初一下册数学知识点

时间:2024-08-11 09:30:11 数学 我要投稿

(集合)初一下册数学知识点15篇

  在日复一日的学习中,是不是经常追着老师要知识点?知识点也可以理解为考试时会涉及到的知识,也就是大纲的分支。哪些知识点能够真正帮助到我们呢?以下是小编为大家收集的初一下册数学知识点,供大家参考借鉴,希望可以帮助到有需要的朋友。

(集合)初一下册数学知识点15篇

初一下册数学知识点1

  一、整式

  单项式和多项式统称整式。

  a)由数与字母的积组成的代数式叫做单项式。单独一个数或字母也是单项式。

  b)单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数,系数为1或-1。

  c)一个单项式中,所有字母的指数和叫做这个单项式的次数(注意:常数项的单项式次数为0)

  a)几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项。其中,不含字母的项叫做常数项。一个多项式中,次数最高项的次数,叫做这个多项式的次数.

  b)单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数。多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数。多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数.

  a)整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.

  b)括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘。

  二、同底数幂的乘法

  (,n都是整数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:

  a)法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;

  b) 指数是1时,不要误以为没有指数;

  c)不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;

  d)当三个或三个以上同底数幂相乘时,法则可推广为(其中、n、p均为整数);

  e)公式还可以逆用:(、n均为整数)

  a)幂的乘方法则:(,n都是整数数)是幂的乘法法则为基础推导出来的,但两者不能混淆。

  b)(,n都为整数)

  c) 底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,如将(-a)3化成-a3

  d)底数有时形式不同,但可以化成相同。

  e) 要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零)。

  f) 积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即(ab)n=anbn (n为正整数)。

  g) 幂的乘方与积乘方法则均可逆向运用。

  三、同底数幂的除法

  a)同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即(a≠0).

  b)在应用时需要注意以下几点:

  1) 法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a0。

  2)任何不等于0的数的0次幂等于1,即a0=1(a≠0) ,如100=1 ,(-2.50=1),则00无意义。

  c)任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即( a≠0,p是正整数),而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的,当a<0时,a-p的值可能是正也可能是负的,如, d)运算要注意运算顺序。

  四、整式的乘法

  单项式相乘,它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。

  单项式乘法法则在运用时要注意以下几点:

  a)积的系数等于各因式系数积,先确定符号,再计算绝对值。这时容易出现的错误的是,将系数相乘与指数相加混淆;

  b)相同字母相乘,运用同底数幂的乘法法则;

  c)只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;

  d)单项式乘法法则对于三个以上的单项式相乘同样适用;

  e)单项式乘以单项式,结果仍是一个单项式。

  单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

  单项式与多项式相乘时要注意以下几点:

  a)单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;

  b)运算时要注意积的符号,多项式的每一项都包括它前面的符号;

  c) 在混合运算时,要注意运算顺序。

  多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项相乘,再把所得的积相加。

  多项式与多项式相乘时要注意以下几点:

  a)多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;

  b)多项式相乘的'结果应注意合并同类项;

  c)对含有同一个字母的一次项系数是1的两个一次二项式相乘(x+a)(x+b)=x2+(a+b)x+ab,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。对于一次项系数不为1的两个一次二项式(x+a)和(nx+b)相乘可以得到。

  五.平方差公式

  两数和与这两数差的积,等于它们的平方差,即。

  其结构特征是:

  a)公式左边是两个二项式相乘,两个二项式中第一项相同,第二项互为相反数;

  b) 公式右边是两项的平方差,即相同项的平方与相反项的平方之差。

  六、完全平方公式

  两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,即;

  口诀:首平方,尾平方,2倍乘积在中央;

  a)公式左边是二项式的完全平方;

  b)公式右边共有三项,是二项式中二项的平方和,再加上或减去这两项乘积的2倍。

  c)在运用完全平方公式时,要注意公式右边中间项的符号,以及避免出现这样的错误。

  七、整式的除法

  单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;

  多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数与原多项式的项数相同,另外还要特别注意符号。

初一下册数学知识点2

  图形初步认识

  概念、定义:

  1、我们把实物中抽象的各种图形统称为几何图形(geometricfigure)。

  2、有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,它们是立体图形(solidfigure)。

  3、有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,它们是平面图形(planefigure)。

  4、将由平面图形围成的立体图形表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图(net)。

  5、几何体简称为体(solid)。

  6、包围着体的是面(surface),面有平的面和曲的面两种。

  7、面与面相交的地方形成线(line),线和线相交的地方是点(point)。

  8、点动成面,面动成线,线动成体。

  9、经过探究可以得到一个基本事实:经过两点有一条直线,并且只有一条直线。

  简述为:两点确定一条直线(公理)。

  10、当两条不同的直线有一个公共点时,我们就称这两条直线相交(intersection),这个公共点叫做它们的交点(pointofintersection)。

  11、点M把线段AB分成相等的两条线段AM和MB,点M叫做线段AB的中点(center)。

  12、经过比较,我们可以得到一个关于线段的基本事实:两点的所有连线中,线段最短。简单说成:两点之间,线段最短。(公理)

  13、连接两点间的线段的'长度,叫做这两点的距离(distance)。

  14、角∠(angle)也是一种基本的几何图形。

  15、把一个周角360等分,每一份就是1度(degree)的角,记作1°;把一度的角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的角,记作1″。

  16、从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线(angularbisector)。

  17、如果两个角的和等于90°(直角),就是说这两个叫互为余角(complementary

  angle),即其中的每一个角是另一个角的余角。

  18、如果两个角的和等于180°(平角),就说这两个角互为补角(supplementary

  angle),即其中一个角是另一个角的补角

  19、等角的补角相等,等角的余角相等。

初一下册数学知识点3

  基本平面图形

  1、直线的性质

  (1)直线公理:经过两个点有且只有一条直线。(两点确定一条直线。)

  (2)过一点的直线有无数条。

  (3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。

  2、线段的性质

  (1)线段公理:两点之间的所有连线中,线段最短。(两点之间线段最短。)

  (2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。

  (3)线段的大小关系和它们的长度的大小关系是一致的。

  3、线段的'中点:点M把线段AB分成相等的两条相等的线段AM与BM,点M叫做线段AB的中点。AM=BM=1/2AB(或AB=2AM=2BM)。

  4、角:有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边。或:角也可以看成是一条射线绕着它的端点旋转而成的。

  5、角的表示

  角的表示方法有以下四种:

  ①用数字表示单独的角,如∠1,∠2,∠3等。

  ②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。

  ③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等。

  ④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等。

  注意:用三个大写字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。

  6、角的度量

  角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。

  把1°的角60等分,每一份叫做1分的角,1分记作“1’”。

  把1’的角60等分,每一份叫做1秒的角,1秒记作“1””。

  1°=60’,1’=60”

  7、角的平分线,从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

  8、角的性质

  (1)角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。

  (2)角的大小可以度量,可以比较,角可以参与运算。

  9、平角和周角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角。终边继续旋转,当它又和始边重合时,所形成的角叫做周角。

  10、多边形:由若干条不在同一条直线上的线段首尾顺次相连组成的封闭平面图形叫做多边形。连接不相邻两个顶点的线段叫做多边形的对角线。

  从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以画(n-3)条对角线,把这个n边形分割成(n-2)个三角形。

  11、圆:平面上,一条线段绕着一个端点旋转一周,另一个端点形成的图形叫做圆。固定的端点O称为圆心,线段OA的长称为半径的长(通常简称为半径)。

  圆上任意两点A、B间的部分叫做圆弧,简称弧,读作“圆弧AB”或“弧AB”;由一条弧AB和经过这条弧的端点的两条半径OA、OB所组成的图形叫做扇形。顶点在圆心的角叫做圆心角。

初一下册数学知识点4

  1. 平面上不相重合的两条直线之间的位置关系为_______或________

  2. 两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。P3 例;P8 2题;P9 7题;P35 2(2);P35 3题

  3. 两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。

  4. 垂直三要素:垂直关系,垂直记号,垂足

  5. 做直角三角形的高:两条直角边即是钝角三角形的高,只要做出斜边上的高即可。

  6.做钝角三角形的高:最长的边上的高只要向最长边引垂线即可,另外两条边上的高过边所对的.顶点向该边的延长线做垂线。

  7. 垂直公理:过一点有且只有一条直线与已知直线垂直。

  8. 垂线段最短;

  9. 点到直线的距离:直线外一点到这条直线的垂线段的长度。

  10. 两条直线被第三条直线所截:同位角F(在两条直线的同一旁,第三条直线的同一侧),内错角Z(在两条直线内部,位于第三条直线两侧),同旁内角U(在两条直线内部,位于第三条直线同侧)。

  P7 例、练习1

  11. 平行公理:过直线外一点有且只有一条直线与已知直线平行。

  12. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行。如果b//a,c//a,那么b//c P17 4题

  13. 平行线的判定。P15 例 结论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。

  P15 练习;P17 7题;P36 8题。

  14. 平行线的性质。P21 练习1,2;P23 6题

  15. 命题:如果+题设,那么+结论。P22练习1

  16. 真、假命题P24 11题;P37 12题

  17. 平移的性质P28归纳

初一下册数学知识点5

  一、目标与要求

  1.解有序数对的应用意义,了解平面上确定点的常用方法。

  2.培养学生用数学的意识,激发学生的学习兴趣。

  3.掌握坐标变化与图形平移的关系;能利用点的平移规律将平面图形进行平移;会根据图形上点的坐标的变化,来判定图形的移动过程。

  4.发展学生的形象思维能力,和数形结合的意识。

  5.坐标表示平移体现了平面直角坐标系在数学中的应用。

  二、重点

  掌握坐标变化与图形平移的.关系;

  有序数对及平面内确定点的方法。

  三、难点

  利用坐标变化与图形平移的关系解决实际问题;

  利用有序数对表示平面内的点。

初一下册数学知识点6

  一、目标与要求

  1。感受生活中存在着大量的不等关系,了解不等式和一元一次不等式的意义,通过解决简单的实际问题,使学生自发地寻找不等式的解,会把不等式的解集正确地表示到数轴上;

  2。经历由具体实例建立不等模型的过程,经历探究不等式解与解集的不同意义的过程,渗透数形结合思想;

  3。通过对不等式、不等式解与解集的探究,引导学生在独立思考的基础上积极参与对数学问题的讨论,培养他们的合作交流意识;让学生充分体会到生活中处处有数学,并能将它们应用到生活的各个领域。

  三、重点

  理解并掌握不等式的性质;

  正确运用不等式的性质;

  建立方程解决实际问题,会解ax+b=cx+d类型的一元一次方程;

  寻找实际问题中的不等关系,建立数学模型;

  一元一次不等式组的解集和解法。

  四、难点

  一元一次不等式组解集的理解;

  弄清列不等式解决实际问题的思想方法,用去括号法解一元一次不等式;

  正确理解不等式、不等式解与解集的意义,把不等式的解集正确地表示到数轴上。

  五、知识点、概念总结

  1。不等式:用符号,,,表示大小关系的式子叫做不等式。

  2。不等式分类:不等式分为严格不等式与非严格不等式。

  一般地,用纯粹的大于号、小于号,连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号),连接的不等式称为非严格不等式,或称广义不等式。

  3。不等式的解:使不等式成立的未知数的值,叫做不等式的解。

  4。不等式的'解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。

  5。不等式解集的表示方法:

  (1)用不等式表示:一般的,一个含未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式表达出来,例如:x—12的解集是x3

  (2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地说明不等式有无限多个解,用数轴表示不等式的解集要注意两点:一是定边界线;二是定方向。

  6。解不等式可遵循的一些同解原理

  (1)不等式F(x) G(x)与不等式 G(x)F(x)同解。

  (2)如果不等式F(x) G(x)的定义域被解析式H(x)的定义域所包含,那么不等式 F(x) G(x)与不等式H(x)+F(x)

  (3)如果不等式F(x) G(x)的定义域被解析式H(x)的定义域所包含,并且H(x)0,那么不等式F(x) G(x)与不等式H(x)F(x)0,那么不等式F(x) G(x)与不等式H(x)F(x)H(x)G(x)同解。

  7。不等式的性质:

  (1)如果xy,那么yy;(对称性)

  (2)如果xy,y那么x(传递性)

  (3)如果xy,而z为任意实数或整式,那么x+z(加法则)

  (4)如果xy,z0,那么xz如果xy,z0,那么xz

  (5)如果xy,z0,那么xzy如果xy,z0,那么xz

  (6)如果xy,mn,那么x+my+n(充分不必要条件)

  (7)如果x0,m0,那么xmyn

  (8)如果x0,那么x的n次幂y的n次幂(n为正数)

  8。一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。

  9。解一元一次不等式的一般顺序:

  (1)去分母 (运用不等式性质2、3)

  (2)去括号

  (3)移项 (运用不等式性质1)

  (4)合并同类项

  (5)将未知数的系数化为1 (运用不等式性质2、3)

  (6)有些时候需要在数轴上表示不等式的解集

  10。 一元一次不等式与一次函数的综合运用:

  一般先求出函数表达式,再化简不等式求解。

  11。一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一一起,就组成

  了一个一元一次不等式组。

  12。解一元一次不等式组的步骤:

  (1) 求出每个不等式的解集;

  (2) 求出每个不等式的解集的公共部分;(一般利用数轴)

  (3) 用代数符号语言来表示公共部分。(也可以说成是下结论)

  13。解不等式的诀窍

  (1)大于大于取大的(大大大);

  例如:X—1,X2 ,不等式组的解集是X2

  (2)小于小于取小的(小小小);

  例如:X—4,X—6,不等式组的解集是X—6

  (3)大于小于交叉取中间;

  (4)无公共部分分开无解了;

  14。解不等式组的口诀

  (1)同大取大

  例如,x2,x3 ,不等式组的解集是X3

  (2)同小取小

  例如,x2,x3 ,不等式组的解集是X2

  (3)大小小大中间找

  例如,x2,x1,不等式组的解集是1

  (4)大大小小不用找

  例如,x2,x3,不等式组无解

  15。应用不等式组解决实际问题的步骤

  (1)审清题意

  (2)设未知数,根据所设未知数列出不等式组

  (3)解不等式组

  (4)由不等式组的解确立实际问题的解

  (5)作答

  16。用不等式组解决实际问题:其公共解不一定就为实际问题的解,所以需结合生活实际具体分析,最后确定结果。

初一下册数学知识点7

  1.消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想。

  归纳:基本思路:“消元”——把“二元”变为“一元”。

  2.代入消元:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的'解,这种方法叫做代入消元法,简称代入法。

  3.加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法。

  4.教科书中没有的几种解法

  (1)加减-代入混合使用的方法:

  特点:两方程相加减,单个x或单个y,这样就适用接下来的代入消元。

  (2)换元法

  特点:两方程中都含有相同的代数式,换元后可简化方程也是主要原因。

  (3)设参数法

初一下册数学知识点8

  知识点1:正、负数的概念:我们把像3、2、+0.5、0.03%这样的数叫做正数,它们都是比0大的数;像-3、-2、-0.5、-0.03%这样数叫做负数。它们都是比0小的数。0既不是正数也不是负数。我们可以用正数与负数表示具有相反意义的量。

  知识点2:有理数的概念和分类:整数和分数统称有理数。有理数的分类主要有两种:

  注:有限小数和无限循环小数都可看作分数。

  知识点3:数轴的概念:像下面这样规定了原点、正方向和单位长度的直线叫做数轴。

  知识点4:绝对值的概念:

  (1)几何意义:数轴上表示a的点与原点的距离叫做数a的绝对值,记作|a|;

  (2)代数意义:一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;零的绝对值是零。

  注:任何一个数的绝对值均大于或等于0(即非负数).

  知识点5:相反数的概念:

  (1)几何意义:在数轴上分别位于原点的两旁,到原点的距离相等的两个点所表示的数,叫做互为相反数;

  (2)代数意义:符号不同但绝对值相等的两个数叫做互为相反数。0的相反数是0。

  知识点6:有理数大小的比较:

  有理数大小比较的基本法则:正数都大于零,负数都小于零,正数大于负数。

  数轴上有理数大小的比较:在数轴上表示的两个数,右边的数总比左边的大。

  用绝对值进行有理数大小的比较:两个正数,绝对值大的正数大;两个负数,绝对值大的负数反而小。

  知识点7:有理数加法法则:

  (1)同号两数相加,取相同的`符号,并把绝对值相加;

  (2)异号两数相加,绝对值相等时,和为0;绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;

  (3)一个数与0相加,仍得这个数.

  知识点8:有理数加法运算律:

  加法交换律:两个数相加,交换加数的位置,和不变。

  加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

  知识点9:有理数减法法则:减去一个数,等于加上这个数的相反数。

  知识点10:有理数加减混合运算:根据有理数减法的法则,一切加法和减法的运算,都可以统一成加法运算,然后省略括号和加号,并运用加法法则、加法运算律进行计算。

  初一数学知识点归纳

  ①求n个相同因数的积的运算,叫乘方,乘方的结果叫幂。在a的n次方中,a叫做底数,n叫做指数。负数的奇次幂是负数,负数的偶次幂是正数(负奇负,负偶正)。正数的任何次幂都是正数,0的任何次幂都是0。新-课-标-第-一- 网

  ②偶次方等于一个正数的值有两个(两个互为相反数)如:a2=4,a=2或a=-2

  注意:|a|+b2=0得:a=0且b=0

  强记:a0=1(a≠0);(-1)2=1 ;-12=-1;(-1)3=-1;

  -13=-1; (-2)2 =4;-22=-4;(-2)3 =-8;-23=-8

  ③有理数的混合运算法则:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、

  大括号依次进行。注意:12-4×5=12-20(不能把-变+)

  ④把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法,注意a的范围为1≤a n比原整数位减1。(注意科学计数法与原数的互划。

  ⑤四舍五入到哪一位就是精确到哪一位,四舍五入时望后多看一位采用四舍五入。比如:3.5449精确到0.01就是3.54而不是3.55. (再如:2.40万:精确到百位;6.5×104精确到千位,有数量级和科学计数法的要还原成原数,看数量级和科学计数法的最后一个数)。

  初一数学知识点

  第二章:整式的加减

  1、单项式:;单独的一个数或一个字母也是单项式

  2、系数:;

  3、单项式的次数:;

  4、多项式:;

  叫做多项式的项;的项叫做常数项。

  5、多项式的次数:;

  6、整式:;

  7、同类项:;

  8、把多项式中的同类项合并成一项,叫做合并同类项;

  合并同类项后,所得项的系数是合并同前各同类项的系数的和,且字母部分不变。

  9、去括号:(1)如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同

  (2)如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反

  10、一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项

  第三章:一次方程(组)

  一、方程的有关概念

  1、方程的概念:

  (1)含有未知数的等式叫方程。

  (2)在一个方程中,只含有一个未知数,并且未知数的指数是1,系数不为0,这样的方程叫一元一次方程。

  2、等式的基本性质:

  (1)等式两边同时加上(或减去)同一个代数式,所得结果仍是等式。若a=b,则a+c=b+c或a–c=b–c。

  (2)等式两边同时乘以(或除以)同一个数(除数不能为0),所得结果仍是等式。若a=b,则ac=bc或

  二、解方程

  1、移项的有关概念:

  把方程中的某一项改变符号后,从方程的一边移到另一边,叫做移项。这个法则是根据等式的性质1推出来的,是解方程的依据。把某一项从方程的左边移到右边或从右边移到左边,移动的项一定要变号。

  2、解一元一次方程的步骤:

  解一元一次方程的步骤

  主要依据

  1、去分母

  等式的性质2

  2、去括号

  去括号法则、乘法分配律

  3、移项

  等式的性质1

  4、合并同类项

  合并同类项法则

  5、系数化为1

  等式的性质2

  6、检验

  3、二元一次方程组

  (1)将二元一次方程用含有一个未知数的代数式表示另一个未知数;

  (2)解二元一次方程组的指导思想是转化的思想;

  (3)解二元一次方程组的方法有:加减消元法;代入消元法;

  二、列方程解应用题

  1、列方程解应用题的一般步骤:

  (1)将实际问题抽象成数学问题;

  (2)分析问题中的已知量和未知量,找出等量关系;

  (3)设未知数,列出方程;

  (4)解方程;

  (5)检验并作答。

  2、一些实际问题中的规律和等量关系:

  (1)几种常用的面积公式:

  长方形面积公式:S=ab,a为长,b为宽,S为面积;正方形面积公式:S=a2,a为边长,S为面积;

  梯形面积公式:S=,a,b为上下底边长,h为梯形的高,S为梯形面积;

  圆形的面积公式:,r为圆的半径,S为圆的面积;

  三角形面积公式:,a为三角形的一边长,h为这一边上的高,S为三角形的面积。

  (2)几种常用的周长公式:

  长方形的周长:L=2(a+b),a,b为长方形的长和宽,L为周长。

  正方形的周长:L=4a,a为正方形的边长,L为周长。

  圆:L=2πr,r为半径,L为周长。

初一下册数学知识点9

  初一下册知识点总结

  1.同底数幂的乘法:am?an=am+n ,底数不变,指数相加。

  2.同底数幂的除法:am÷an=am-n ,底数不变,指数相减。

  3.幂的乘方与积的乘方:(am)n=amn ,底数不变,指数相乘; (ab)n=anbn ,积的乘方等于各因式乘方的积。

  4.零指数与负指数公式:

  (1)a0=1 (a≠0); a-n= ,(a≠0)。 注意:00,0-2无意义。

  (2)有了负指数,可用科学记数法记录小于1的数,例如:0.0000201=2.01×10-5。

  5.(1)平方差公式:(a+b)(a-b)= a2-b2,两个数的和与这两个数的差的积等于这两个数的平方差;

  (2)完全平方公式:

  ① (a+b)2=a2+2ab+b2, 两个数和的平方,等于它们的平方和,加上它们的积的2倍;

  ② (a-b)2=a2-2ab+b2 , 两个数差的平方,等于它们的平方和,减去它们的积的2倍;

  ※ ③ (a+b-c)2=a2+b2+c2+2ab-2ac-2bc

  6.配方:

  (1)若二次三项式x2+px+q是完全平方式,则有关系式: ;

  ※ (2)二次三项式ax2+bx+c经过配方,总可以变为a(x-h)2+k的`形式。

  注意:当x=h时,可求出ax2+bx+c的最大(或最小)值k。

  ※(3)注意: 。

  7.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;

  系数不为零时,单项式中所有字母指数的和,叫单项式的次数。

  8.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;

  多项式里,次数最高项的次数叫多项式的次数;

  注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式。

  9.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项。

  10.合并同类项法则:系数相加,字母与字母的指数不变。

  11.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号。

  注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列。

  平面几何部分

  1、补角重要性质:同角或等角的补角相等.

  余角重要性质:同角或等角的余角相等.

  2、①直线公理:过两点有且只有一条直线.

  线段公理:两点之间线段最短.

  ②有关垂线的定理:(1)过一点有且只有一条直线与已知直线垂直;

  (2)直线外一点与直线上各点连结的所有线段中,垂线段最短.

  比例尺:比例尺1:m中,1表示图上距离,m表示实际距离,若图上1厘米,表示实际距离m厘米.

  3、三角形的内角和等于180

  三角形的一个外角等于与它不相邻的两个内角的和

  三角形的一个外角大于与它不相邻的任何一个内角

  4、n边形的对角线公式:

  各个角都相等,各条边都相等的多边形叫做正多边形

  5、n边形的内角和公式:180(n-2); 多边形的外角和等于360

  6、判断三条线段能否组成三角形:

  ①a+b>c(a b为最短的两条线段)②a-b

  7、第三边取值范围:

  a-b< c

  8、对应周长取值范围:

  若两边分别为a,b则周长的取值范围是 2a

  如两边分别为5和7则周长的取值范围是 14

  9、相关命题:

  (1) 三角形中最多有1个直角或钝角,最多有3个锐角,最少有2个锐角。

  (2) 锐角三角形中最大的锐角的取值范围是60≤X<90 。最大锐角不小于60度。

  (3)任意一个三角形两角平分线的夹角=90+第三角的一半。

  (4) 钝角三角形有两条高在外部。

  (5) 全等图形的大小(面积、周长)、形状都相同。

  (6) 面积相等的两个三角形不一定是全等图形。

  (7) 三角形具有稳定性。

  (8) 角平分线到角的两边距离相等。

  (9)有一个角是60的等腰三角形是等边三角形。

初一下册数学知识点10

  1.同一平面内,两直线不平行就相交。

  2.两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互

  为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。

  3.垂直定义:两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。其

  中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。4.垂直三要素:垂直关系,垂直记号,垂足

  5.垂直公理:过一点有且只有一条直线与已知直线垂直。6.垂线段最短;

  7.点到直线的距离:直线外一点到这条直线的垂线段的长度。8.两条直线被第三条直线所截:同位角F(在两条直线的同一旁,第三条直线的同一侧),内错角Z(在

  两条直线内部,位于第三条直线两侧),同旁内角U(在两条直线内部,位于第三条直线同侧)。9.平行公理:过直线外一点有且只有一条直线与已知直线平行。

  10.如果两条直线都与第三条直线平行,那么这两条直线也互相平行。如果b//a,c//a,那么b//cP174题

  11.平行线的判定。结论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。平行线的性质:

  1.两直线平行,同位角相等。2.两直线平行,内错角相等。3.两直线平行,同旁内角互补。

  12.★命题:“如果+题设,那么+结论。”

  三角形和多边形

  1.三角形内角和为180°

  2.构成三角形满足的条件:三角形两边之和大于第三边。

  判断方法:在△ABC中,a、b为两短边,c为长边,如果a+b>c则能构成三角形,否则(a+bc)不能构成三角形(即三角形最短的两边之和大于最长的边)

  3.三角形边的取值范围:三角形的任一边:小于两边之和,大于两边之差(的绝对值)【重点题目】三角形的两边分别为3和7,则三角形的第三边的取值范围为4.等面积法:三角形面积1底高,三角形有三条高,也就对应有三条底边,任取其中一组底和高,21三角形同一个面积公式就有三个表示方法,任取其中两个写成连等(可两边同时2消去)底高

  2底高,知道其中三条线段就可求出第四条。例如:如图1,在直角△ABC中,ACB=900,CD

  是斜边AB

  上的高,则有ACBCCDAB

  A

  CB1D【重点题目】P708题例直角三角形的三边长分别为3、4、5,则斜边上的高为5.等高法:高相等,底之间具有一定关系(如成比例或相等)

  【例】AD是△ABC的中线,AE是△ABD的中线,SABC4cm2,则SABE=6.三角形的特性:三角形具有【重点题目】P695题7.外角:

  【基础知识】什么是外角?外角定理及其推论【重点题目】P75例2P765、6、8题8.n边形的★内角和★外角和√对角线条数为

  【基础知识】正多边形:各边相等,各角相等;正n边形每个内角的度数为【重点题目】P83、P84练习1,2,3;P843,4,5,6;P904、5题9.√镶嵌:围绕一个拼接点,各图形组成一个周角(不重叠,无空隙)。

  单一正多边形的镶嵌:镶嵌图形的每个内角能被360整除:只有6个等边三角形(60),4个正方形(90),3个正六边形(120)三种

  (两种正多边形的)混合镶嵌:混合镶嵌公式nm3600:表示n个内角度数为的`正多边形与

  0000m个内角度数为的正多边形围绕一个拼接点组成一个周角,即混合镶嵌。

  【例】用正三角形与正方形铺满地面,设在一个顶点周围有m个正三角形、n个正方形,则m,n的值分别为多少?

  平面直角坐标系

  ▲基本要求:在平面直角坐标系中1.给出一点,能够写出该点坐标2.给出坐标,能够找到该点

  ▲建系原则:原点、正方向、横纵轴名称(即x、y)

  √语言描述:以…(哪一点)为原点,以…(哪一条直线)为x轴,以…(哪一条直线)为y轴建立直角坐标系

  ▲基本概念:有顺序的两个数组成的数对称为(有序数对)【三大规律】1.平移规律★

  点的平移规律(P51归纳)

  例将P(2,3)向左平移3个单位,向上平移5个单位得到点Q,则Q点的坐标为图形的平移规律(P52归纳)

  重点题目:P53练习;P543、4题;P557题。2.对称规律▲

  关于x轴对称,纵坐标取相反数关于y轴对称,横坐标取相反数

  关于原点对称,横、纵坐标同时取相反数

  例:P点的坐标为(5,7),则P点

  (1.)关于x轴对称的点为(2.)关于y轴的对称点为(3.)关于原点的对称点为3.位置规律★

  假设在平面直角坐标系上有一点P(a,b)y1.如果P点在第一象限,有a>0,b>0(横、纵坐标都大于0)第二象限第一象限2.如果P点在第二象限,有a0(横坐标小于0,纵坐标大于0)X3.如果P点在第三象限,有a5.小长方形的面积表示频数。纵轴为频数。等距分组时,通常直接用小长方形的高表示频数,即纵

  组距轴为“频数”

  6.频数分布折线图√根据频数分布图画出频数分布折线图:①取每个小长方形的上边的中点,以及x

  轴上与最左、最右直方相距半个组距的点。②连线【重点题目】P1693、4题

  二元一次方程组和不等式、不等式组

  1.解二元一次方程组,基本的思想是;2.二元一次方程(组):含两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程。把具有相同未知数的两个二元一次方程组合起来,就组成了二元一次方程组。(具体题目见本单元测试卷填空部分)

  3.★解二元一次方程组。常用的方法有和。P96、P100归纳4.★列二元一次方程组解实际问题。关键:找等量关系常见的类型有:分配问题P1185题;P1084、5题;P102练习3;P1048题;P1034题;追及问题P1037题、P1186题;顺流逆流P102练习2;P1082题;药物配制P1087题;行程问题P99练习4;P1083,6题顺流逆流公式:v顺v静v水v逆vv静水5.不等式的性质(重点是性质三)P1285、7题6.利用不等式的性质解不等式,并把解集在数轴上表示出来(课本上的练例、习题)P1342

  步骤:去分母,去括号,移项,合并同类项,系数化为一;其中去分母与系数化为一要特别小心,因为要在不等式两端同时乘或除以某一个数,要考虑不等号的方向是否发生改变的问题。7.用不等式表示,P1282题,P127练习2;P123练习28.利用数轴或口诀解不等式组(课本上的例、习题)

  数轴:P140归纳口诀(简单不等式):同大取大,同小取小,大(于)小小(于)大取中间,大(于)大小(于)小,解不见了。

  9.列不等式(组)解决实际问题:P12910;P1289题;P133例2;P1355、6、7、8、9,P139例2;P140练习2,P1413、4题不等式组的解集的确定方法(a>b):自己将表格补充完整:不等式组

  4

  在数轴上表示的解集解集x>a口诀大大取大;x>ax>bx<ax<bx<ax>b小大大小中间找;ba小小取小;x>ax<b空集大大小小不见了。

初一下册数学知识点11

  知识点、概念总结

  1.不等式:用符号"<",">","≤","≥"表示大小关系的式子叫做不等式。

  2.不等式分类:不等式分为严格不等式与非严格不等式。

  一般地,用纯粹的大于号、小于号">","<"连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)"≥","≤"连接的不等式称为非严格不等式,或称广义不等式。

  3.不等式的解:使不等式成立的未知数的值,叫做不等式的解。

  4.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的.解集。

  5.不等式解集的表示方法:

  (1)用不等式表示:一般的,一个含未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式表达出来,例如:x-1≤2的解集是x≤3

  (2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地说明不等式有无限多个解,用数轴表示不等式的解集要注意两点:一是定边界线;二是定方向。

  6.解不等式可遵循的一些同解原理

  (1)不等式F(x)F(x)同解。

  (2)如果不等式F(x)

  (3)如果不等式F(x)0,那么不等式F(x)H(x)G(x)同解。

  7.不等式的性质:

  (1)如果x>y,那么yy;(对称性)

  (2)如果x>y,y>z;那么x>z;(传递性)

  (3)如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法则)

  (4)如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz

  (5)如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z

  (6)如果x>y,m>n,那么x+m>y+n(充分不必要条件)

  (7)如果x>y>0,m>n>0,那么xm>yn

  (8)如果x>y>0,那么x的n次幂>y的n次幂(n为正数)

  8.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。

  9.解一元一次不等式的一般顺序:

  (1)去分母(运用不等式性质2、3)

  (2)去括号

  (3)移项(运用不等式性质1)

  (4)合并同类项

  (5)将未知数的系数化为1(运用不等式性质2、3)

  (6)有些时候需要在数轴上表示不等式的解集

  10.一元一次不等式与一次函数的综合运用:

  一般先求出函数表达式,再化简不等式求解。

  11.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成

  了一个一元一次不等式组。

  12.解一元一次不等式组的步骤:

  (1)求出每个不等式的解集;

  (2)求出每个不等式的解集的公共部分;(一般利用数轴)

  (3)用代数符号语言来表示公共部分。(也可以说成是下结论)

  13.解不等式的诀窍

  (1)大于大于取大的(大大大);

  例如:X>-1,X>2,不等式组的解集是X>2

  (2)小于小于取小的(小小小);

  例如:X<-4,X<-6,不等式组的解集是X<-6

  (3)大于小于交叉取中间;

  (4)无公共部分分开无解了;

  14.解不等式组的口诀

  (1)同大取大

  例如,x>2,x>3,不等式组的解集是X>3

  (2)同小取小

  例如,x<2,x<3,不等式组的解集是X<2

  (3)大小小大中间找

  例如,x<2,x>1,不等式组的解集是1

  (4)大大小小不用找

  例如,x<2,x>3,不等式组无解

  15.应用不等式组解决实际问题的步骤

  (1)审清题意

  (2)设未知数,根据所设未知数列出不等式组

  (3)解不等式组

  (4)由不等式组的解确立实际问题的解

  (5)作答

  16.用不等式组解决实际问题:其公共解不一定就为实际问题的解,所以需结合生活实际具体分析,最后确定结果。

初一下册数学知识点12

  一、目标与要求

  1.了解全面调查的概念;会设计简单的调查问卷,收集数据;掌握划记法,会用表格整理数据;会画扇形统计图,能用统计图描述数据;经历统计调查的一般过程,体验统计与生活的关系。

  2.经历数据的收集、整理和分析的模拟过程,了解抽样调查、样本、个体与总体等统计概念;学会从样本中分析、归纳出较为正确的结论,增强用统计方法解决问题的意识。

  3.理解频数、频数分布的意义,学会制作频数分布表;学会画频数分布直方图和频数折线图。

  二、重点

  学会画频数分布直方图;

  分层抽样的方法和样本的分析、归纳;

  抽样调查、样本、总体等概念以及用样本估计总体的`思想;

  全面调查的过程(数据的收集、整理、描述)。

  三、难点

  绘制扇形统计图;

  样本的抽取;

  分层抽样方案的制定;

  确定组距和组数。

初一下册数学知识点13

  单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。

  单项式乘法法则在运用时要注意以下几点:

  ①积的系数等于各因式系数积,先确定符号,再计算绝对值。这时容易出现的.错误的是,将系数相乘与指数相加混淆;

  ②相同字母相乘,运用同底数的乘法法则;

  ③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;

  ④单项式乘法法则对于三个以上的单项式相乘同样适用;

  ⑤单项式乘以单项式,结果仍是一个单项式。

初一下册数学知识点14

  1、单项式:数字与字母的积,叫做单项式。

  2、多项式:几个单项式的和,叫做多项式。

  3、整式:单项式和多项式统称整式。

  4、单项式的次数:单项式中所有字母的指数的和叫单项式的次数。

  5、多项式的次数:多项式中次数的项的次数,就是这个多项式的次数。

  6、余角:两个角的和为90度,这两个角叫做互为余角。

  7、补角:两个角的和为180度,这两个角叫做互为补角。

  8、对顶角:两个角有一个公共顶点,其中一个角的两边是另一个角两边的反向延长线。这两个角就是对顶角。

  9、同位角:在“三线八角”中,位置相同的角,就是同位角。

  10、内错角:在“三线八角”中,夹在两直线内,位置错开的角,就是内错角。

  11、同旁内角:在“三线八角”中,夹在两直线内,在第三条直线同旁的角,就是同旁内角。

  12、有效数字:一个近似数,从左边第一个不为0的数开始,到精确的那位止,所有的数字都是有效数字。

  13、概率:一个事件发生的可能性的大小,就是这个事件发生的概率。

  14、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

  15、三角形的角平分线:在三角形中,一个内角的角平分线与它的.对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。

  16、三角形的中线:在三角形中连接一个顶点与它的对边中点的线段,叫做这个三角形的中线。

  17、三角形的高线:从一个三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。

  18、全等图形:两个能够重合的图形称为全等图形。

  19、变量:变化的数量,就叫变量。

  20、自变量:在变化的量中主动发生变化的,变叫自变量。

  21、因变量:随着自变量变化而被动发生变化的量,叫因变量。

  22、轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形。

  23、对称轴:轴对称图形中对折的直线叫做对称轴。

  24、垂直平分线:线段是轴对称图形,它的一条对称轴垂直于这条线段并且平分它,这样的直线叫做这条线段的垂直平分线。(简称中垂线)

初一下册数学知识点15

  一、知识总结

  (一)平方根与立方根

  1、平方根

  (1)定义:一般地,如果一个数的平方等于a,那么这个数叫做a的平方根,也叫做二次方根。

  (2)表示:非负数a的平方根记作± ,读作“正负根号a”,(a叫做被开方数)

  (3)性质:正数的平方根有两个,且互为相反数;0的平方根为0;负数的没有平方根。

  (4)开平方:求平方根的运算叫做开平方。

  Ⅰ、平方根是开平方的结果;Ⅱ、 开平方与平方互为逆运算。

  2、算术平方根

  (1)定义:正数a的正的平方根a叫做a的算术平方根,0的算术平方根是0。

  (2)性质:(1)一个数a的算术平方根具有非负性; 即:a≥0恒成立。

  (2)正数的算术平方根只有1个,且为正数;0的算术平方根是0; 负数的没有算术平方根。

  3、立方根:

  (1)定义:一般地,如果一个数的立方等于a,那么这个数叫做a的立方根,也叫做三次方根。

  (2)表示:a的立方根记作a,读作“三次根号a”(a叫做被开方数,3叫根指数)

  (3)性质:正数的立方根是1个正数;负数的立方根是1个负数;0的立方根是0。

  (二)实数

  1、无理数:无限不循环的'小数。(一个无理数与若干有理数之间的运算结果还是无理数)

  2、实数:有理数和无理数统称为实数。

  3、实数分类:(1)按定义分(略) (2)按正负性分(略)

  4、实数与数轴上的点一一对应。

  5、实数的相反数、绝对值、倒数:(与有理数的相反数、绝对值、倒数意义类似)

  6、实数的运算:实数与有理数一样,可以进行加、减、乘、除、乘方运算,正数及零可以进行开平方运算,任意一个实数可以进行开立方运算,而且有理数的运算法则和运算律对于实数仍然适用。

  7、实数大小:(1)正数>0 >负数; (2)两个负数相比,绝对值大的反而小;绝对值小的反而大。(3)数轴上不同的点表示的数,右边点表示的数总比左边的点表示的数大。 实数比较大小的方法:作差法、平方法、作商法、倒数法、估值法

  第七章 一元一次不等式与不等式组

  一、知识总结

  (一)不等式及其性质

  1、不等式:

  (1)定义用“<”(或“≤”),“>”(或“≥”)等不等号表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.

  (2)不等式的解:能使不等式成立的未知数的值,叫做不等式的解。

  (3)不等式的解集:一般地,一个含有未知数的不等式的所有解,组成这个不等式的解集。求不等式的解集的过程叫做解不等式。

  不等式的解集与不等式的解的区别:解集是能使不等式成立的未知数的取值范围,是所有解的集合,而不等式的解是使不等式成立的未知数的值。

  二者的关系是:解集包括解,所有的解组成了解集。

  (4)解不等式:求不等式解的过程叫做解不等式。

  2、不等式的基本性质

  性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变。 即:如果a?b,那么a?c?b?c.

  性质2:不等式的两边都乘上(或除以)同一个正数,不等号的方向不变。 即:如果a?b,并且c?0,那么ac?bc;ab?. cc

  性质3:不等式的两边都乘上(或除以)同一个负数,不等号的方向改变。 即:如果a?b,并且c?0,那么ac?bc;ab?. cc

  性质4:如果a?b,那么b?a.(对称性)

  性质5:如果a?b,b?c,那么a?c.(传递性)

  (二)一元一次不等式

  1、定义:含有一个未知数,未知数的次数是1,且不等号两边都是整式的不等式, 叫做一元一次不等式。

  2.一元一次不等式的解法:

  根据是不等式的基本性质;一般步骤为:(1)去分母;(2)去括号;(3)移项;

  (4)合并同类项;(5)系数化为1.

  解不等式应注意:①去分母时,每一项都要乘同一个数,尤其不要漏乘常数项;②移项时不要忘记变号;③去括号时,若括号前面是负号,括号里的每一项都要变号;④在不等式两边都乘(或除以)同一个负数时,不等号的方向要改变。

  3.不等式的解集在数轴上表示:

  (1)边界:有等号的是实心圆圈,无等号的是空心圆圈;(2)方向:大向右,小向左

  (三)一元一次不等式组

  1、定义:有几个含有同一个未知数的一元一次不等式组成的不等式组,叫做一元一次不等式组

  2、(一元一次)不等式组的解集:这几个不等式解集的公共部分,叫做这个(一元一次)不等式组的解集。

  3、解不等式组:求不等式组解集的过程,叫做解不等式组。 4、一元一次不等式组的解法

  1)分别求出不等式组中各个不等式的解集

  2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。

  (四)一元一次不等式(组)解决实际问题

  解题的步骤:

  ⑴审题,找出不等关系→ ⑵设未知数→ ⑶列出不等式(组)→

  ⑷求出不等式的解集→ ⑸找出符合题意的值→ ⑹作答。

【初一下册数学知识点】相关文章:

初一数学下册知识点总结11-29

初一下册数学必备知识点02-14

初一数学下册重点知识点总结02-17

初一下册数学知识点08-07

初一下册数学考试知识点06-27

【精选】初一下册数学知识点汇总07-30

初一下册数学知识点汇总07-19

初一下册数学知识点归纳12-17

初一语文下册知识点10-18

高等数学下册知识点09-17