小学数学知识点总结

时间:2024-08-20 18:26:05 数学 我要投稿

小学数学知识点总结

  总结是对取得的成绩、存在的问题及得到的经验和教训等方面情况进行评价与描述的一种书面材料,它能使我们及时找出错误并改正,因此我们要做好归纳,写好总结。那么总结应该包括什么内容呢?下面是小编帮大家整理的小学数学知识点总结,欢迎阅读与收藏。

小学数学知识点总结

小学数学知识点总结1

  准备课

  1、数一数

  数数:数数时,按一定的顺序数,从1开始,数到最后一个物体所对应的那个数,即最后数到几,就是这种物体的总个数。

  2、比多少

  同样多:当两种物体一一对应后,都没有剩余时,就说这两种物体的数量同样多。

  比多少:当两种物体一一对应后,其中一种物体有剩余,有剩余的那种物体多,没有剩余的那种物体少。

  比较两种物体的多或少时,可以用一一对应的方法。

  位置

  1、认识上、下

  体会上、下的含义:从两个物体的位置理解:上是指在高处的物体,下是指在低处的物体。

  2、认识前、后

  体会前、后的含义:一般指面对的方向就是前,背对的方向就是后。

  同一物体,相对于不同的参照物,前后位置关系也会发生变化。

  从而得出:确定两个以上物体的前后位置关系时,要找准参照物,选择的参照物不同,相对的前后位置关系也会发生变化。

  3、认识左、右

  以自己的左手、右手所在的位置为标准,确定左边和右边。右手所在的一边为右边,左手所在的一边为左边。

  要点提示:在确定左右时,除特殊要求,一般以观察者的左右为准。

  学好数学的`方法和技巧总结

  主动预习

  预习的目的是主动获取新知识的过程,有助于调动学习积极主动性,新知识在未讲解之前,认真阅读教材,养成主动预习的习惯,是获得数学知识的重要手段。

  因此,要注意培养自学能力,学会看书。如自学例题时,要弄清例题讲的什么内容,告诉了哪些条件,求什么,书上怎么解答的,为什么要这样解答,还有没有新的解法,解题步骤是怎样的。抓住这些重要问题,动脑思考,步步深入,学会运用已有的知识去独立探究新的知识。

  让数学课学与练结合

  在数学课上,光听是没用的。自己也要在草稿纸上练。当遇到不懂的难题时,一定要提出来,不能不懂装懂,否则考试遇到类似的题目就可能不会做。听老师讲课时一定要全神贯注,要注意细节问题。应抓住听课中的主要矛盾和问题,在听讲时尽可能与老师的讲解同步思考,必要时做好笔记。每堂课结束以后应深思一下进行归纳,做到一课一得。

  单项式书写格式

  1、数字写在字母的前面,应省略乘。[5a]、[16xy]等。

  2、π是常数,因此也可以作为系数。它不是未知数。

  3、若系数是带分数,要化成假分数。

  4、当一个单项式的系数是1或—1时,“1”通常省略不写,如[(—1)ab]写成[—ab]等。

  5、在单项式中字母不可以做分母,分子可以。

  6、单独的数“0”的系数是零,次数也是零。

  7、常数的系数是它本身,次数为零。

  8、如果是分数的多项式,那么他的系数就是他的分数常数,次数为最高次幂。

小学数学知识点总结2

  测量

  1、在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)。

  2、1厘米的长度里有(10)小格,每小格的长度(相等),都是(1)毫米。

  3、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。

  4、在计算长度时,只有相同的长度单位才能相加减。

  小技巧:换算长度单位时,把大单位换成小单位就在数字的末尾添加0(关系式中有几个0,就添几个0);把小单位换成大单位就在数字的末尾去掉0(关系式中有几个0,就去掉几个0)。

  5、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10)

  ①进率是10:1米=10分米,1分米=10厘米,1厘米=10毫米,

  10分米=1米,10厘米=1分米,10毫米=1厘米,

  ②进率是100:1米=100厘米,1分米=100毫米,100厘米=1米,100毫米=1分米

  ③进率是1000:1千米=1000米,1公里==1000米,1000米=1千米,1000米=1公里

  6、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。

  小技巧:在“吨”与“千克”的换算中,把吨换算成千克,是在数字的末尾加上3个0;

  把千克换算成吨,是在数字的末尾去掉3个0。

  7、相邻两个质量单位进率是1000。

  1吨=1000千克1千克=1000克1000千克=1吨1000克=1千克

  万以内的加法和减法

  1、认识整千数(记忆:10个一千是一万)

  2、读数和写数(读数时写汉字写数时写阿拉伯数字)

  ①一个数的末尾不管有一个0或几个0,这个0都不读。

  ②一个数的中间有一个0或连续的两个0,都只读一个0。

  3、数的大小比较:

  ①位数不同的数比较大小,位数多的数大。

  ②位数相同的数比较大小,先比较这两个数的位上的数,如果位上的数相同,就比较下一位,以此类推。

  4、求一个数的近似数:

  记忆:看最位的后面一位,如果是0—4则用四舍法,如果是5—9就用五入法。

  的三位数是位999,最小的三位数是100,的四位数是9999,最小的四位数是1000。

  的三位数比最小的四位数小1。

  5、被减数是三位数的连续退位减法的运算步骤:

  ①列竖式时相同数位一定要对齐;

  ②减法时,哪一位上的数不够减,从前一位退1;如果前一位是0,则再从前一位退1。

  6、在做题时,我们要注意中间的0,因为是连续退位的,所以从百位退1到十位当10后,还要从十位退1当10,借给个位,那么十位只剩下9,而不是10。(两个三位数相加的和:可能是三位数,也有可能是四位数。)

  7、公式被减数=减数+差

  和=加数+另一个加数

  减数=被减数—差

  加数=和—另一个加数

  差=被减数—减数

  符号/是什么意思数学

  /在数学中是“除”的意思。例如:4/5我们可以说4除以5或者四分之五。数学符号的发明及使用比数字要晚,但其数量却超过了数字。现代数学常用的数学符号已超过了200个,其中,每一个符号都有一段有趣的.经历。

  实数知识点

  平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

  立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

  实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。③每一个实数都可以在数轴上的一个点来表示。

小学数学知识点总结3

  通过欣赏和设计图案的活动,进一步认识正方形、长方形、三角形和圆。

  小小运动会

  1、应用100以内的进位加法与退位减法的'计算方法进行正确的计算。

  2、经历与他人交流各自算法的过程,体会算法多样化。

  3、体会长方形、正方形、三角形和圆在生活中的普遍存在。

  4、能利用图形设计美丽的图案。

小学数学知识点总结4

  第一章————除法

  1、用乘法口诀做除法,余数一定要比除数小;

  2、应用题中,除数和余数的单位不一样;

  商的单位是问题的单位,余数的单位和被除数的单位相同;

  3、解决生活问题,如提的问题是“至少需要几条船?”,用进一法(用商加1)”,乘船、坐车、坐板凳等,读懂题目再作答。

  第二章————方向与位置(认识方向)

  1、地图上的方向口诀:上北下南,左西右东;

  辨认方向时要画方向标。

  2、“小猫在小狗的()方,()在小狗的东面”,是以小狗家为中心点,画出方位坐标,确定方向;

  “小猪在小马的()方”,“小马的()方是小猪”,是以小马家为中心点,画出方位坐标,确定方向。

  3、太阳早上从东边升起,西边落下;

  指南针一头指着(),一头指着()。小明早上面向太阳时,他的前面是(),后面是(),左面是(),右面是()

  4、当吹东南风时,红旗往()飘;

  吹西北风时,红旗往()飘。

  第三章————生活中的大数(认识10000以内的数)

  1、计数器上从右边数起第一位是()位,第二位是()位,第三位是()位,第四位是()位,千位的左边是()位,右边是()位。

  2、一个四位数最高位是()位,它的`千位是5,个位是2,其他的数位是0,它是()。

  3、在8536中,8在()位上,表示()。5在()位上,表示()。3在()位上,表示()。6在()位上,表示()。

  4、由三个千,五个一组成的数是(),由9个一,两个百和一个千组成的数是()。

  5、读数时,要从高读起,中间有一个或两个0,都只读一个0个“零”;

  末尾不管有几个“0”,都不读;

  写数,末尾不管有几个0,都不读。写数时,从高位写起,按照数位顺序表写,中间或末尾哪一位上没有数,就写“0”占位。

  6、10个十是(),10个一百是(),10个一千是(),100个一百是()。10000里面有()个百,1000里面有()个十。

  7、最大的三位数是(),最小的三位数是()。最大的四位数是(),最小的四位数是()。

  8、比较大小时,先比较位数,位数多的数就大,位数少的数就小;

  位数相同时,从最高位开始比较,最高位上的数字相同的,就比下一位,直到比出大小。从大到小用“>”,从小到大用“<”。

  第四章————测量1、毫米(mm)、厘米(cm)、分米(dm)、米(m),相邻单位之间的进率是“10”;

  2、1米=10分米,1分米=10厘米,1厘米=10毫米,1米=100厘米,1分米=100毫米,1000米=1千米;

  3、长度单位比较大小,首先要观察单位,换成统一的单位之后才能比较;

  4、长度单位的加减法,米加米,分米加分米.......就是把相同的单位进行加减。

  第五章————加与减1、口算整百加减整百时,想成几个百加减几个百,加减整十数的算理也相同。

  2、计算时要注意:(1)、相同数位要对齐,从个位算起。(2)、计算加法时,哪一位相加满十,要向前一位“进一”。(3)、计算减法时,哪一位不够减时,要向前一位“借1”,但是不要忘记退位时要减1;

  3、在估算中,如果估算到百位,就看十位数是多少,如果十位上的数大于5,则百位进1,十位和个位舍去,变为0,如估算678,就变为700;

  如果十位上的数小于5,则百位不变,十位和个位舍去,变为0,如估算607,就变为600;

  4、加数+加数=和一个加数=和-另一个加数如:()+156=368(用368-156计算)280+()=760(用760-280计算)

  5、被减数-减数=差被减数=减数+差减数=被减数-差如:()-156=368(用156+368计算)

  980-()=760(用980-760计算)

  6、加法的验算方法:(1)交换加数的位置,看和是否相同,(2)用和减去其中一个加数,看是否等于另一个加数;

  7、减法的验算方法:(1)用被减数减去差,看结果是否等于减数,(2)用减数加上差,看结果是否等于被减数。注意:运算时不要抄错数,也不要直接把验算结果抄上。

  第六章————认识角1、每个角都是由1个顶点和2条边组成;

  2、按角的大小,将角分为锐角、直角、钝角,所有的直角都相等,比直角小的是锐角,比直角大的是钝角。要知道一个角是什么角,可以用三角板上的直角比一比。

  3、比较角的大小时要注意:角的大小与边的长短无关,与角的张口大小有关,张口越大角就越大;

  4、正方形有四个直角,四条边都相等;

  长方形有四条边,四个直角,长方形的对边相等;

  5、平行四边形有四条边,有2个锐角,2个钝角,对边相等,对角相等。

  第七章————时、分、秒1、钟面上有12个大格,每个大格里有5个小格,一共有60个小格;

  2、秒针走一小格是1秒,走一大格是5秒,走一圈是60秒,就是1分钟;

  3、分针走一小格是1分,走一大格是5分,走一圈是60分,也就是1小时;

  4、时针走一大格是1小时,走一圈是12小时;

  5、时、分、秒相邻单位的进率是60;

  1时=60分1分=60秒6、比较时间,首先要观察,统一单位之后再比较大小。

  7、时间的加减:分减分,时减时,当分不够减时,要向前一位借1,化成60,再相加减;

  第八章————统计1、记录并学会计算,谁多,谁少。

小学数学知识点总结5

  一、百分数的意义:

  表示一个数是另一个数的百分之几的数叫做百分数。百分数又叫百分比或百分率,百分数不能带单位。

  注意:百分数是专门用来表示一种特殊的倍比关系的,表示两个数的比。

  1、百分数和分数的区别和联系:

  (1)联系:都可以用来表示两个量的.倍比关系。

  (2)区别:意义不同:百分数只表示倍比关系,不表示具体数量,所以不能带单位。分数不仅表示倍比关系,还能带单位表示具体数量。百分数的分子可以是小数,分数的分子只可以是整数。

  注意:百分数在生活中应用广泛,所涉及问题基本和分数问题相同,分母是100的分数并不是百分数,必须把分母写成“%”才是百分数,所以“分母是100的分数就是百分数”这句话是错误的。“%”的两个0要小写,不要与百分数前面的数混淆。一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。一般出粉率在70%、80%,出油率在30%、40%。

  2、小数、分数、百分数之间的互化

  (1)百分数化小数:小数点向左移动两位,去掉“%”。

  (2)小数化百分数:小数点向右移动两位,添上“%”。

  (3)百分数化分数:先把百分数写成分母是100的分数,然后再化简成最简分数。

  (4)分数化百分数:分子除以分母得到小数,(除不尽的保留三位小数)然后化成百分数。

  (5)小数化分数:把小数成分母是10、100、1000等的分数再化简。

  (6)分数化小数:分子除以分母。

  二、百分数应用题

  1、求常见的百分率,如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几。

  2、求一个数比另一个数多(或少)百分之几,实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。

  求甲比乙多百分之几:(甲-乙)÷乙

  求乙比甲少百分之几:(甲-乙)÷甲

  3、求一个数的百分之几是多少。一个数(单位“1”)×百分率

  4、已知一个数的百分之几是多少,求这个数。

  部分量÷百分率=一个数(单位“1”)

  5、折扣、打折的意义:几折就是十分之几也就是百分之几十

  折扣、成数=几分之几、百分之几、小数

  八折=八成=十分之八=百分之八十=0.8

  八五折=八成五=十分之八点五=百分之八十五=0.85

  五折=五成=十分之五=百分之五十=0.5=半价

  6、利率

  (1)存入银行的钱叫做本金。

  (2)取款时银行多支付的钱叫做利息。

  (3)利息与本金的比值叫做利率。

  利息=本金×利率×时间

  税后利息=利息-利息的应纳税额=利息-利息×5%

  注:国债和教育储蓄的利息不纳税

  7、百分数应用题型分类

  (1)求甲是乙的百分之几——(甲÷乙)×100%=百分之几

  (2)求甲比乙多百分之几——(甲-乙)÷乙×100%

  (3)求甲比乙少百分之几——(乙-甲)÷乙×100%

小学数学知识点总结6

  时分秒

  1、钟面上有3根针,它们是(时针)、(分针)、(秒针),其中走得最快的是(秒针),走得最慢的是(时针)。

  2、钟面上有(12)个数字,(12)个大格,(60)个小格;每两个数间是(1)个大格,也就是(5)个小格。

  3、时针走1大格是(1)小时;分针走1大格是(5)分钟,走1小格是( 1)分钟;秒针走1大格是(5)秒钟,走1小格是(1)秒钟。

  4、时针走1大格,分针正好走(1)圈,分针走1圈是(60)分,也就是(1)小时。时针走1圈,分针要走(12)圈。

  5、分针走1小格,秒针正好走(1)圈,秒针走1圈是(60)秒,也就是(1)分钟。

  6、时针从一个数走到下一个数是(1小时)。分针从一个数走到下一个数是(5分钟)。秒针从一个数走到下一个数是(5秒钟)。

  7、钟面上时针和分针正好成直角的时间有:(3点整)、(9点整)。

  8、公式。(每两个相邻的时间单位之间的进率是60)

  1时=60分1分=60秒

  半时=30分60分=1时

  60秒=1分30分=半时

  万以内的加法和减法

  1、认识整千数(记忆:10个一千是一万)

  2、读数和写数(读数时写汉字写数时写阿拉伯数字)

  ①一个数的末尾不管有一个0或几个0,这个0都不读。

  ②一个数的中间有一个0或连续的两个0,都只读一个0。

  3、数的大小比较:

  ①位数不同的数比较大小,位数多的数大。

  ②位数相同的数比较大小,先比较这两个数的最高位上的数,如果最高位上的数相同,就比较下一位,以此类推。

  4、求一个数的近似数:

  记忆:看最位的后面一位,如果是0-4则用四舍法,如果是5-9就用五入法。

  最大的三位数是位999,最小的三位数是100,最大的四位数是9999,最小的四位数是1000。最大的三位数比最小的四位数小1。

  5、被减数是三位数的连续退位减法的运算步骤:

  ①列竖式时相同数位一定要对齐;

  ②减法时,哪一位上的数不够减,从前一位退1;如果前一位是0,则再从前一位退1。

  6、在做题时,我们要注意中间的0,因为是连续退位的,所以从百位退1到十位当10后,还要从十位退1当10,借给个位,那么十位只剩下9,而不是10。(两个三位数相加的和:可能是三位数,也有可能是四位数。)

  7、公式

  和=加数+另一个加数

  加数=和-另一个加数

  减数=被减数-差

  被减数=减数+差

  差=被减数-减数

  测量

  1、在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)。

  2、1厘米的长度里有(10)小格,每小格的长度(相等),都是(1)毫米。

  3、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。

  4、在计算长度时,只有相同的长度单位才能相加减。

  小技巧:换算长度单位时,把大单位换成小单位就在数字的末尾添加0(关系式中有几个0,就添几个0);把小单位换成大单位就在数字的末尾去掉0(关系式中有几个0,就去掉几个0)。

  5、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10 )

  ①进率是10:

  1米=10分米, 1分米=10厘米,

  1厘米=10毫米, 10分米=1米,

  10厘米=1分米, 10毫米=1厘米,

  ②进率是100:

  1米=100厘米, 1分米=100毫米,

  100厘米=1米, 100毫米=1分米

  ③进率是1000:

  1千米=1000米, 1公里==1000米,

  1000米=1千米, 1000米=1公里

  6、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。

  小技巧:在“吨”与“千克”的换算中,把吨换算成千克,是在数字的末尾加上3个0;

  把千克换算成吨,是在数字的末尾去掉3个0。

  7、相邻两个质量单位进率是1000。

  1吨=1000千克1千克=1000克

  1000千克= 1吨1000克=1千克

  倍的认识

  1、求一个数是另一个数的几倍用除法:一个数÷另一个数=倍数

  2、求一个数的几倍是多少用乘法:这个数×倍数=这个数的几倍

  多位数乘一位数

  1、估算。(先求出多位数的近似数,再进行计算。如497×7≈3500)

  2、① 0和任何数相乘都得0;② 1和任何不是0的数相乘还得原来的'数。

  3、因数末尾有几个0,就在积的末尾添上几个0。

  4、三位数乘一位数:积有可能是三位数,也有可能是四位数。

  公式:速度×时间=路程

  每节车厢的人数×车厢的数量=全车的人数

  5、(关于“大约)应用题:

  ①条件中出现“大约”,而问题中没有“大约”,求准确数。→(=)

  ②条件中没有,而问题中出现“大约”。求近似数,用估算。→(≈)

  ③条件和问题中都有“大约”,求近似数,用估算。→(≈)

  四边形

  1、有4条直的边和4个角封闭图形我们叫它四边形。

  2、四边形的特点:有四条直的边,有四个角。

  3、长方形的特点:长方形有两条长,两条宽,四个直角,对边相等。

  4、正方形的特点:有4个直角,4条边相等。

  5、长方形和正方形是特殊的平行四边形。

  6、平行四边形的特点:

  ①对边相等、对角相等。

  ②平行四边形容易变形。(三角形不容易变形)

  7、封闭图形一周的长度,就是它的周长。

  8、公式。

  正方形的周长=边长×4

  正方形的边长=周长÷4,

  长方形的周长=(长+宽)×2

  长方形的长=周长÷2-宽,

  长方形的宽=周长÷2-长

  分数的初步认识

  1、把一个物体或一个图形平均分成几份,取其中的几份,就是这个物体或图形的几分之几。

  2、把一个整体平均分得的份数越多,它的每一份所表示的数就越小。

  3、①分子相同,分母小的分数反而大,分母大的分数反而小。

  ②分母相同,分子大的分数就大,分子小的分数就小。

  4、①相同分母的分数相加、减:分母不变,只和分子相加、减。

  ② 1与分数相减:1可以看作是与减数分母相同的,同分子分母的分数。

小学数学知识点总结7

  1.奇偶性

  问题

  奇+奇=偶奇×奇=奇

  奇+偶=奇奇×偶=偶

  偶+偶=偶偶×偶=偶

  2.位值原则

  形如:abc=100a+10b+c

  3.数的整除特征:

  整除数特征

  2末尾是0、2、4、6、8

  3各数位上数字的和是3的倍数

  5末尾是0或5

  9各数位上数字的和是9的倍数

  11奇数位上数字的和与偶数位上数字的和,两者之差是11的倍数

  4和25末两位数是4(或25)的倍数

  8和125末三位数是8(或125)的倍数

  7、11、13末三位数与前几位数的差是7(或11或13)的倍数

  4.整除性质

  ①如果c|a、c|b,那么c|(ab)。

  ②如果bc|a,那么b|a,c|a。

  ③如果b|a,c|a,且(b,c)=1,那么bc|a。

  ④如果c|b,b|a,那么c|a.

  ⑤a个连续自然数中必恰有一个数能被a整除。

  5.带余除法

  一般地,如果a是整数,b是整数(b≠0),那么一定有另外两个整数q和r,0≤r

  当r=0时,我们称a能被b整除。

  当r≠0时,我们称a不能被b整除,r为a除以b的余数,q为a除以b的不完全商(亦简称为商)。用带余数除式又可以表示为a÷b=q……r,0≤r

  小学生奥数知识点

  数列求和:

  等差数列:在一列数中,任意相邻两个数的差是一定的,这样的.一列数,就叫做等差数列。

  基本概念:首项:等差数列的第一个数,一般用a1表示;

  项数:等差数列的所有数的个数,一般用n表示;

  公差:数列中任意相邻两个数的差,一般用d表示;

  通项:表示数列中每一个数的公式,一般用an表示;

  数列的和:这一数列全部数字的和,一般用Sn表示。

  基本思路:等差数列中涉及五个量:a1,an,d,n,sn,通项公式中涉及四个量,如果己知其中三个,就可求出第四个;求和公式中涉及四个量,如果己知其中三个,就可以求这第四个。

  基本公式:通项公式:an=a1+(n-1)d;

  通项=首项+(项数一1)×公差;

  数列和公式:sn,=(a1+an)×n÷2;

  数列和=(首项+末项)×项数÷2;

  项数公式:n=(an+a1)÷d+1;

  项数=(末项-首项)÷公差+1;

  公差公式:d=(an-a1))÷(n-1);

  公差=(末项-首项)÷(项数-1);

  关键问题:确定已知量和未知量,确定使用的公式

  小学奥数几何知识点整理

  鸟头定理即共角定理。

  燕尾定理即共边定理的一种。

  共角定理:

  若两三角形有一组对应角相等或互补,则它们的面积比等于对应角两边乘积的比。

  共边定理:

  有一条公共边的三角形叫做共边三角形。

  共边定理:设直线AB与PQ交与M则S△PAB/S△QAB=PM/QM

  这几个定理大都利用了相似图形的方法,但小学阶段没有学过相似图形,而小学奥数中,常常要引入这些,实在有点难为孩子。

  为了避开相似,我们用相应的底,高的比来推出三角形面积的比。

  例如燕尾定理,一个三角形ABC中,D是BC上三等分点,靠近B点。连接AD,E是AD上一点,连接EB和EC,就能得到四个三角形。

  很显然,三角形ABD和ACD面积之比是1:2

  因为共边,所以两个对应高之比是1:2

  而四个小三角形也会存在类似关系

  三角形ABE和三角形ACE的面积比是1:2

  三角形BED和三角形CED的面积比也是1:2

  所以三角形ABE和三角形ACE的面积比等于三角形BED和三角形CED的面积比,这就是传说中的燕尾定理。

  以上是根据共边后,高之比等于三角形面积之比证明所得。

  必须要强记,只要理解,到时候如何变形,你都能会做。至于鸟头定理,也不要死记硬背,掌握原理,用起来就会得心应手。

小学数学知识点总结8

  四个公式:

  两个公式:

  ①增加量(减少量)=原来的量×增加的百分数(减少的百分数)

  ②现在的量=原来的量±增加量(减少量)

  求增加百分之几?减少百分之几?

  公式:

  增加百分之几=增加的部分÷单位1

  减少百分之几=减少的部分÷单位1

  例如:

  1、45立方厘米的水结成冰后,冰的体积为50立方厘米,冰的体积比原来水的体积增加百分之几?

  解题思路:根据公式增加百分之几=增加的部分÷单位1,先确定单位1是水,已经知道是45:增加的部分不知道,可以利用50减45求得5;最后用增加的部分5÷单位1水的45就等于增加百分之几。

  计算步骤:第一步:单位1:水:45立方厘米

  第二步:增加的部分:50—45=5立方厘米

  第三步:增加百分之几:5÷45=

  2、45立方厘米的水结成冰后,体积增加了5立方厘米,冰的体积比原来水的体积增加百分之几?

  解题思路:根据公式增加百分之几=增加的.部分÷单位1,先确定单位1是水,已经知道是45:增加的部分是5立方厘米;最后用增加的部分5÷单位1水的45就等于增加百分之几。

  计算步骤:第一步:单位1:水:45立方厘米

  第二步:增加的部分:5立方厘米

  第三步:增加百分之几:5÷45=

  3、水结成冰后,体积增加了5立方厘米,冰的体积为50立方厘米,冰的体积比原来水的体积增加百分之几?

  解题思路:根据公式增加百分之几=增加的部分÷单位1,先确定单位1是水,不知道但可以根据题目“水结成冰后,体积增加了5立方厘米”知道水是少的,冰是多的,所以可以用50—5求出水是45立方厘米。加的部分是5立方厘米;最后用增加的部分5÷单位1水的45就等于增加百分之几。

  计算步骤:第一步:单位1:水:50—5=45立方厘米

  第二步:增加的部分:5立方厘米

  第三步:增加百分之几:5÷45=

  4、“减少百分之几与增加百分之几”的解题方法完全相同。

  5、与增加百分之几相同的还有“多百分之几”“提高百分之几”“增长百分之几“等。

  与减少百分之几相同的还有“少百分之几”“降低百分之几”“节约百分几”等。

小学数学知识点总结9

  1、一个因数是两位数的乘法法则

  (1)、先用两位数个位上的数去乘另一个因数,得数的末位和两位数个位对齐;

  (2)、再用两位数的十位上的数去乘另一个因数,得数的末位和两位数十位对齐;

  (3)、然后把两次乘得的数加起来。

  2、除数是两位数的除法法则

  (1)、从被除数高位起,先用除数试除被除数前两位,如果它比除数小,(2)、除到被除数的哪一位就在哪一位上面写商;

  (3)、每求出一位商,余下的数必须比除数小。

  3、万级数的读法法则

  (1)、先读万级,再读个级;

  (2)、万级的数要按个级的读法来读,再在后面加上一个“万”字;

  (3)、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。

  4、多位数的读法法则

  (1)、从高位起,一级一级往下读;

  (2)、读亿级或万级时,要按照个级数的读法来读,再往后面加上“亿”或“万”字;

  (3)、每级末尾的0都不读,其它数位有一个0或连续几个0都只读一个零。

  5、计算小数乘法,先按照乘法的法则算出积,再看因数中一共几位小数,就从积的右边起数出几位,点上小数点。

  6、除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数小数点对齐,如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。

  7、除数是小数的除法,先移动除数小数点,使它变成整数;除数的小数点向右移几位,被除数小数点也向右移几位(位数不够在被除数末尾用0补足)然后按照除数是整数的小数除法进行计算。

  8、同分母分数相加减,分母不变,只把分子相加减。

  9、带分数相加减,先把整数部分和分数部分分别相加减,再把所得的数合并起来。

  10、分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。

  11、异分母分数相加减,先通分,然后按照同分母分数加减的法则进行计算。

  12、围成一个图形所有边长的总和就是这个图形的周长。

  13、求一个数的近似数时,看被省略的尾数最高位上的数是几,如果是4或者比4小,就把尾数舍去,如果是5或者比5大,去掉尾数后,要在它的前一位加1。这种求近似数的方法,叫做四舍五入法。

  14、两个数相加,交换加数的位置后,它的和不变,这叫做加法交换律。

  15、三个数相乘,先把前两个数相乘,再同第三个数相乘,或者先把后两个数相乘,再同第一个数相乘,它们的积不变,这叫乘法结合律。

  16、已知两个因数的积与其中的一个因数,求另一个因数的运算叫除法。

  17、积=因数×因数 一个因数=积÷另一个因数。

  18、面积计量单位及进率:

  平方千米、公顷、平方米、平方分米、平方厘米

  1平方千米=100公顷

  1平方千米=1000000平方米

  1公顷=10000平方米

  1平方米=100平方分米

  1平方分米=100平方厘米

  19、质量单位及进率:

  吨、千克、公斤、克

  1吨=1000千克

  1千克=1公斤

  1千克=1000克

  20、体积容积计量单位及进率:

  立方米、立方分米、立方厘米、升、毫升

  1立方米=1000立方分米

  1立方分米=1000立方厘米

  1立方分米=1升 1立方厘米=1毫升

  21、长度计量单位及进率:

  千米(公里)、米、分米、厘米、毫米

  1千米=1公里 1千米=1000米

  1米=10分米 1分米=10厘米

  1厘米=10毫米

  22、长方形面积=长×宽,计算公式S=ab

  23、正方形面积=边长×边长,计算公式S=a×a=a2

  24、长方形周长=(长+宽)×2,计算公式C=(a+b)×2

  25、正方形周长=边长×4,计算公式C=4a

  26、平行四边形面积=底×高,计算公式S=ah

  27、三角形面积=底×高÷2,计算公式S=a×h÷2

  28、梯形面积=(上底+下底)×高÷2,计算公式S=(a+b)×h÷2

  29、长方体体积=长×宽×高,计算公式V=abh

  30、圆的面积=圆周率×半径平方,计算公式V=πr2

  31、正方体体积=棱长×棱长×棱长,计算公式V=a3

  32、长方体和正方体的体积都可以写成底面积×高,计算公式V=sh

  34、圆柱的体积=底面积×高,计算公式V=sh

  35、比的前项和后项同时乘以或者同时除以相同的数(0除外)比值不变,这叫比的基本性质。

  小学数学的学习方法

  1、求教与自学相结合,在学习过程中,既要争取教师的指导和帮助,但是又不能处处依靠教师。必须自己主动地去学习、去探索、去获取,应该在自己认真学习和研究的基础上去寻求教师和同学的帮助。

  2、学用结合,勤于实践,在学习过程中,要准确地掌握抽象概念的本质含义。了解从实际模型中抽象为理论的'演变过程;对所学理论知识,要在更大范围内寻求它的具体实例,使之具体化,尽量将所学的理论知识和思维方法应用于实践。

  3、学习与思考相结合,在学习过程中,对课本的内容要认真研究,提出疑问,追本穷源。对每一个概念、公式、定理都要弄清其来龙去脉、前因后果,内在联系,以及蕴含于推导过程中的数学思想和方法。

  4、博观约取,由博返约,课本是学生获得知识的主要来源,但不是唯一的来源。在学习过程中,除了认真研究课本外,还要阅读有关的课外资料,来扩大知识领域。

  5、及时复习,增强记忆。课堂上学习的内容,必须当天消化,要先复习,后做练习。复习工作必须经常进行,每一单元结束后,应将所学知识进行概括整理,使之系统化、深刻化。

  6、学习中的总结和评价,是学习的继续和提高,它有利于知识体系的建立、解题规律的掌握、学习方法和态度的调整和评判能力的提高。在学习过程中,应注意总结听课、阅读和解题中的收获和体会。

小学数学知识点总结10

  1.根据方向和距离可以确定物体在平面图上的位置。

  2.在平面图上标出物体位置的方法:

  先用量角器确定方向,再以选定的单位长度为基准用直尺确定图上距离,最后找出物体的具体位置,并标上名称。

  3.描述路线图时,要先按行走路线确定每一个参照点,然后以每一个参照点建立方向标,描述到下一个目标所行走的方向和路程,即每一步都要说清是从哪儿走,向什么方向走了多远到哪儿。

  4.绘制路线图的方法:

  (1)确定方向标和单位长度。

  (2)确定起点的`位置。

  (3)根据描述,从起点出发,找好方向和距离,一段一段地画。除第一段(以起点为参照点)外,其余每一段都要以前一段的终点为参照点。

  (4)以谁为参照点,就以谁为中心画出“十”字方向标,然后判断下一地点的方向和距离。

小学数学知识点总结11

  1、用竖式计算两位数加法时:①相同数位对齐,加号写在高位下行之前。

  ②用尺子画横线。

  ③从个位加起

  ④如果个位满10,向十位进1,写在个位、十位之间,

  不进位不写1

  用竖式计算两位数减法时:①相同数位对齐,减号写在高位下行之前。

  ②用尺子画横线。

  ③从个位减起

  ④如果个位不够减,从十位退1,到个位作10再减(借一要在头上写点),计算时十位要记得减去退掉的1。不借位不写点

  ⑤得数写在横式上

  2、估算:把一个接近整十整百的数看作整十整百来计算。

  方法:个位小于5的少看,个位等于或大于5的多看,看成最为接近的整十或整百数。“四舍五入”

  如:49+42≈9028+45+24≈10098—17≈80

  50 4030 50 20100 20更深一步的估计是能够估出比80大

  注:当问题里出现“大约”两个字时,就需要估算。

  3、求“一个已知数”比“另一个已知数”多多少、少多少?用减法计算,用“比”字两边的较大数减去较小数。

  4、多几、少几已知的问题。比谁少几,就用谁减去几;未知数比谁多几,就用谁加上几。

  方法:①根据已知,判断出与要求的未知,谁多谁少②求多的用加法,求少的用减法

  基数和序数的区别

  一、意思不同

  基数是集合论中刻画任意集合大小的一个概念。两个能够建立元素间一一对应的集合称为互相对等集合。例如3个人的集合和3匹马的.集合可以建立一一对应,是两个对等的集合。序数是在基数的基础上再增加一层意思。

  二、用处不同

  基数可以比较大小,可以进行运算。

  例如:

  设|A|=a,|B|=β,定义a+β=|{(a,0):a∈A}∪{(b,1):b∈B}|。另,a与β的积规定为|AxB|,A×B为A与B的笛卡儿积。

  序数,汉语表示序数的方法较多。通常是在整数前加“第”,如:第一,第二。也有单用基数的。如:五行:一曰水,二曰火,三曰木,四曰金,五曰土。

  三、写法

  基数:1、2、3

  序数:第1、第2、第3

  数与计算知识点

  1、分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。

  2、分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零。

  3、分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。

  4、分数乘整数:数形结合、转化化归

  5、倒数:乘积是1的两个数叫做互为倒数。

小学数学知识点总结12

  1、乘法的含义

  乘法是求几个相同加数连加的和的简便算法。如:计算:2+2+2=6,用乘法算就是:2×3=6或3×2=6.

  2、乘法算式的写法和读法

  ⑴连加算式改写为乘法算式的方法。求几个相同加数的和,可以用乘法计算。写乘法算式时,可以用乘法计算。写乘法算式时,可以先写相同的加数,然后写乘号,再写相同加数的个数,最后写等号与连加的和;也可以先写相同加数的个数,然后写乘号,再写相同加数,最后写等号与连加的和。

  如:4+4+4=12改写成乘法算式是4×3=12或3×4=12

  4 × 3 = 12或3 × 4 = 12

  ⑵乘法算式的读法。读乘法算式时,要按照算式顺序来读。如:6×3=18读作:“6乘3等于18”。

  3、乘法算式中各部分的名称及实际表示的意义

  在乘法算式里,乘号前面的.数和乘号后面的数都叫做“乘数”;等号后面的得数叫做“积”。

  4、乘法算式所表示的意义

  求几个相同加数的和,用乘法计算比较简单。一道乘法算式表示的就是几个相同加数连加的和。如:4×5表示5个4相加或4个5相加。

  5、加法写成乘法时,加法的和与乘法的积相同。

  6、乘法算式中,两个乘数交换位置,积不变。

  7、算式各部分名称及计算公式。

  乘法:乘数×乘数=积

  加法:加数+加数=和

  和—加数=加数

  减法:被减数—减数=差

  被减数=差+减数

  减数=被减数—差

  8、在9的乘法口诀里,几乘9或9乘几,都可看作几十减几,其中“几”是指相同的数。

  如:1×9=10—1 9×5=50—5

  9、看图,写乘加、乘减算式时:

  乘加:先把相同的部分用乘法表示,再加上不相同的部分。

  乘减:先把每一份都算成相同的,写成乘法,然后再把多算进去的减去。

  计算时,先算乘,再算加减。

  如:加法:3+3+3+3+2=14乘加:3×4+2=14乘减:3×5-1=14

  10、“几和几相加”与“几个几相加”有区别

  求几和几相加,用几加几;如:求4和3相加是多少?用加法(4+3=7)

  求几个几相加,用几乘几。

  如:求4个3相加是多少?(3+3+3+3=12或3×4=12或4×3=12)

  补充:几和几相乘,求积?用几×几.如:2和4相乘用2×4=8

  2个乘数都是几,求积?用几×几。如:2个8相乘用8×8=64

  11、一个乘法算式可以表示两个意义,如“4×2”既可以表示“4个2相加”,也可以表示“2个4相加”。

  “5+5+5”写成乘法算式是(3×5=15)或(5×3=15),

  都可以用口诀(三五十五)来计算,表示(3)个(5)相加

  3×5=15读作:3乘5等于15. 5×3=15读作:5乘3等于15

  第五单元观察物体

  1、从不同的角度观察同一物体,所看到的物体的形状一般是不同的;

  2、观察物体时,要抓住物体的特征来判断。

  3、观察长方体的某一面,看到的可能是长方形或正方形。观察正方形的某一面,看到的都是正方形

  4、观察圆柱体,看到的可能是长方形或圆形。观察球体,看到的都是圆形

  第七单元认识时间

  1、认识时间

  (1)钟面上有时针和分针,走得快的,较长的是分针;走得慢的,较短的是时针;

  (2)钟面上有12个大格,60个小格,1个大格有5个小格。时针走1大格是1小时,分针走1大格是5分钟。

  (3)时针走1大格分针要走一圈,所以1时=60分;

  (4)半小时=30分,一刻钟=15分钟

  (5)时间的读与写:如3:30,可以读作3时30分,也可以读作3点半;8时零5分应写作8:05。

  2、运用知识解决问题

  (1)要按着时间的先后顺序安排事件,时间上不能重复。

  (2)问过几分钟后是几时,先要读出现在是几时,再推算过几分钟后是几时几分。

  (3)时针和分针能形成直角的时刻是3时和9时。

  第八单元数学广角-搭配

  1、用两个不同的数字(0除外)组合时可以交换两个数字的位置;用三个不同的数字组合成两位数时,可以让每个数字(0除外)作十位数字,其余的两个数字依次和它组合。

  2、借用连线或者符号解答问题比较简单。

  3、排列与顺序有关,组合与顺序无关。

小学数学知识点总结13

  棱锥:棱锥是小学数学的基础内容,小学毕业试题中分值约为4分,多以选择题,填空题,判断题的形式出现,难易度属于简单。近几年主要考察:①棱锥的体积问题。②棱锥的侧面积问题。突破方法:牢固掌握有关棱锥的概念,边角之间的关系。这个要通过一定量的练习来掌握。

  认识位置与方向:认识位置与方向是小学数学的基础内容,小学毕业试题中分值约为3-6分,多以选择题,填空题,简答题的形式出现,难易度属于简单。近几年主要考察一下几个方面:①给出三视图,说出组成物体最少或最多立方体的个数。②给出物体,画出三视图。突破方法:①平时注意积累。②熟练掌握三视图的画法。

  图形的直观认识:图形的直观认识是小学数学的基础内容,小学毕业试题中分值约为6-12分,多以选择题,填空题,证明题的形式出现,难易度属于中等。主要考察一下几个方面:①圆的问题,多数是计算题。②三角形的计算问题。突破方法:①对圆的各个性质熟记,能简单画图。②熟练掌与三角形有关的性质等等。

  直线和线段:直线和线段是小学数学的基础内容,小学毕业试题中分值约为4-8分,多以选择题,填空题的形式出现,难易度属于简单。近几年主要考察一下几个方面:①线段长度的计算。②数轴上点的距离问题。突破方法:①掌握有关线段的比,线段的中点的概念。②熟练掌握数轴概念。

  角的初步认识:角的初步认识是小学数学的基础内容,小学数学试题中分值约为3-6分,多以选择题,填空题的形式出现,难易度属于简单。近几年主要考察一下几个方面:①角的分类。②角的计算。突破方法:①牢固掌握有关角的概念。②熟练掌握角的计算问题,特别是是多个角的问题。

  长方形与正方形:长方形与正方形是小学数学的基础内容,小学毕业试题中分值约为5-10分,多以选择题,填空题,解答题的形式出现,难易度属于中等。近几年主要考察一下几个方面:①面积和周长问题。②体积,边长问题。突破方法:①牢固掌握有关长方形与正方形的概念:如边,对边,角等,特别是对角线的概念。②熟练掌握长方形与正方形的各种性质。

  平行四边形:平行四边形是小学数学的`基础内容,小学毕业试题中分值约为4-8分,多以选择题,填空题,解答题的形式出现,难易度属于中等。近几年主要考察一下两个个方面:①平行四边形的周长与面积。②等腰梯形的周长和面积。突破方法:①牢固掌握有关平行四边形的性质。②等腰梯形的性质等等。三角形:三角形是小学几何的基础内容,也是最重要的部分之一。小学试题中分值约为7-13分,证明题的形式出现,难易度属于中等。近几年主要考察一下几个方面:①三角形的内角和,三角形的外角和,三角形的外角等等。②多边形的内角和及组合图形等等。突破方法:①牢固掌握有三角形的概念:如内角和,外角和,外角等,特别是三角形的各边之间的关系。②熟练掌握多边形的内角和,正多边形有关角的运算。在证明过程中特别注意步骤的合理性。

  圆:圆是小学数学的基础内容,小学毕业试题中分值约为4-8分,多以选择题,填空题,解答题的形式出现,难易度属于中等。近几年主要考察一下几个方面:①圆的面积。②圆的周长,有时用会降低题目的难度。突破方法:①牢固掌握有关圆的性质。②熟练掌握扇形,环形的面积公式。

  轴对称图形:轴对称图形是小学数学基础内容,小学毕业试题中分值约为4分,多以选择题,判断题的形式出现,难易度属于简单。近几年主要考察一下几个方面:①图形有几条对称轴。②轴对称和中心对称的综合应用。突破方法:①牢固掌握有关轴对称图形的概念。②平时注意积累,会区分轴对称图形和中心对称图形。

  作图题(操作题):作图题(操作题)是小学数学的基础内容,小学毕业试题中分值约为6分,多以选择题,填空题,简答题的形式出现,难易度属于难,近几年分值由增大的趋势。近几年主要考察一下几个方面:①图形的旋转问题。②影长问题。③平移图像的问题。突破方法:作图题试题开放,联系实际,要求学生进行多方位,多角度,多层次的探究,考查了学生思维的灵活性,发散性,创新性,平时注意动手总结。

  扩展阅读:

小学数学知识点总结14

  (一)数与计算

  (1)20以内数的认识。加法和减法。数数。数的组成、顺序、大小、读法和写法。加法和减法。连加、连减和加减混合式题

  (2)100以内数的认识。加法和减法。数数。个位、十位。数的顺序、大小、读法和写法。两位数加、减整十数和两位数加、减一位数的口算。两步计算的加减式题。

  (二)量与计量

  钟面的`认识(整时)。人民币的认识和简单计算。

  (三)几何初步知识

  长方体、正方体、圆柱和球的直观认识。

  长方形、正方形、三角形和圆的直观认识。

  (四)应用题

  比较容易的加法、减法一步计算的应用题。多和少的应用题(抓有效信息的能力)

  (五)实践活动

  选择与生活密切联系的内容。例如根据本班男、女生人数,每组人数分布情况,想到哪些数学问题。

小学数学知识点总结15

  一、图形的变换

  图形变换的基本方式是平移、对称和旋转。

  1、轴对称:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。

  (1)学过的轴对称平面图形:长(正)方形、圆形、等腰三角形、等边三角形、等腰梯形等腰三角形有1条对称轴,等边三角形有3条对称轴,长方形有2条对称轴,正方形有4条对称轴,等腰梯形有1条对称轴,任意梯形和平行四边形不是轴对称图形。

  (2)圆有无数条对称轴。

  (3)对称点到对称轴的距离相等。

  (4)轴对称图形的特征和性质:

  ①对应点到对称轴的距离相等;

  ②对应点的连线与对称轴垂直;

  ③对称轴两边的图形大小、形状完全相同。

  2、对称图形包括轴对称图形和中心对称图形。平行四边形(除棱形)属于中心对称图形。

  3、旋转:在平面内,一个图形绕着一个顶点旋转一定的角度得到另一个图形的变化较做旋转,定点O叫做旋转中心,旋转的角度叫做旋转角,原图形上的一点旋转后成为的另一点成为对应点。

  (1)生活中的旋转:电风扇、车轮、纸风车

  (2)旋转要明确绕点,角度和方向。

  (3)长方形绕中点旋转180度与原来重合,正方形绕中点旋转90度与原来重合。等边三角形绕中点旋转120度与原来重合。

  旋转的性质:

  (1)图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;

  (2)其中对应点到旋转中心的距离相等;

  (3)旋转前后图形的大小和形状没有改变;

  (4)两组对应点非别与旋转中心的连线所成的角相等,都等于旋转角;

  (5)旋转中心是唯一不动的点。

  4、对称和旋转的画法:旋转要注意:顺时针、逆时针、度数

  二、因数和倍数

  1、整除:被除数、除数和商都是自然数,并且没有余数。整数与自然数的关系:整数包括自然数。

  2、因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。

  例:12是6的倍数,6是12的因数。

  (1)数a能被b整除,那么a就是b的倍数,b就是a的因数。因数和倍数是相互依存的,不能单独存在。

  (2)一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。一个数的因数的求法:成对地按顺序找。

  (3)一个数的倍数的个数是无限的,最小的倍数是它本身。一个数的倍数的求法:依次乘以自然数。

  (4)2、3、5的倍数特征

  1)个位上是0,2,4,6,8的数都是2的倍数。

  2)一个数各位上的数的和是3的倍数,这个数就是3的倍数。

  3)个位上是0或5的数,是5的倍数。

  4)能同时被2、3、5整除(也就是2、3、5的倍数)的最大的两位数是90,最小的三位数是120。

  同时满足2、3、5的倍数,实际是求2×3×5=30的倍数。

  5)如果一个数同时是2和5的倍数,那它的个位上的数字一定是0。

  3、完全数:除了它本身以外所有的因数的和等于它本身的数叫做完全数。

  如:6的因数有:1、2、3(6除外),刚好1+2+3=6,所以6是完全数,小的完全数有6、28等

  4、自然数按能不能被2整除来分:奇数、偶数。

  奇数:不能被2整除的数。叫奇数。也就是个位上是1、3、5、7、9的数。

  偶数:能被2整除的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。最小的奇数是1,最小的偶数是0.

  关系:奇数+、-偶数=奇数奇数+、-奇数=偶数偶数+、-偶数=偶数。

  5、自然数按因数的个数来分:质数、合数、1、0四类.质数(或素数):只有1和它本身两个因数。

  合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)。1:只有1个因数。“1”既不是质数,也不是合数。0:

  最小的质数是2,最小的合数是4,连续的两个质数是2、3。每个合数都可以由几个质数相乘得到,质数相乘一定得合数。20以内的质数:有8个(2、3、5、7、11、13、17、19)

  100以内的质数有25个:2、3、5、7、11、13、17、19、23、29、31、37、41、

  43、47、53、59、61、67、71、73、79、83、89、97

  100以内找质数、合数的技巧:

  看是否是2、3、5、7、11、13…的倍数,是的就是合数,不是的就是质数。

  关系:奇数×奇数=奇数质数×质数=合数

  6、最大、最小

  A的最小因数是:1;最小的奇数是:1;A的最大因数是:A;最小的偶数是:0;A的最小倍数是:A;最小的质数是:2;最小的自然数是:0;最小的合数是:4;

  7、分解质因数:把一个合数分解成多个质数相乘的形式。用短除法分解质因数(一个合数写成几个质数相乘的形式)。...

  比如:30分解质因数是:(30=2×3×5)

  8、互质数:公因数只有1的两个数,叫做互质数。

  两个质数的互质数:5和7两个合数的'互质数:8和9一质一合的互质数:7和8

  两数互质的特殊情况:

  ⑴1和任何自然数互质;

  ⑵相邻两个自然数互质;

  ⑶两个质数一定互质;

  ⑷2和所有奇数互质;

  ⑸质数与比它小的合数互质;

  9、公因数、最大公因数

  几个数公有的因数叫这些数的公因数。其中最大的那个就叫它们的最大公因数。

  用短除法求两个数或三个数的最大公因数(除到互质为止,把所有的除数连乘起来)几个数的公因数只有1,就说这几个数互质。

  如果两数是倍数关系时,那么较小的数就是它们的最大公因数。如果两数互质时,那么1就是它们的最大公因数。

  10、公倍数、最小公倍数

  几个数公有的倍数叫这些数的公倍数。其中最小的那个就叫它们的最小公倍数。

  用短除法求两个数的最小公倍数(除到互质为止,把所有的除数和商连乘起来)用短除法求三个数的最小公倍数(除到两两互质为止,把所有的除数和商连乘起来)如果两数是倍数关系时,那么较大的数就是它们的最小公倍数。如果两数互质时,那么它们的积就是它们的最小公倍数。

  11、求最大公因数和最小公倍数方法

  用12和16来举例1、

  求法一:(列举求同法)

  最大公因数的求法:

  12的因数有:1、12、2、6、3、416的因数有:1、16、2、8、4最大公因数是4

  最小公倍数的求法:

  12的倍数有:12、24、36、48、16的倍数有:16、32、48、最小公倍数是482、求法二:(分解质因数法)

  12=2×2×316=2×2×2×2

  最大公因数是:2×2=4(相同乘)

  最小公倍数是:2×2×3×2×2=48(相同乘×不同乘)

  三长方体和正方体

  1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。两个

  面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。长方体特点:

  (1)有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。

  (2)一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。

  2、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。

  正方体特点:

  (1)正方体有12条棱,它们的长度都相等。

  (2)正方体有6个面,每个面都是正方形,每个面的面积都相等。

  (3)正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。相同点长方体面不同点棱相对的棱的长度都相等都有6个面,6个面都是长方形。12条棱,(有可能有两个相对的面是正方形)。正方体

  8个顶点。6个面都是正方形。12条棱都相等。3、长方体、正方体有关棱长计算公式:

  长方体的棱长总和=(长+宽+高)×4=长×4+宽×4+高×4L=(a+b+h)×4长=棱长总和÷4-宽-高a=L÷4-b-h宽=棱长总和÷4-长-高b=L÷4-a-h高=棱长总和÷4-长-宽h=L÷4-a-b

  正方体的棱长总和=棱长×12L=a×12正方体的棱长=棱长总和÷12a=L÷12

  4、长方体或正方体6个面和总面积叫做它的表面积。

  长方体的表面积=(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)无底(或无盖)长方体表面积=长×宽+(长×高+宽×高)×2

  S=2(ab+ah+bh)-abS=2(ah+bh)+ab

  无底又无盖长方体表面积=(长×高+宽×高)×2S=2(ah+bh)贴墙纸正方体的表面积=棱长×棱长×6S=a×a×6用字母表示:S=6a2

  生活实际:

  油箱、罐头盒等都是6个面游泳池、鱼缸等都只有5个面水管、烟囱等都只有4个面。

  注意1:用刀分开物体时,每分一次增加两个面。(表面积相应增加)

  注意2:长方体或正方体的长、宽、高同时扩大几倍,表面积会扩大倍数的平方倍。(如长、宽、高各扩大2倍,表面积就会扩大到原来的4倍)。

  5、物体所占空间的大小叫做物体的体积。

  长方体的体积=长×宽×高V=abh长=体积÷宽÷高a=V÷b÷h

  宽=体积÷长÷高b=V÷a÷h高=体积÷长÷宽h=V÷a÷b

  正方体的体积=棱长×棱长×棱长

  V=a×a×a=a3读作“a的立方”表示3个a相乘,(即aaa)

  长方体或正方体底面的面积叫做底面积。

  长方体(或正方体)的体积=底面积×高用字母表示:V=Sh(横截面积相当于底面积,长相当于高)。

  注意:一个长方体和一个正方体的棱长总和相等,但体积不一定相等。

  6、箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积。

  固体一般就用体积单位,计量液体的体积,如水、油等。常用的容积单位有升和毫升也可以写成L和ml。

  1升=1立方分米1毫升=1立方厘米1升=1000毫升(1L=1dm31ml=1cm3)

  长方体或正方体容器容积的计算方法,跟体积的计算方法相同。

  但要从容器里面量长、宽、高。(所以,对于同一个物体,体积大于容积。)

  注意:长方体或正方体的长、宽、高同时扩大几倍,体积就会扩大倍数的立方倍。(如长、宽、高各扩大2倍,体积就会扩大到原来的8倍)。

  形状不规则的物体可以用排水法求体积,形状规则的物体可以用公式直接求体积。排水法的公式:V物体=V现在-V原来也可以V物体=S×(h现在-h原来)V物体=S×h升高× 进率

  8、【体积单位换算】大单位小单位

  ÷进率小单位大单位

  进率:1立方米=1000立方分米=1000000立方厘米(立方相邻单位进率1000)1立方分米=1000立方厘米=1升=1000毫升

  1立方厘米=1毫升

  1平方米=100平方分米=10000平方厘米1平方千米=100公顷=1000000平方米

  注意:长方体与正方体关系

  把长方体或正方体截成若干个小长方体(或正方体)后,表面积增加了,体积不变。

  重量单位进率,时间单位进率,长度单位进率× 进率

  【单位换算】大单位小单位÷进率小单位大单位

  长度单位:1千米=1000米1分米=10厘米1厘米=10毫米1分米=100毫米1米=10分米=100厘米=1000毫米(相邻单位进率10)

  面积单位:1平方千米=100公顷1平方米=100平方分米

  1平方分米=100平方厘米1公顷=10000平方米(平方相邻单位进率100)质量单位:1吨=1000千克1千克=1000克

  人民币:1元=10角1角=10分1元=100分

  四分数的意义和性质

  1、分数的意义:一个物体、一物体等都可以看作一个整体,把这个整体平均分成若干份,

  这样的一份或几份都可以用分数来表示。

  2、单位“1”:一个整体可以用自然数1来表示,通常把它叫做单位“1”。(也就是把什么平均分什么就是单位“1”。)

  3、分数单位:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。如

  数单位是。

  5145的分

  4、分数与除法A÷B=

  5、真分数和假分数、带分数

  AB(B≠0,除数不能为0,分母也不能够为0)例如:4÷5=

  1、真分数:分子比分母小的分数叫真分数。真分数

  (2)分数化为小数:

  方法一:把分数化为分母是10、100、1000

  如:

  310=0.3=

  53610=0.6

  14=

  25100=0.25

  方法二:用分子÷分母

  如:

  34=3÷4=0.75

  (3)带分数化为小数:

  先把整数后的分数化为小数,再加上整数

  如:2

  310=2+0.3=2.3

  12、比分数的大小:分母相同,分子大,分数就大;分子相同,分母小,分数才大。

  分数比较大小的一般方法:同分子比较;通分后比较;化成小数比较。

  13、分数化简包括两步:一是约分;二是把假分数化成整数或带分数。

  1218=0.5

  3814=0.25=0.75=0.2=0.4=0.6

  455558312345=0.8

  =0.125=0.375=0.625

  78=0.875

  120=0.05

  125=0.04。

  14、两个数互质的特殊判断方法:

  ①1和任何大于1的自然数互质。

  ②2和任何奇数都是互质数。

  ③相邻的两个自然数是互质数。

  ④相邻的两个奇数互质。

  ⑤不相同的两个质数互质。

  ⑥当一个数是合数,另一个数是质数时(除了合数是质数的倍数情况下),一般情况下这两个数也都是互质数。

  15、求最大公因数的方法:

  ①倍数关系:最大公因数就是较小数。

  ②互质关系:最大公因数就是1

  ③一般关系:从大到小看较小数的因数是否是较大数的因数。

  16、分数知识图解:

  分数的产生

  分数的意义分数与意义:把单位1平均分成几份,表示其中的一份或几份。

  分数与除法:分子(被除数),分母(除数),分数值(商)。真分数真分数小于1

  真分数与假分数假分数假分数大于1或等于1

  带分数(整数部分和真分数)

  假分数化带分数、整数(分子除以分母,商作整数部分,余数作分子)

  分数的基本性质:分数的分子、分母同时扩大或缩小相同的倍数,

  分数的基本性质分数的大小不变。

  通分、通分子:化成分母不同,大小不变的分数(通分)

  最大公因数

  约分求最大公因数

  最简分数分子分母互质的分数(最简真分数、最简假分数)约分及其方法最小公倍数

  通分求最小公倍数

  分数比大小(通分、通分子、化成小数)通分及其方法

  小数化分数小数化成分母是10、100、1000的分数再化简

  分数和小数的互化

  分数化小数分子除以分母,除不尽的取近似值

  五分数的加法和减法

  (1)同分母分数加、减法(分母不变,分子相加减)

  1、分数数的加法和减法

  (2)异分母分数加、减法(通分后再加减)

  (3)分数加减混合运算:同整数。

  (4)结果要是最简分数

  2、带分数加减法:带分数相加减,整数部分和分数部分分别相加减,再把所得的结果

  合并起来。

  附:具体解释

  (一)同分母分数加、减法

  1、同分母分数加、减法:

  同分母分数相加、减,分母不变,只把分子相加减。

  2、计算的结果,能约分的要约成最简分数。

  (二)异分母分数加、减法

  1、分母不同,也就是分数单位不同,不能直接相加、减。

  2、异分母分数的加减法:

  异分母分数相加、减,要先通分,再按照同分母分数加减法的方法进行计算。

  (三)分数加减混合运算

  1、分数加减混合运算的运算顺序与整数加减混合运算的顺序相同。

  在一个算式中,如果有括号,应先算括号里面的,再算括号外面的;如果只含有同一级运算,应从左到右依次计算。

  2、整数加法的交换律、结合律对分数加法同样适用。

  3、六统计与数学广角

  众数一组数据中出现次数最多的数叫众数。众数能够反映一组数据的集中情况。

  统计在一组数据中,众数可能不止一个,也可能没有众数。复式折线统计图

  综合应用打电话的最优方案

  121-12

  1612-13

  11213-14

  1201 -15

  1、众数:一组数据中出现次数最多的一个数或几个数,就是这组数据的众数。

  众数能够反映一组数据的集中情况。

  在一组数据中,众数可能不止一个,也可能没有众数。

  2、中位数:

  (1)按大小排列;

  (2)如果数据的个数是单数,那么最中间的那个数就是中位数;

  (3)如果数据的个数是双数,那么最中间的那两个数的平均数就是中位数。

  3、平均数的求法:总数÷总份数=平均数

  4、一组数据的一般水平:

  (1)当一组数据中没有偏大偏小的数,也没有个别数据多次出现,用平均数表示一般水平。

  (2)当一组数据中有偏大或偏小的数时,用中位数来表示一般水平。

  (3)当一组数据中有个别数据多次出现,就用众数来表示一般水平。

  4、平均数、中位数和众数的联系与区别:

  ①平均数:

  一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。容易受极端数据的影响,表示一组数据的平均情况。②中位数:

  将一组数据按大小顺序排列,处在最中间位置的一个数叫做这组数据的中位数。它不受极端数据的影响,表示一组数据的一般情况。③众数:

  在一组数据中出现次数最多的数叫做这组数据的众数。它不受极端数据的影响,表示一组数据的集中情况。

  5、统计图:我们学过条形统计图、复式折线统计图。

  条形统计图优点:条形统计图能形象地反映出数量的多少。

  折线统计图优点:折线统计图不仅能表示出数量的多少,还能反映出数量的变化情况。

  注:

  ①画图时注意:一“点”(描点)、二“连”(连线)三“标”(标数据)。

  ②要用不同的线段分别连接两组数据中的数。

  6、打电话:规律人人不闲着,每人都在传。(技巧:已知人数依次×2)

  (1)逐个法:所需时间最多。

  (2)分组法:相对节约时间。

  (3)同时进行法:最节约时间。

  七数学广角

  用天平找次品规律:

  1、把所有物品尽可能平均地分成3份,(如余1则放入到最后一份中;如余2则分别放入到前两份中),保证找出次品而且称的次数一定最少。

  2、数目与测试的次数的关系:2~3个物体,保证能找出次品需要测的次数是1次4~9个物体,保证能找出次品需要测的次数是2次10~27个物体,保证能找出次品需要测的次数是3次28~81个物体,保证能找出次品需要测的次数是4次82~243个物体,保证能找出次品需要测的次数是5次

  244~729个物体,保证能找出次品需要测的次数是6次

  3、找次品规律

  12345次数

  33×33×3×33×3×3×33×3×3×3×3

  392781243次品个数

【小学数学知识点总结】相关文章:

小学数学的知识点总结12-01

小学数学的知识点总结08-10

小学数学知识点归纳总结03-06

小学数学知识点总结集锦03-10

【优秀】小学数学的知识点总结15篇08-10

小学数学必备知识点03-20

数学高考知识点总结06-18

数学高考知识点总结12-04

数学中考知识点总结07-16

小学数学知识点详解08-15