是完整、正确的解答。
(二)、填符号比较2个数的大小,首先要比较2个数的位数,位数多的数大;其次,当2个数的位数相同时,从高位比起,相同数位上的数大的那个数就大。当2个数各个相同数位上的数都分别相同时,这2个数相等。
七、比较2个算式的大小的.方法是:
(1)同一个数分别加上(或减去)1个相等的数,所得的结果相等;
(2)同一个数分别加上2个不同的数,所加的哪个数大,那个算式的结果就大;
(3)同一个数分别减去2个不同的数,所减的哪个数小,那个算式的结果就大;
(4)2个不同的数减去同一个数,哪个被减数大,那个算式的结果就大。七、说道理做数学题,每一步都要有理由,要把道理想清楚,说出来。
八、总结
应用题一道简单的应用题,是由已知条件和所求问题组成的。一般先说题意,再列算式。
小学数学知识点总结9
1、对长方形、正方形、三角形和圆的认识,能分辨出四种基本的图形。
2、学会观察,能在生活中找出基本的形状,会举例。
3、能区分出面和体的`关系,体会“面在体上”。
4、能找出一组图形的规律。
5、能在复杂的图案中找出基本的图形。
小学数学知识点总结10
第一章————除法
1、用乘法口诀做除法,余数一定要比除数小;
2、应用题中,除数和余数的单位不一样;
商的单位是问题的单位,余数的单位和被除数的单位相同;
3、解决生活问题,如提的问题是“至少需要几条船?”,用进一法(用商加1)”,乘船、坐车、坐板凳等,读懂题目再作答。
第二章————方向与位置(认识方向)
1、地图上的方向口诀:上北下南,左西右东;
辨认方向时要画方向标。
2、“小猫在小狗的()方,()在小狗的东面”,是以小狗家为中心点,画出方位坐标,确定方向;
“小猪在小马的()方”,“小马的()方是小猪”,是以小马家为中心点,画出方位坐标,确定方向。
3、太阳早上从东边升起,西边落下;
指南针一头指着(),一头指着()。小明早上面向太阳时,他的前面是(),后面是(),左面是(),右面是()
4、当吹东南风时,红旗往()飘;
吹西北风时,红旗往()飘。
第三章————生活中的大数(认识10000以内的数)
1、计数器上从右边数起第一位是()位,第二位是()位,第三位是()位,第四位是()位,千位的左边是()位,右边是()位。
2、一个四位数最高位是()位,它的千位是5,个位是2,其他的数位是0,它是()。
3、在8536中,8在()位上,表示()。5在()位上,表示()。3在()位上,表示()。6在()位上,表示()。
4、由三个千,五个一组成的数是(),由9个一,两个百和一个千组成的数是()。
5、读数时,要从高读起,中间有一个或两个0,都只读一个0个“零”;
末尾不管有几个“0”,都不读;
写数,末尾不管有几个0,都不读。写数时,从高位写起,按照数位顺序表写,中间或末尾哪一位上没有数,就写“0”占位。
6、10个十是(),10个一百是(),10个一千是(),100个一百是()。10000里面有()个百,1000里面有()个十。
7、最大的三位数是(),最小的三位数是()。最大的四位数是(),最小的四位数是()。
8、比较大小时,先比较位数,位数多的数就大,位数少的数就小;
位数相同时,从最高位开始比较,最高位上的数字相同的,就比下一位,直到比出大小。从大到小用“>”,从小到大用“<”。
第四章————测量1、毫米(mm)、厘米(cm)、分米(dm)、米(m),相邻单位之间的进率是“10”;
2、1米=10分米,1分米=10厘米,1厘米=10毫米,1米=100厘米,1分米=100毫米,1000米=1千米;
3、长度单位比较大小,首先要观察单位,换成统一的单位之后才能比较;
4、长度单位的加减法,米加米,分米加分米.......就是把相同的单位进行加减。
第五章————加与减1、口算整百加减整百时,想成几个百加减几个百,加减整十数的算理也相同。
2、计算时要注意:(1)、相同数位要对齐,从个位算起。(2)、计算加法时,哪一位相加满十,要向前一位“进一”。(3)、计算减法时,哪一位不够减时,要向前一位“借1”,但是不要忘记退位时要减1;
3、在估算中,如果估算到百位,就看十位数是多少,如果十位上的数大于5,则百位进1,十位和个位舍去,变为0,如估算678,就变为700;
如果十位上的数小于5,则百位不变,十位和个位舍去,变为0,如估算607,就变为600;
4、加数+加数=和一个加数=和-另一个加数如:()+156=368(用368-156计算)280+()=760(用760-280计算)
5、被减数-减数=差被减数=减数+差减数=被减数-差如:()-156=368(用156+368计算)
980-()=760(用980-760计算)
6、加法的验算方法:(1)交换加数的位置,看和是否相同,(2)用和减去其中一个加数,看是否等于另一个加数;
7、减法的.验算方法:(1)用被减数减去差,看结果是否等于减数,(2)用减数加上差,看结果是否等于被减数。注意:运算时不要抄错数,也不要直接把验算结果抄上。
第六章————认识角1、每个角都是由1个顶点和2条边组成;
2、按角的大小,将角分为锐角、直角、钝角,所有的直角都相等,比直角小的是锐角,比直角大的是钝角。要知道一个角是什么角,可以用三角板上的直角比一比。
3、比较角的大小时要注意:角的大小与边的长短无关,与角的张口大小有关,张口越大角就越大;
4、正方形有四个直角,四条边都相等;
长方形有四条边,四个直角,长方形的对边相等;
5、平行四边形有四条边,有2个锐角,2个钝角,对边相等,对角相等。
第七章————时、分、秒1、钟面上有12个大格,每个大格里有5个小格,一共有60个小格;
2、秒针走一小格是1秒,走一大格是5秒,走一圈是60秒,就是1分钟;
3、分针走一小格是1分,走一大格是5分,走一圈是60分,也就是1小时;
4、时针走一大格是1小时,走一圈是12小时;
5、时、分、秒相邻单位的进率是60;
1时=60分1分=60秒6、比较时间,首先要观察,统一单位之后再比较大小。
7、时间的加减:分减分,时减时,当分不够减时,要向前一位借1,化成60,再相加减;
第八章————统计1、记录并学会计算,谁多,谁少。
小学数学知识点总结11
(一)口算除法
1、整十数除整十数或几百几十的数的口算方法。
(1)算除法,想乘法;比如60÷30=( )就可以想(2)×30=60
(2)利用表内除法计算。利用除法运算的性质:将被除数和除数同时扩大或缩小相同的倍数,商不变。如:200÷50想20÷5=4,所以200÷50=4。
2、两位数除两位数或三位数的估算方法:除法估算一般是把算式中不是整十数或几百几十的数用“四舍五入”法估算成整十数或几百几十的数,再进行口算。注意结果用“≈”号。
(二)笔算除法
1、除数是两位数的笔算除法计算方法:从被除数的高位除起,先用除数试除被除数的前两位,如果前两位数比除数小,就看前三位。除到被除数的哪一位,商就写在那一位的上面。每次除后余下的数必须比除数小。
2、除数不是整十数的两位数的除法的试商方法:如果除数是一个接近整十数的两位数,就用“四舍五入”法把除数看做与它接近的整十数试商,也可以把除数看做与它接近的几十五,再利用一位数的乘法直接确定商。
3、商一位数:
(1)两位数除以整十数,如:62÷30;
(2)三位数除以整十数,如:364÷70
(3)两位数除以两位数,如:90÷29(把29看做30来试商)
(4)三位数除以两位数,如:324÷81(把81看做80来试商)
(5)三位数除以两位数,如:104÷26(把26看做25来试商)
(6)同头无除商八、九,如:404÷42(被除数的位和除数的位一样,即“同头”,被除数的前两位除以除数不够除,即“无除”,不是商8就是商9。)
(7)除数折半商四五,如:252÷48(除数48的一半24,和被除数的前两位25很接近,不是商4就是商5。)
4、商两位数:(三位数除以两位数)
(1)前两位有余数,如:576÷18
(2)前两位没有余数,如:930÷31
5、判断商的位数的方法:
被除数的`前两位除以除数不够除,商是一位数;被除数的前两位除以除数够除,商是两位数。
(三)商的变化规律
1、商变化:
(1)被除数不变,除数乘(或除以)几(0除外),商就除以(或乘)相同的数。
(2)除数不变,被除数乘(或除以)几(0除外)商也乘(或除以)相同的数。
2、商不变:被除数和除数同时乘(或除以)相同的数(0除外),商不变。
(四)简便计算:同时去掉同样多的0,如9100÷700=91÷7=13
小学数学知识点总结12
角:
(1)角的静态定义:具有公共端点的两条不重合的射线组成的图形叫做角。
这个公共端点叫做角的顶点,这两条射线叫做角的两条边。
(2)角的动态定义:一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角。
所旋转射线的端点叫做角的顶点,开始位置的射线叫做角的始边,终止位置的射线叫做角的终边
角的符号:∠
角的种类:角的大小与边的`长短没有关系;角的大小决定于角的两条边张开的程度,张开的越大,角就越大,相反,张开的越小,角则越小。
在动态定义中,取决于旋转的方向与角度。
角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种。
以度、分、秒为单位的角的度量制称为角度制。此外,还有密位制、弧度制等。
(1)锐角:大于0°,小于90°的角叫做锐角。
(2)直角:等于90°的角叫做直角。
(3)钝角:大于90°而小于180°的角叫做钝角。
乘法:
乘法是指一个数或量,增加了多少倍。例如4乘5,就是4增加了5倍率,也可以说成5个4连加。
乘法算式中各数的名称:
“×”是乘号,乘号前面和后面的数叫做因数,“=”是等于号,等于号后面的数叫做积。
例:10(因数)×(乘号)200(因数)=(等于号)20xx(积)
平行:
在平面上两条直线、空间的两个平面或空间的一条直线与一平面之间没有任何公共点时,称它们平行。如图直线AB平行于直线CD,记作AB∥CD。平行线永不相交。
垂直:
两条直线、两个平面相交,或一条直线与一个平面相交,如果交角成直角,叫做互相垂直。
平行四边形:
在同一平面内有两组对边分别平行的四边形叫做平行四边形。
梯形:
梯形是指一组对边平行而另一组对边不平行的四边形。
平行的两边叫做梯形的底边,其中长边叫下底,短边叫上底;也可以单纯的认为上面的一条叫上底,下面一条叫下底。不平行的两边叫腰;夹在两底之间的垂线段叫梯形的高。
除法:
除法法则:除数是几位,先看被除数的前几位,前几位不够除,多看一位,除到哪位,商就写在哪位上面,不够商一,0占位。余数要比除数小,如果商是小数,商的小数点要和被除数的小数点对齐;如果除数是小数,要化成除数是整数的除法再计算。
小学数学知识点总结13
第一单元 小数乘法
1.小数乘整数:意义——求几个相同加数的和的简便运算。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2.小数乘小数:意义——就是求这个数的几分之几是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
规律: 一个数(0除外)乘大于1的数,积比原来的数大; 一个数(0除外)乘小于1的数,积比原来的数小。
3.求近似数的方法一般有三种: ⑴四舍五入法;⑵进一法;⑶去尾法
4.计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角。
5.小数四则运算顺序跟整数是一样的。
6.运算定律和性质: 加法: 加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 减法: 减法性质:a-b-c=a-(b+c)a-(b-c)=a-b+c 乘法: 乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c) 乘法分配律:(a+b)×c=a×c+b×c(a-b)×c=a×c-b×c 除法: 除法性质:a÷b÷c=a÷(b×c)
7.小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。
8.小数除以整数的计算方法:小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。
9.除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。
10.在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。五年级数学重要知识点
11.除法中的变化规律: ①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。 ②除数不变,被除数扩大,商随着扩大。③被除数不变,除数缩小,商扩大。
12.循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的.小数叫做循环小数。循环节:一个循环小数的小数部分,依次不断重复出现的数字。如6.3232……的循环节是32.
13.小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小数,叫做无限小数。
14.从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。
15.在含有字母的式子里,字母中间的乘号可以记作“?”,也可以省略不写。加号、减号除号以及数与数之间的乘号不能省略。
16.a×a可以写作a?a或a2,读作a的平方。 2a表示a+a
17.方程:含有未知数的等式称为方程。 使方程左右两边相等的未知数的值,叫做方程的解。 求方程的解的过程叫做解方程。
18.解方程原理:天平平衡。等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。
19.10个数量关系式: 加法:和=加数+加数 一个加数=和-两一个加数 减法:差=被减数-减数 被减数=差+减数 减数=被减数-差乘法:积=因数×因数 一个因数=积÷另一个因数 除法:商=被除数÷除数 被除数=商×除数 除数=被除数÷商
20.所有的方程都是等式,但等式不一定都是等式。
21.公式:长方形:周长=(长+宽)×2 【长=周长÷2-宽; 宽=周长÷2-长】 字母公式:C=(a+b)×2 面积=长×宽 字母公式:S=ab正方形:周长=边长×4 字母公式:C=4a 面积=边长×边长 字母公式:S=a 平行四边形:面积=底×高 字母公式: S=ah 三角形:面积=底×高÷2【底=面积×2÷高; 高=面积×2÷底】 字母公式: S=ah÷2 梯形: 面积=(上底+下底)×高÷2 字母公式: S=(a+b)h÷2【上底=面积×2÷高-下底,下底=面积×2÷高-上底; 高=面积×2÷(上底+下底)】
22.平行四边形面积公式推导:剪拼、平移 平行四边形可以转化成一个长方形; 长方形的长相当于平行四边形的底; 长方形的宽相当于平行四边形的高;长方形的面积等于平行四边形的面积; 因为长方形面积=长×宽,所以平行四边形面积=底×高。
23.三角形面积公式推导:旋转 两个完全一样的三角形可以拼成一个平行四边形; 平行四边形的底相当于三角形的底; 平行四边形的高相当于三角形的高;平行四边形的面积等于三角形面积的2倍; 因为平行四边形面积=底×高,所以三角形面积=底×高÷2
24.梯形面积公式推导:旋转 两个完全一样的梯形可以拼成一个平行四边形; 平行四边形的底相当于梯形的上下底之和; 平行四边形的高相当于梯形的高;平行四边形面积等于梯形面积的2倍; 因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2
25.等底等高的平行四边形面积相等;等底等高的三角形面积相等; 等底等高的平行四边形面积是三角形面积的2倍。
26.长方形框架拉成平行四边形,周长不变,面积变小。
27.组合图形:转化成已学的简单图形,通过加、减进行计算。
28.平均数=总数量÷总份数
29.中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一般水平更合适。
30.数不仅可以用来表示数量和顺序,还可以用来编码。
31.由6位组成: 前2位表示省(直辖市、自治区) 前3位表示邮区 前4位表示县(市) 最后2位表示投递局
32.身份证号码:18位 倒数第二位的数字用来表示性别,单数表示男,双数表示女。
小学数学知识点总结14
第一单元长度单位
1、常用的长度单位:米、厘米。
2、测量较短物体通常用厘米作单位,测量较长物体通常用米作单位。
3、测量物体长度的方法:将物体的左端对准直尺的“0”刻度,看物体的右端对着直尺上的刻度是几,这个物体的长度就是几厘米。
4、米和厘米的关系:1米=100厘米100厘米=1米
5、线段
⑴线段的特点:①线段是直的;②线段有两个端点;③线段有长有短,是可以量出长度的。
⑵画线段的方法:先用笔对准尺子的’0”刻度,在它的上面点一个点,再对准要画到的长度的厘米刻度,在它的上面也点一个点,然后把这两个点连起来,写出线段的长度。
⑶测量物体的长度时,当不是从“0”刻度量起时,要用终点的刻度数减去起点的刻度数。
6、填上合适的长度单位。
小明身高1(米)30(厘米)
练习本宽13(厘米)
铅笔长17(厘米)
黑板长2(米)图钉长1(厘米)
一张床长2(米)一口井深3(米)
学校进行100(米)赛跑
教学楼高25(米)宝宝身高80(厘米)
跳绳长2(米)一棵树高3(米)
一把钥匙长5(厘米)
一个文具盒长24(厘米)
讲台高90(厘米)
门高2(米)教室长12(米)
筷子长20(厘米)
一棵小树苗高1(米)
小朋友的头围48厘米
爸爸的身高1米75厘米或175厘米
小朋友的身高120厘米或1米20厘米
第二单元100以内的加法和减法
一、两位数加两位数
1、两位数加两位数不进位加法的计算法则:把相同数位对齐列竖式,在把相同数位上的数相加。
2、两位数加两位数进位加法的计算法则:①相同数位对齐;②从个位加起;③个位满十向十位进1。
3、笔算两位数加两位数时,相同数位要对齐,从个位加起,个位满十要向十位进“1”,十位上的'数相加时,不要遗漏进上来的“1”。
4、和=加数+加数
一个加数=和-另一个加数
二、两位数减两位数
1、两位数减两位数不退位减的笔算:相同数位对齐列竖式,再把相同数位上的数相减
2、两位数减两位数退位减的笔算法则:①相同数位对齐;②从个位减起;③个位不够减,从十位退1,在个位上加10再减。
3、笔算两位数减两位数时,相同数位要对齐,从个位减起,个位不够减,从十位退1,个位加10再减,十位计算时要先减去退走的1再算。
4、差=被减数-减数
被减数=减数+差
减数=被减数+差
三、连加、连减和加减混合
1、连加、连减
连加、连减的笔算顺序和连加、连减的口算顺序一样,都是从左往右依次计算。
①连加计算可以分步计算,也可以写成一个竖式计算,计算方法与两个数相加一样,都要把相同数位对齐,从个位加起。
②连减运算可以分步计算,也可以写成一个竖式计算,计算方法与两个数相减一样,都要把相同数位对齐,从个位减起。
2、加减混合
加、减混合算式,其运算顺序、竖式写法都与连加、连减相同。
3、加减混合运算写竖式时可以分步计算,方法与两个数相加(减)一样,要把相同数位对齐,从个位算起;也可以用简便的写法,列成一个竖式,先完成第一步计算,再用第一步的结果加(减)第二个数。
四、解决问题(应用题)
1、步骤:①先读题②列横式,写结果,千万别忘记写单位(单位为:多少或者几后面的那个字或词)③作答。
2、求“一个已知数”比“另一个已知数”多多少、少多少?用减法计算。用“比”字两边的较大数减去较小数。
3、比一个数多几、少几,求这个数的问题。先通过关键句分析,“比”字前面是大数还是小数,“比”字后面是大数还是小数,问题里面要求大数还是小数,求大数用加法,求小数用减法。
4、关于提问题的题目,可以这样提问:
①…….和……一共…….?
②……比……..多多少/几……?
③……比……..少多少/几……?
第三单元元角的初步认识
1、角的初步认识
(1)角是由一个顶点和两条边组成的;
(2)画角的方法:从一个点起,用尺子向不同的方向画两条直线。
(3)角的大小与边的长短没有关系,与角的两条边张开的大小有关,角的两条边张开得越大,角就越大,角的两条边张开得越小,角就越小。
2、直角的初步认识
(1)直角的判断方法:用三角尺上的直角比一比(顶点对顶点,一边对一边,再看另一条边是否重合)。
(2)画直角的方法:①先画一个顶点,再从这个点出发画一条直线②用三角尺上的直角顶点对齐这个点,一条直角边对齐这条线③再从这点出发沿着三角尺上的另一条直角边画一条线④最后标出直角标志。
(3)比直角小的是锐角,比直角大的是钝角:锐角<直角<钝角。
(4)所有的直角都一样大
(5)每个三角尺上都有1个直角,两个锐角。红领巾上有3个角,其中一个是钝角,两个是锐角。一个长方形中和正方形中都是有4个直角。
小学数学知识点总结15
第一单元圆
1、圆的定义:平面上的一种曲线图形。
2、将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。圆心一般用字母O表示。它到圆上任意一点的距离都相等、
3、半径:连接圆心到圆上任意一点的线段叫做半径。半径一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。
4、圆心确定圆的位置,半径确定圆的大小。
5、直径:通过圆心并且两端都在圆上的线段叫做直径。直径一般用字母d表示。
6、在同一个圆内,所有的半径都相等,所有的直径都相等。
7、在同一个圆内,有无数条半径,有无数条直径。
8、在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。
用字母表示为:
d=2r
r =1/2d
用文字表示为:
半径=直径÷2
直径=半径×2
9、圆的周长:围成圆的曲线的长度叫做圆的周长。
10、圆的周长总是直径的3倍多一些,这个比值是一个固定的数。我们把圆的周长和直径的比值叫做圆周率,用字母表示。圆周率是一个无限不循环小数。在计算时,取π≈。世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
11、圆的周长公式:C=πd或C=2πr
圆周长=π×直径
圆周长=π×半径×2
12、圆的面积:圆所占面积的大小叫圆的面积。
13、把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,用字母(πr)表示,宽相当于圆的半径,用字母(r)表示,因为长方形的面积=长×宽,所以圆的面积= πr×r。
圆的面积公式:S=πr2。
14、圆的面积公式:S=πr2或者S=π(d/2)2或者S=π(C÷(2π))2≈
15、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。
16、在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。
17、一个环形,外圆的半径是R,内圆的半径是r,它的面积是
S=πR2—πr2
或S=π(R2—r2)。
(其中R=r+环的宽度、)
19、半圆的周长等于圆的周长的一半加直径。半圆的周长与圆周长的一半的区别在于,半圆有直径,而圆周长的一半没有直径。
半圆的周长公式:
C=πd/2+d
或C=πr+2r
圆周长的一半=πr
20、半圆面积=圆的面积÷2
公式为:S=πr2/2
21、在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。而面积扩大或缩小以上倍数的平方倍。
例如:在同一个圆里,半径扩大4倍,那么直径和周长就都扩大4倍,而面积扩大16倍。
22、两个圆的半径比等于直径比等于周长比,而面积比等于以上比的平方。
例如:两个圆的半径比是2:3,那么这两个圆的直径比和周长比都是2:3,而面积比是4:9。
圆周长和直径的比是π:1,比值是π
圆周长和半径的比是2π:1,比值是2π
23、当一个圆的半径增加a厘米时,它的周长就增加2πa厘米;
当一个圆的直径增加a厘米时,它的周长就增加πa厘米。
24、在同一圆中,圆心角占圆周角的几分之几,它所在扇形面积就占圆面积的几分之几;所对的弧就占圆周长的几分之几、
25、当长方形,正方形,圆的周长相等时,圆的面积最大,长方形的面积最小
26、扇形弧长公式:扇形的面积公式:
S=nπr2/360
(n为扇形的圆心角度数,r为扇形所在圆的半径)
27、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。
28、有一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。
有2条对称轴的图形是:长方形
有3条对称轴的图形是:等边三角形
有4条对称轴的图形是:正方形
有无数条对称轴的图形是:圆、圆环。
29、直径所在的直线是圆的对称轴。
31、永远记住要带单位,周长是(例如:cm),面积是平方(例如:cm2),体积是立方(例如:cm3)。
32、圆的周长:
×1= ×2=
×3= ×4=
×5= ×6=
×7= ×8=
×9= ×10=
33、圆的面积:
×12= ×22=
×32= ×42=
×52= ×62=
×72= ×82=
×92= ×102=314
第二单元分数混合运算
1、分数混合运算的运算顺序与整数混合运算的运算顺序完全相同,都是先算乘除,再算加减,有括号的先算括号里的。
①如果是同一级运算,按照从左到右的顺序依次计算。
②如果是分数连乘,可先进行约分,再进行计算;
③如果是分数乘除混合运算时,要先把除法转换成乘法,然后按乘法运算。
2、解决问题
(1)用分数运算解决“求比已知量多(或少)几分之几的量是多少”的`实际问题,方法是:
第①种方法:可以先求出多或少的具体量,再用单位“1”的量加或减去多或少的部分,求出要求的问题。
第②种方法:也可以用单位“1”加或减去多或少的几分之几,求出未知数占单位“1”的几分之几,再用单位“1”的量乘这个分数。
(2)“已知甲与乙的和,其中甲占和的几分之几,求乙数是多少?”
第①种方法:首先明确谁占单位“1”的几分之几,求出甲数,再用单位“1”减去甲数,求出乙数。
第②种方法:先用单位“1”减去已知甲数所占和的几分之几,即得未知乙数所占和的几分之几,再求出乙数。
(3)用方程解决稍复杂的分数应用题的步骤:
①要找准单位“1”。
②确定好其他量和单位“1”的量有什么关系,画出关系图,写出等量关系式。
③设未知量为X,根据等量关系式,列出方程。
④解答方程。
(4)要记住以下几种算术解法解应用题:
①对应数量÷对应分率=单位“1”的量
②求一个数的几分之几是多少,用乘法计算。
③已知一个数的几分之几是多少,求这个数,用除法计算,还可以用列方程解答。
3、要记住以下的解方程定律:
加数+加数=和;
加数=和–另一个加数。
被减数–减数=差;
被减数=差+减数;
减数=被减数–差。
因数×因数=积;
因数=积÷另一个因数。
被除数÷除数=商;
被除数=商×除数;
除数=被除数÷商。
4、绘制简单线段图的方法:
分数应用题,分两种类型,一种是知道单位“1”的量用乘法,另一种是求单位“1”的量,用除法。这两种类型应用题的数量关系可以分成三种:(一)一种量是另一种量的几分之几。(二)一种量比另一种量多几分之几。(三)一种量比另一种量少几分之几。绘制时关键处理好量与量之间的关系,在审题确定单位“1”的量。绘制步骤:
①首先用线段表示出这个单位“1”的量,画在最上面,用直尺画。
②分率的分母是几就把单位“1”的量平均分成几份,用直尺画出平均的等分。标出相关的量。
③再绘制与单位“1”有关的量,根据实际是上面的三种关系中的哪一种再画。标出相关的量。
④问题所求要标出“?”号和单位。
5、补充知识点
分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
分数乘法的计算法则
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零、。
分数乘法意义
分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。
分数乘整数:数形结合、转化化归
倒数:乘积是1的两个数叫做互为倒数。
分数的倒数
找一个分数的倒数,例如3/4把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是4/3、3/4是4/3的倒数,也可以说4/3是3/4的倒数。
整数的倒数
找一个整数的倒数,例如12,把12化成分数,即12/1,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是1/12,12是1/12的倒数。
小数的倒数
普通算法:找一个小数的倒数,例如,把化成分数,即1/4,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是4/1
用1计算法:也可以用1去除以这个数,例如,1/等于4,所以的倒数4,因为乘积是1的两个数互为倒数。分数、整数也都使用这种规律。
分数除法:分数除法是分数乘法的逆运算。
分数除法计算法则:
甲数除以乙数(0除外),等于甲数乘乙数的倒数。
分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
分数除法应用题:先找单位1。单位1已知,求部分量或对应分率用乘法,求单位1用除法。
第三单元观察物体
1、观察物体一般从正面、上面、左面或右面来观察。
2、同样高度的物体,在同一光源的照射下,离光源越近,这个物体的影子就越短;离光源越远,这个物体的影子就越长。
3、站得高,才能望得远。
4、确定观察的范围:
1)先找到观察点、障碍点;
2)连接观察点和障碍点后确定观察的范围。
5、看不到的地方称作盲区。
第四单元百分数的认识
1、百分数的意义
像84%,28%,……这样的数叫作百分数,表示一个数是另一个数的百分之几。百分数也叫百分比、百分率。百分数只表示两个数之间的关系,不能带单位名称,它表示的是一个比值。
2、百分数的读法和写法
①百分数的读法:百分数的读法与分数的读法相同,但百分数读作“百分之几”,不读作“一百分之几”。
②百分数的写法:百分数相当于分母是100的分数,但百分数不能写成分数的形式,而是在分子的后面加上百分号(%)来表示。
3、百分数和分数的区别
①意义不同
百分数只表示一个数是另一个数的百分之几。它只能表示两个数之间的倍数关系,并不是表示某一个具体数量,所以百分数不能带单位。分数不仅可以表示两个数之间的倍数关系,还可以表示一定的数量,所以分数表示数量时可以带单位。
②写法不同
百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。
分数的最后结果中的分子只能是整数,计算结果不是最简分数的要化成最简分数。
百分数的最后结果中的分子可以是整数,也可以是小数。如:18%,180%
4、小数、分数、百分数的互化
①把小数化成百分数的方法:
先把小数点向右移动两位,再在数的后面直接添上“%”,如
②把分数化成百分数的方法:
可以先把分数化成分母是100的分数,再改写成百分数,如3/5=(除不尽的保留三位小数)。
③把百分数化成小数的方法:
先把“%”去掉,同时把小数点向左移动两位,当移动的位数不够时,要添0补位。
④把百分数化成分数的方法:
先把百分数改写成分母是100的分数,能约分的要约分成最简分数。当百分数的分子是小数时,要要根据分数的基本性质把分子和分母同时扩大相同的倍数,把分子变成整数后能约分的再约分。
5、求一个数是另一个数的百分之几的方法
求一个数是另一个数的百分之几的方法与求一个数是另一个数的几分之几的方法相同,就是用这个数除以另一个数,除不尽时通常保留三位小数,然后把小数点向右移动两位,再在数的后面加上%
6、求百分率的方法:
百分率一般是指部分占总体的百分之几。如合格率就是合格的产品数量占产品数量的百分之几。及格率就是及格人数占总人数的百分之几。结果用百分数的形式表示。
常考的几种百分率:
合格的数量÷总数量×100%=合格率
及格的人数÷总人数×100%=及格率
发芽的数量÷总数量×100%=发芽率
优秀的人数÷总人数×100%=优秀率
出席的人数÷总人数×100%=出席率
缺席的人数÷总人数×100%=缺席率
命中的次数÷总次数×100%=命中率
7、求一个数的百分之几是多少的实际问题的解法
与求一个数的几分之几是多少的问题的解答方法相同,都是用乘法来计算,用这个数乘百分之几。计算时可以把这个数化成小数来计算,也可以把这个数化成分数来计算,要根据具体情况分析,选择简便的计算方法。
第五单元数据处理
三种统计图:
条形统计图(表示各个量的多少)
折线统计图(表示数量多少、反映增减变化)
扇形统计图(表示部分与整体的关系)。
一、绘制条形统计图(主要是用于比较数量大小)
1、写出统计图的标题,在上方的右侧表明制图日期。
2、确定横轴、纵轴。
3、在横轴上适当分配条形的位置,确定条形的宽度和间隔。(直条的宽窄要一致,间隔也要一致,单位长度要统一)
4、纵轴上确定单位长度。确定单位长度所代表的量要根据最大和最小的来综合考虑。
5、根据数据的大小画出长短不同的直条。
6、给直条图形不同的颜色(或底纹),并在统计图右上角注明图例。
二、关于复试条形统计图
1、制作复试条形统计图与单式条形统计图的制作方法相同。只是在每组数据中各量要用颜色或底纹区分。
2、复试条形统计图———直条的宽窄要一致,间隔要一致,单位长度要统一。
3、运用横向、纵向、综合、对比等不同方法观察,可以读懂复试条形统计图,从中获取尽可能多的信息。
4、复试条形统计图有纵向和横向两种画法。
三、绘制复试折线统计图(不仅可以比较大小,还可以比较数量变化的快慢)
a、只有一条折线的折线统计图叫做单式折线统计图。
b、用不同的折线表示不同的数量变化情况的折线统计图叫做复试折线统计图。
考点:三种单式统计图和两种复式统计图。
1、三种统计图:条形统计图表示数量的多少、折线统计图表示数量多少、反映增减变化、扇形统计图表示部分与整体的关系。
2、复式条形统计图:用两种不同的条形来分别表示不同的类型。复式折线统计图:用两条不同的线来表示,一条用实线,另一条用虚线。
3、反映某城市一天气温变化,最好用折线统计图,反映某校六年级各班的人数,用(条形)统计图比较好,反映笑笑家食品支出占全部支出的多少,最好用扇形统计图。
第六单元比的认识
(一)比的基本概念
1、两个数相除又叫做两个数的比。比的前项除以后项所得的商,叫做比值。
2、比值通常用分数、小数和整数表示。
3、比的后项不能为0。
4、同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商;
5、根据分数与除法的关系,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。
6、比的基本性质:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。
(二)求比值
1、求比值:用比的前项除以比的后项
(三)化简比
1、化简比:用比的前项除以比的后项求出分数的比值后,在把分数比值改成比。
(四)比的应用
1、比的第一种应用:已知两个或几个数量的和,这两个或几个数量的比,求这两个或这几个数量是多少?
例如:六年级有60人,男女生的人数比是5:7,男女生各有多少人?
题目解析:60人就是男女生人数的和。
解题思路:第一步求每份:60÷(5+7)=5人
第二步求男女生:男生:5×5=25人女生:5×7=35人。
2、比的第二种应用:已知一个数量是多少,两个或几个数的比,求另外几个数量是多少?
例如:六年级有男生25人,男女生的比是5:7,求女生有多少人?全班共有多少人?
题目解析:“男生25人”就是其中的一个数量。
解题思路:第一步求每份:25÷5=5人
第二步求女生:女生:5×7=35人。全班:25+35=60人
3、比的第三种应用:已知两个数量的差,两个或几个数的比,求这两个或这几个数量是多少?
例如:六年级的男生比女生多20人(或女生比男生少20人),男女生的比是7:5,男女生各有多少人?全班共有多少人?
4、要求量=已知量×要求量份数/已知量份数
5、比在几何里的运用:
(1)已知长方形的周长,长和宽的比是a:b。求长和宽、面积。
长=周长÷2×a/(a+b)
宽=周长÷2×b/(a+b)
面积=长×宽
(2)已知已知长方体的棱长和,长、宽、高的比是a:b:c。求长、宽、高、体积
长=周长÷4×a/(a+b+c)
宽=周长÷4×b/(a+b+c)
高=周长÷4×c/(a+b+c)
体积=长×宽×高
(3)已知三角形三个角的比是a:b:c,求三个内角的度数。
三个角分别为:
180×a/(a+b+c)
180×b/(a+b+c)
180×c/(a+b+c)
(4)已知三角形的周长,三条边的长度比是a:b:c,求三条边的长度。
三条边分别为:
周长×a/(a+b+c)
周长×b/(a+b+c)
周长×c/(a+b+c)
第七单元百分数的应用
百分数的基本概念
1、百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
百分数表示两个数之间的比率关系,不表示具体的数量,所以百分数不能带单位。
2、百分数的意义:表示一个数是另一个数的百分之几。
例如:25%的意义:表示一个数是另一个数的25%。
3、百分数通常不写成分数形式,而在原来分子后面加上“%”来表示。分子部分可为小数、整数,可以大于100,小于100或等于100。
4、小数与百分数互化的规则:
把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;
把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
5、百分数与分数互化的规则:
把分数化成百分数,通常先把分数化成小数(除不尽的保留三位小数),再把小数化成百分数;
把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
【小学数学知识点总结】相关文章:
小学数学的知识点总结12-01
小学数学的知识点总结08-10
小学数学知识点总结08-20
小学数学知识点归纳总结03-06
小学数学知识点总结集锦03-10
【优秀】小学数学的知识点总结15篇08-10
小学数学必备知识点03-20
数学高考知识点总结06-18
数学高考知识点总结08-20
数学中考知识点总结07-16