小学数学的知识点总结

时间:2024-08-10 12:18:23 数学 我要投稿

小学数学的知识点总结

  总结在一个时期、一个年度、一个阶段对学习和工作生活等情况加以回顾和分析的一种书面材料,它可使零星的、肤浅的、表面的感性认知上升到全面的、系统的、本质的理性认识上来,因此十分有必须要写一份总结哦。总结怎么写才不会千篇一律呢?以下是小编帮大家整理的小学数学的知识点总结,供大家参考借鉴,希望可以帮助到有需要的朋友。

小学数学的知识点总结

小学数学的知识点总结1

  1.奇偶性

  问题

  奇+奇=偶奇×奇=奇

  奇+偶=奇奇×偶=偶

  偶+偶=偶偶×偶=偶

  2.位值原则

  形如:abc=100a+10b+c

  3.数的整除特征:

  整除数特征

  2末尾是0、2、4、6、8

  3各数位上数字的和是3的倍数

  5末尾是0或5

  9各数位上数字的和是9的倍数

  11奇数位上数字的和与偶数位上数字的和,两者之差是11的倍数

  4和25末两位数是4(或25)的倍数

  8和125末三位数是8(或125)的倍数

  7、11、13末三位数与前几位数的差是7(或11或13)的倍数

  4.整除性质

  ①如果c|a、c|b,那么c|(ab)。

  ②如果bc|a,那么b|a,c|a。

  ③如果b|a,c|a,且(b,c)=1,那么bc|a。

  ④如果c|b,b|a,那么c|a.

  ⑤a个连续自然数中必恰有一个数能被a整除。

  5.带余除法

  一般地,如果a是整数,b是整数(b≠0),那么一定有另外两个整数q和r,0≤r

  当r=0时,我们称a能被b整除。

  当r≠0时,我们称a不能被b整除,r为a除以b的余数,q为a除以b的.不完全商(亦简称为商)。用带余数除式又可以表示为a÷b=q……r,0≤r

  小学生奥数知识点

  数列求和:

  等差数列:在一列数中,任意相邻两个数的差是一定的,这样的一列数,就叫做等差数列。

  基本概念:首项:等差数列的第一个数,一般用a1表示;

  项数:等差数列的所有数的个数,一般用n表示;

  公差:数列中任意相邻两个数的差,一般用d表示;

  通项:表示数列中每一个数的公式,一般用an表示;

  数列的和:这一数列全部数字的和,一般用Sn表示。

  基本思路:等差数列中涉及五个量:a1,an,d,n,sn,通项公式中涉及四个量,如果己知其中三个,就可求出第四个;求和公式中涉及四个量,如果己知其中三个,就可以求这第四个。

  基本公式:通项公式:an=a1+(n-1)d;

  通项=首项+(项数一1)×公差;

  数列和公式:sn,=(a1+an)×n÷2;

  数列和=(首项+末项)×项数÷2;

  项数公式:n=(an+a1)÷d+1;

  项数=(末项-首项)÷公差+1;

  公差公式:d=(an-a1))÷(n-1);

  公差=(末项-首项)÷(项数-1);

  关键问题:确定已知量和未知量,确定使用的公式

  小学奥数几何知识点整理

  鸟头定理即共角定理。

  燕尾定理即共边定理的一种。

  共角定理:

  若两三角形有一组对应角相等或互补,则它们的面积比等于对应角两边乘积的比。

  共边定理:

  有一条公共边的三角形叫做共边三角形。

  共边定理:设直线AB与PQ交与M则S△PAB/S△QAB=PM/QM

  这几个定理大都利用了相似图形的方法,但小学阶段没有学过相似图形,而小学奥数中,常常要引入这些,实在有点难为孩子。

  为了避开相似,我们用相应的底,高的比来推出三角形面积的比。

  例如燕尾定理,一个三角形ABC中,D是BC上三等分点,靠近B点。连接AD,E是AD上一点,连接EB和EC,就能得到四个三角形。

  很显然,三角形ABD和ACD面积之比是1:2

  因为共边,所以两个对应高之比是1:2

  而四个小三角形也会存在类似关系

  三角形ABE和三角形ACE的面积比是1:2

  三角形BED和三角形CED的面积比也是1:2

  所以三角形ABE和三角形ACE的面积比等于三角形BED和三角形CED的面积比,这就是传说中的燕尾定理。

  以上是根据共边后,高之比等于三角形面积之比证明所得。

  必须要强记,只要理解,到时候如何变形,你都能会做。至于鸟头定理,也不要死记硬背,掌握原理,用起来就会得心应手。

小学数学的知识点总结2

  时分秒

  1、钟面上有3根针,它们是(时针)、(分针)、(秒针),其中走得最快的是(秒针),走得最慢的是(时针)。

  2、钟面上有(12)个数字,(12)个大格,(60)个小格;每两个数间是(1)个大格,也就是(5)个小格。

  3、时针走1大格是(1)小时;分针走1大格是(5)分钟,走1小格是( 1)分钟;秒针走1大格是(5)秒钟,走1小格是(1)秒钟。

  4、时针走1大格,分针正好走(1)圈,分针走1圈是(60)分,也就是(1)小时。时针走1圈,分针要走(12)圈。

  5、分针走1小格,秒针正好走(1)圈,秒针走1圈是(60)秒,也就是(1)分钟。

  6、时针从一个数走到下一个数是(1小时)。分针从一个数走到下一个数是(5分钟)。秒针从一个数走到下一个数是(5秒钟)。

  7、钟面上时针和分针正好成直角的时间有:(3点整)、(9点整)。

  8、公式。(每两个相邻的时间单位之间的进率是60)

  1时=60分1分=60秒

  半时=30分60分=1时

  60秒=1分30分=半时

  万以内的加法和减法

  1、认识整千数(记忆:10个一千是一万)

  2、读数和写数(读数时写汉字写数时写阿拉伯数字)

  ①一个数的末尾不管有一个0或几个0,这个0都不读。

  ②一个数的中间有一个0或连续的两个0,都只读一个0。

  3、数的大小比较:

  ①位数不同的数比较大小,位数多的数大。

  ②位数相同的数比较大小,先比较这两个数的最高位上的数,如果最高位上的数相同,就比较下一位,以此类推。

  4、求一个数的近似数:

  记忆:看最位的后面一位,如果是0-4则用四舍法,如果是5-9就用五入法。

  最大的三位数是位999,最小的三位数是100,最大的四位数是9999,最小的四位数是1000。最大的三位数比最小的四位数小1。

  5、被减数是三位数的连续退位减法的运算步骤:

  ①列竖式时相同数位一定要对齐;

  ②减法时,哪一位上的数不够减,从前一位退1;如果前一位是0,则再从前一位退1。

  6、在做题时,我们要注意中间的0,因为是连续退位的,所以从百位退1到十位当10后,还要从十位退1当10,借给个位,那么十位只剩下9,而不是10。(两个三位数相加的和:可能是三位数,也有可能是四位数。)

  7、公式

  和=加数+另一个加数

  加数=和-另一个加数

  减数=被减数-差

  被减数=减数+差

  差=被减数-减数

  测量

  1、在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)。

  2、1厘米的长度里有(10)小格,每小格的长度(相等),都是(1)毫米。

  3、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。

  4、在计算长度时,只有相同的长度单位才能相加减。

  小技巧:换算长度单位时,把大单位换成小单位就在数字的末尾添加0(关系式中有几个0,就添几个0);把小单位换成大单位就在数字的末尾去掉0(关系式中有几个0,就去掉几个0)。

  5、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10 )

  ①进率是10:

  1米=10分米, 1分米=10厘米,

  1厘米=10毫米, 10分米=1米,

  10厘米=1分米, 10毫米=1厘米,

  ②进率是100:

  1米=100厘米, 1分米=100毫米,

  100厘米=1米, 100毫米=1分米

  ③进率是1000:

  1千米=1000米, 1公里==1000米,

  1000米=1千米, 1000米=1公里

  6、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。

  小技巧:在“吨”与“千克”的换算中,把吨换算成千克,是在数字的末尾加上3个0;

  把千克换算成吨,是在数字的末尾去掉3个0。

  7、相邻两个质量单位进率是1000。

  1吨=1000千克1千克=1000克

  1000千克= 1吨1000克=1千克

  倍的认识

  1、求一个数是另一个数的几倍用除法:一个数÷另一个数=倍数

  2、求一个数的几倍是多少用乘法:这个数×倍数=这个数的几倍

  多位数乘一位数

  1、估算。(先求出多位数的近似数,再进行计算。如497×7≈3500)

  2、① 0和任何数相乘都得0;② 1和任何不是0的数相乘还得原来的数。

  3、因数末尾有几个0,就在积的末尾添上几个0。

  4、三位数乘一位数:积有可能是三位数,也有可能是四位数。

  公式:速度×时间=路程

  每节车厢的人数×车厢的数量=全车的人数

  5、(关于“大约)应用题:

  ①条件中出现“大约”,而问题中没有“大约”,求准确数。→(=)

  ②条件中没有,而问题中出现“大约”。求近似数,用估算。→(≈)

  ③条件和问题中都有“大约”,求近似数,用估算。→(≈)

  四边形

  1、有4条直的边和4个角封闭图形我们叫它四边形。

  2、四边形的特点:有四条直的边,有四个角。

  3、长方形的特点:长方形有两条长,两条宽,四个直角,对边相等。

  4、正方形的特点:有4个直角,4条边相等。

  5、长方形和正方形是特殊的平行四边形。

  6、平行四边形的.特点:

  ①对边相等、对角相等。

  ②平行四边形容易变形。(三角形不容易变形)

  7、封闭图形一周的长度,就是它的周长。

  8、公式。

  正方形的周长=边长×4

  正方形的边长=周长÷4,

  长方形的周长=(长+宽)×2

  长方形的长=周长÷2-宽,

  长方形的宽=周长÷2-长

  分数的初步认识

  1、把一个物体或一个图形平均分成几份,取其中的几份,就是这个物体或图形的几分之几。

  2、把一个整体平均分得的份数越多,它的每一份所表示的数就越小。

  3、①分子相同,分母小的分数反而大,分母大的分数反而小。

  ②分母相同,分子大的分数就大,分子小的分数就小。

  4、①相同分母的分数相加、减:分母不变,只和分子相加、减。

  ② 1与分数相减:1可以看作是与减数分母相同的,同分子分母的分数。

小学数学的知识点总结3

  第一单元 小数乘法

  1.小数乘整数:意义——求几个相同加数的和的简便运算。

  计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

  2.小数乘小数:意义——就是求这个数的几分之几是多少。

  计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

  规律: 一个数(0除外)乘大于1的数,积比原来的数大; 一个数(0除外)乘小于1的数,积比原来的数小。

  3.求近似数的方法一般有三种: ⑴四舍五入法;⑵进一法;⑶去尾法

  4.计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角。

  5.小数四则运算顺序跟整数是一样的。

  6.运算定律和性质: 加法: 加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 减法: 减法性质:a-b-c=a-(b+c)a-(b-c)=a-b+c 乘法: 乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c) 乘法分配律:(a+b)×c=a×c+b×c(a-b)×c=a×c-b×c 除法: 除法性质:a÷b÷c=a÷(b×c)

  7.小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。

  8.小数除以整数的计算方法:小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。

  9.除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。

  10.在实际应用中,小数除法所得的'商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。五年级数学重要知识点

  11.除法中的变化规律: ①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。 ②除数不变,被除数扩大,商随着扩大。③被除数不变,除数缩小,商扩大。

  12.循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。循环节:一个循环小数的小数部分,依次不断重复出现的数字。如6.3232……的循环节是32.

  13.小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小数,叫做无限小数。

  14.从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。

  15.在含有字母的式子里,字母中间的乘号可以记作“?”,也可以省略不写。加号、减号除号以及数与数之间的乘号不能省略。

  16.a×a可以写作a?a或a2,读作a的平方。 2a表示a+a

  17.方程:含有未知数的等式称为方程。 使方程左右两边相等的未知数的值,叫做方程的解。 求方程的解的过程叫做解方程。

  18.解方程原理:天平平衡。等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。

  19.10个数量关系式: 加法:和=加数+加数 一个加数=和-两一个加数 减法:差=被减数-减数 被减数=差+减数 减数=被减数-差乘法:积=因数×因数 一个因数=积÷另一个因数 除法:商=被除数÷除数 被除数=商×除数 除数=被除数÷商

  20.所有的方程都是等式,但等式不一定都是等式。

  21.公式:长方形:周长=(长+宽)×2 【长=周长÷2-宽; 宽=周长÷2-长】 字母公式:C=(a+b)×2 面积=长×宽 字母公式:S=ab正方形:周长=边长×4 字母公式:C=4a 面积=边长×边长 字母公式:S=a 平行四边形:面积=底×高 字母公式: S=ah 三角形:面积=底×高÷2【底=面积×2÷高; 高=面积×2÷底】 字母公式: S=ah÷2 梯形: 面积=(上底+下底)×高÷2 字母公式: S=(a+b)h÷2【上底=面积×2÷高-下底,下底=面积×2÷高-上底; 高=面积×2÷(上底+下底)】

  22.平行四边形面积公式推导:剪拼、平移 平行四边形可以转化成一个长方形; 长方形的长相当于平行四边形的底; 长方形的宽相当于平行四边形的高;长方形的面积等于平行四边形的面积; 因为长方形面积=长×宽,所以平行四边形面积=底×高。

  23.三角形面积公式推导:旋转 两个完全一样的三角形可以拼成一个平行四边形; 平行四边形的底相当于三角形的底; 平行四边形的高相当于三角形的高;平行四边形的面积等于三角形面积的2倍; 因为平行四边形面积=底×高,所以三角形面积=底×高÷2

  24.梯形面积公式推导:旋转 两个完全一样的梯形可以拼成一个平行四边形; 平行四边形的底相当于梯形的上下底之和; 平行四边形的高相当于梯形的高;平行四边形面积等于梯形面积的2倍; 因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2

  25.等底等高的平行四边形面积相等;等底等高的三角形面积相等; 等底等高的平行四边形面积是三角形面积的2倍。

  26.长方形框架拉成平行四边形,周长不变,面积变小。

  27.组合图形:转化成已学的简单图形,通过加、减进行计算。

  28.平均数=总数量÷总份数

  29.中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一般水平更合适。

  30.数不仅可以用来表示数量和顺序,还可以用来编码。

  31.由6位组成: 前2位表示省(直辖市、自治区) 前3位表示邮区 前4位表示县(市) 最后2位表示投递局

  32.身份证号码:18位 倒数第二位的数字用来表示性别,单数表示男,双数表示女。

小学数学的知识点总结4

  角:

  (1)角的静态定义:具有公共端点的两条不重合的射线组成的图形叫做角。

  这个公共端点叫做角的顶点,这两条射线叫做角的两条边。

  (2)角的动态定义:一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角。

  所旋转射线的端点叫做角的顶点,开始位置的射线叫做角的始边,终止位置的射线叫做角的终边

  角的符号:∠

  角的种类:角的大小与边的长短没有关系;角的大小决定于角的.两条边张开的程度,张开的越大,角就越大,相反,张开的越小,角则越小。

  在动态定义中,取决于旋转的方向与角度。

  角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种。

  以度、分、秒为单位的角的度量制称为角度制。此外,还有密位制、弧度制等。

  (1)锐角:大于0°,小于90°的角叫做锐角。

  (2)直角:等于90°的角叫做直角。

  (3)钝角:大于90°而小于180°的角叫做钝角。

  乘法:

  乘法是指一个数或量,增加了多少倍。例如4乘5,就是4增加了5倍率,也可以说成5个4连加。

  乘法算式中各数的名称:

  “×”是乘号,乘号前面和后面的数叫做因数,“=”是等于号,等于号后面的数叫做积。

  例:10(因数)×(乘号)200(因数)=(等于号)20xx(积)

  平行:

  在平面上两条直线、空间的两个平面或空间的一条直线与一平面之间没有任何公共点时,称它们平行。如图直线AB平行于直线CD,记作AB∥CD。平行线永不相交。

  垂直:

  两条直线、两个平面相交,或一条直线与一个平面相交,如果交角成直角,叫做互相垂直。

  平行四边形:

  在同一平面内有两组对边分别平行的四边形叫做平行四边形。

  梯形:

  梯形是指一组对边平行而另一组对边不平行的四边形。

  平行的两边叫做梯形的底边,其中长边叫下底,短边叫上底;也可以单纯的认为上面的一条叫上底,下面一条叫下底。不平行的两边叫腰;夹在两底之间的垂线段叫梯形的高。

  除法:

  除法法则:除数是几位,先看被除数的前几位,前几位不够除,多看一位,除到哪位,商就写在哪位上面,不够商一,0占位。余数要比除数小,如果商是小数,商的小数点要和被除数的小数点对齐;如果除数是小数,要化成除数是整数的除法再计算。

小学数学的知识点总结5

  四个公式:

  两个公式:

  ①增加量(减少量)=原来的量×增加的百分数(减少的百分数)

  ②现在的量=原来的量±增加量(减少量)

  求增加百分之几?减少百分之几?

  公式:

  增加百分之几=增加的部分÷单位1

  减少百分之几=减少的部分÷单位1

  例如:

  1、45立方厘米的.水结成冰后,冰的体积为50立方厘米,冰的体积比原来水的体积增加百分之几?

  解题思路:根据公式增加百分之几=增加的部分÷单位1,先确定单位1是水,已经知道是45:增加的部分不知道,可以利用50减45求得5;最后用增加的部分5÷单位1水的45就等于增加百分之几。

  计算步骤:第一步:单位1:水:45立方厘米

  第二步:增加的部分:50—45=5立方厘米

  第三步:增加百分之几:5÷45=

  2、45立方厘米的水结成冰后,体积增加了5立方厘米,冰的体积比原来水的体积增加百分之几?

  解题思路:根据公式增加百分之几=增加的部分÷单位1,先确定单位1是水,已经知道是45:增加的部分是5立方厘米;最后用增加的部分5÷单位1水的45就等于增加百分之几。

  计算步骤:第一步:单位1:水:45立方厘米

  第二步:增加的部分:5立方厘米

  第三步:增加百分之几:5÷45=

  3、水结成冰后,体积增加了5立方厘米,冰的体积为50立方厘米,冰的体积比原来水的体积增加百分之几?

  解题思路:根据公式增加百分之几=增加的部分÷单位1,先确定单位1是水,不知道但可以根据题目“水结成冰后,体积增加了5立方厘米”知道水是少的,冰是多的,所以可以用50—5求出水是45立方厘米。加的部分是5立方厘米;最后用增加的部分5÷单位1水的45就等于增加百分之几。

  计算步骤:第一步:单位1:水:50—5=45立方厘米

  第二步:增加的部分:5立方厘米

  第三步:增加百分之几:5÷45=

  4、“减少百分之几与增加百分之几”的解题方法完全相同。

  5、与增加百分之几相同的还有“多百分之几”“提高百分之几”“增长百分之几“等。

  与减少百分之几相同的还有“少百分之几”“降低百分之几”“节约百分几”等。

小学数学的知识点总结6

  (一)分数乘法意义:

  1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

  “分数乘整数”指的是第二个因数必须是整数,不能是分数。

  2、一个数乘分数的意义就是求一个数的几分之几是多少。

  “一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)

  (二)分数乘法计算法则:

  1、分数乘整数的计算方法:用分子乘整数的积作分子,分母不变。能约分的可以先约分,再计算。

  (1)为了计算简便能约分的可先约分再计算。(整数和分母约分)

  (2)约分是用整数和下面的分母约掉公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)。

  2、分数乘分数的计算方法是:用分子相乘的积做分子,用分母相乘的积作分母。(分子乘分子,分母乘分母)

  (1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

  (2)分数化简的方法是:分子、分母同时除以它们的公因数。

  (3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。

  (4)分数的`基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。

  (三)积与因数的关系:

  一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b>1时,c>a。

  一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b<1时,c

  一个数(0除外)乘等于1的数,积等于这个数。a×b=c,当b=1时,c=a。

  在进行因数与积的大小比较时,要注意因数为0时的特殊情况。

  (四)分数混合运算

  1、分数混合运算的运算顺序与整数混合运算的运算顺序相同,先算乘法,后算加减法,有括号的先算括号里面的,再算括号外面的。

  2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

  乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)

  乘法分配律:a×(b±c)=a×b±a×c

  (五)分数乘法应用题——用分数乘法解决问题

  1、求一个数的几分之几是多少?(用乘法)

  已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘。

  2、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。

  3、求比一个数多(或少)几分之几的数是多少的解题方法

  (1)单位“1”的量+(-)单位“1”的量×这个数量比单位“1”的量多(或少)的几分之几=这个数量;

  (2)单位“1”的量×[1+这个数量比单位“1”的量多(或少)的几分之几]=这个数量。

小学数学的知识点总结7

  1.认识人民币的单位元、角、分和它们的十进关系,认识各种面值的人民币,能看懂物品的'单价,会进行简单的计算。

  2.结合自己的生活经验和已经掌握的100以内数的知识,学习、认识人民币,一方面初步知道人民币的基本知识和懂得如何使用人民币,提高社会实践能力;另一方面加深对100以内数的概念的理解。

  3.体会数概念与现实生活的密切联系。

  4.认识各种面值的人民币,并会进行简单的计算。

  5.使学生认识人民币的单位元、角、分,知道1元=10角,1角=10分。

  6.通过购物活动,使学生初步体会人民币在社会生活、商品交换中的功能和作用并知道爱护人民币。

小学数学的知识点总结8

  第一单元 数据整理与收集

  1.学会用“正”字记录数据。

  2.会数“正”,知道一个“正”字代表数量5。

  3.根据统计表,会解决问题。

  4.数据收集---整理---分析表格。

  第二单元 表内除法(一)

  1.平均分的含义:把一些物品分成几份,每份分得同样的多,叫做平均分。

  除法就是用来解决平均分问题的。

  2.平均分里有两种情况:

  (1)把一些东西平均分成几份,求每份是多少;用除法计算,

  总数÷份数=每份数

  例:24本练习本,平均分给6人,每人分多少本?

  列式:24÷6=4

  (2)包含除(求一个数里面有几个几)把一个数量按每份是多少分成一份,求能平均分成几份;用除法计算,总数÷每份数=份数

  例:24本练习本,每人4本,能分给多少人?

  列式:24÷4=6

  3、除法算式的含义:只要是平均分的过程,就可以用除法算式表示。

  除法算式的读法:从左到右的顺序读,“÷”读作除以,“=”读作等于,其他数字不变。

  例如:12÷4=3读作(12除以4等于3)

  例:42÷7=6 42是(被除数),7是(除数),6是(商;这个算式读作(42除以7等于6 )。

  4、除法算式各部分名称:在除法算式中,除号前面的数就被除数,除号后面的数叫除数,所得的数叫商。

  被除数÷除数=商。变式:被除数÷商=除数(如何求被除数,想:除数×商=被除数。)

  5.用2~6的乘法口诀求商

  1、求商的方法:

  (1)用平均分的方法求商。

  (2)用乘法算式求商。

  (3)用乘法口诀求商。

  2、用乘法口诀求商时,想除数和几相乘的被除数。

  一句口诀可以写四个算式。(乘数相同的除外)。

  例:用“三八二十四”这句口诀

  A、24÷3=8 B、3×8=24

  C、24÷3=8 D、24÷8=3

  计算方法:12÷4=( )时,想:( )四十二,所以商是( ).

  6.解决问题

  1、解决有关平均分问题的方法:

  总数÷每份数=份数、总数÷份数=每份数、

  因数×因数=积、一个因数=积÷另一个因数

  2、用乘法和除法两步计算解决实际问题的方法:

  (1)所求问题要求求出总数,用乘法计算;

  (2)所求问题要求求出份数或每份数,用除法计算。

  (3)8个果冻,每2个一份,能分成几份?求8里有几个2,用除法计算。

  (4)24里面有( )个4,,20里面有( )个5。(用除法计算。)

  (5)最小公倍数问题:一堆水果,3个人正好分完,4个人也正好分完,问这堆水果最少有几个?

  第三单元 图形的运动

  1、轴对称图形:沿一条直线对折,两边完全重合。对折后能够完全重合的图形是轴对称图形,折痕所在的直线叫对称轴。

  成轴对称图形的汉字:

  一,二,三,四,六,八,十,大,干,丰,土,士,中,田,由,甲,申,口,日,曰,木,目,森,谷,林,画,伞,王,人,非,菲,天,典,奠,旱,春,亩,目,山,单,杀,美,春,品,工,天,网,回,喜,莫,罪,夫,黑,里,亚。

  2、平移:当物体水平方向或竖直方向运动,并且物体的方向不发生改变,这种运动是平移。只有形状、大小、方向完全相同的图形通过平移才能互相重合。

  (记住:平移只能上下移动或左右移动)

  3、旋转:体绕着某一点或轴进行圆周运动的现象就是旋转。(例如:旋转木马、转动的风扇、转动的车轮等)

  (一)填空

  1、汽车在笔直的公路上行驶,车身的运动是( )现象

  2、教室门的打开和关闭,门的运动是( )现象。

  A.平移 B旋转 C平移和旋转

  3、下面( )的运动是平移。

  A、旋转的呼啦圈 B、电风扇扇叶 C、拨算珠

  第四单元 表内除法(二)

  这单元主要是考口算题。有以下几种形式:

  1、用7、8、9的乘法口诀求商

  求商方法:想“除数×( )=被除数”,再根据乘法口诀计算得商。

  例.直接口算:28÷4 8÷8

  2、解决问题

  求一个数里有几个几,和把一个数平均分成几份,求每份是多少,都用除法计算。

  例.填空:45÷9=5表示把( )平均分成( )份,每份是( );还表示( )里有( )个( );

  第五单元 混合运算

  一、混合计算

  混合运算,先乘除,后加减,有括号的要先算括号里面的。

  只有加、减法或只有乘、除法,都要从左到右按顺序计算。

  二、解决两步计算的实际问题

  1、想好先解决什么问题,再解决什么问题。

  2、可以画图帮助分析。

  3、可以分布计算,也可以列综合算式。

  请画出先算哪一步,再算哪一步(并标上1和2)

  1、同级运算的类型:

  例: 23+6+18 32+11-8 53-24+38 2× 8÷4 72÷ 8×4

  2、不同级运算的类型:

  例:5× 6 +14 3× 7-16 3 + 5 ×9 45- 9×3 45÷9+14 64÷ 8-8

  3、带小括号运算的类型:方法:算式里有括号的,要先算括号里面的。

  例: 6×(7 + 2) (24-18)×9 ( 14+35 )÷7 (82-18 )÷8

  4.把两个算式合并成一个综合算式。(重点)。

  弄清楚哪个数是前一步算式的结果,就用前一步算式替换掉那个数,其他的照写。当需要替换的是第二个数,必要时还需要加上小括号。

  例:15+9=24 24÷3=8 (强调括号不能忘)_____________________________

  5.解决需要两步计算解决的问题。(要想好先算出什么,在解答什么)

  例:妈妈买回3捆铅笔,每捆8支,送给妹妹12支后,还剩多少支?

  先算____________________再算____________________

  例:学校买来80本科技书,分给六年级35本,剩下的分给其它5个年级,平均每个年级分到多少本?

  6.练习十三 第4题 (重点)

  1.我们一共要烤90个面包,每次能烤9个,已经烤了36个,剩下的还要烤几次?

  2.我们家原来有25只兔子,又买了15只,一共有8个笼子,平均每个笼子放几只?

  3.小明有4套明信卡,每套8张,他把其中的5张送给了好朋友,还剩下几张?

  4.工人叔叔要挖总长60米的水沟,已经挖好了15米,剩下的要用5天挖完,平均每天挖多少米?

  第六单元 有余数的除法

  有余数的除法

  1、有余数的除法的意义:在平均分一些物体时,有时会有剩余。

  2、余数与除数的关系:在有余数的除法中,余数必须比除数小。

  最大的余数小于除数1,最小的余数是1。

  3、笔算除法的计算方法:

  (1)先写除号“厂”

  (2)被除数写在除号里,除数写在除号的左侧。

  (3)试商,商写在被除数上面,并要对着被除数的个位。

  (4)把商与除数的乘积写在被除数的下面,相同数位要对齐。

  (5)用被除数减去商与除数的乘积,如果没有剩余,就表示能除尽。

  4、有余数的除法的计算方法可以分四步进行:一商,二乘,三减,四比。

  (1)商:即试商,想除数和几相乘最接近被除数且小于被除数,那么商就是几,写在被除数的个位的上面。

  (2)乘:把除数和商相乘,将得数写在被除数下面。

  (3)减:用被除数减去商与除数的乘积,所得的`差写在横线的下面。

  (4)比:将余数与除数比一比,余数必须必除数小。

  5、解决问题

  根据除法的意义,解决简单的有余数的除法的问题,要根据实际情况,灵活处理余数。

  (1)余数比除数小。

  例:43÷7=()…( )余数可能是( )或者余数最大是( )

  (2)至少问题(进一法):商+1

  例:有27箱菠萝,王叔叔每次最多能运8箱。至少要运多少次才能运完这些菠萝。

  (3)最多问题(去尾法)

  例:小丽有10元钱,买3元一个的面包,最多能买几个?

  课例:

  1. 22个学生去划船,每条船最多坐4人,他们至少要租多少条船?

  22÷4=5(条)……2(人)

  答:他们至少要租6条船。

  第七单元 万以内数的认识

  一、1000以内数的认识

  1、10个一百就是一千。

  2、读数时,要从高位读起。百位上是几就几百,十位上几就几十,个位上是几就读几中间有一个0,就读“零”,末尾不管有几个0,都不读。【例如:20xx读作二千零三,2300读作二千三百】

  3、写数时,要从高位写起,几个百就在百位写几,几个十就在十位写几,几个一就在个位写几,哪一位上一个数也没有就写0占位。 【例如:三千五百写作3500,三千零六十九写作3069】

  4、数的组成:看每个数位上是几,就由几个这样的计数单位组成。例:2369由( )个千、( )个百、( )个十和( )个一组成的。

  二、10000以内数的认识

  1、10个一千是一万。

  2、万以内数的读法和写法与1000以内的数读法和写法相同。

  3、最小两位数是10,最大的两位数是99;最小三位数是100,最大的三位数是999;最小四位数是1000,最大的四位数是9999;最小的五位数是10000,最大的五位数是99999。

  三、整百、整千数加减法

  1、整百、整千加减法的计算方法。

  (1)把整百、整千数看成几个百,几个千,然后相加减。

  (2)先把0前面的数相加减,再在得数末尾添上与整百、整千数相同个数的0。

  2、估算

  把数看做它的近似数再计算。

  四、10000以内数的大小比较的方法:

  (1)位数多的数就大,例如453 < 1000

  (2)如果位数相同,就比较最高位上的数字,数字大的这个数就大,反之就小;例如 357 < 978

  (3)如果最高位上的数字相同,就比较下一位上的数,依次类推。246 > 219

  补充:

  1、相邻两个计数单位之间的进率是10。记:一个一个地数,10个一是( )。一十一十地数,10个十是( )。一百一百地数,10个一百是( )。一千一千地数,10个一千是( )。

  2.在数位顺序表中,从右边起,第一位是(个位),第二位是(十位),第三位是(百位),第四位是(千位),第五位是(万位)。

  3、数的组成:就是看每个数位上是几,就有几个这样的计数单位组成。

  例:2647=( )+( )+( )+( )

  4、用估算策略解决问题。

  96页 例13(估大)

  练习19 第8题(估小)

  第八单元 克、千克

  1.(千克)和(克)都是国际上通用的质量单位。计量比较重的物品,常用“千克”(kg)作单位。

  2、称较轻的物品的质量时,用“克”作单位;称较重的物品的质量时,用“千克”作单位。

  3、一个两分的硬币约是1克。两袋500克的盐约是1千克。

  4、1千克=1000克 1kg=1000g.进率是1000.( 1千克=1公斤、1公斤=2斤、1斤=500克、

  1斤=10两、1两=50克)

  5、计算或者比较大小时,如果单位不同,就需要把单位统一。一般统一成单位“克”。

  估计物品有多重,要结合物品的大小、质地等因素。

小学数学的知识点总结9

  1、用竖式计算两位数加法时:①相同数位对齐,加号写在高位下行之前。

  ②用尺子画横线。

  ③从个位加起

  ④如果个位满10,向十位进1,写在个位、十位之间,

  不进位不写1

  用竖式计算两位数减法时:①相同数位对齐,减号写在高位下行之前。

  ②用尺子画横线。

  ③从个位减起

  ④如果个位不够减,从十位退1,到个位作10再减(借一要在头上写点),计算时十位要记得减去退掉的1。不借位不写点

  ⑤得数写在横式上

  2、估算:把一个接近整十整百的数看作整十整百来计算。

  方法:个位小于5的少看,个位等于或大于5的多看,看成最为接近的整十或整百数。“四舍五入”

  如:49+42≈9028+45+24≈10098—17≈80

  50 4030 50 20100 20更深一步的估计是能够估出比80大

  注:当问题里出现“大约”两个字时,就需要估算。

  3、求“一个已知数”比“另一个已知数”多多少、少多少?用减法计算,用“比”字两边的较大数减去较小数。

  4、多几、少几已知的问题。比谁少几,就用谁减去几;未知数比谁多几,就用谁加上几。

  方法:①根据已知,判断出与要求的未知,谁多谁少②求多的用加法,求少的用减法

  基数和序数的区别

  一、意思不同

  基数是集合论中刻画任意集合大小的一个概念。两个能够建立元素间一一对应的集合称为互相对等集合。例如3个人的集合和3匹马的集合可以建立一一对应,是两个对等的集合。序数是在基数的基础上再增加一层意思。

  二、用处不同

  基数可以比较大小,可以进行运算。

  例如:

  设|A|=a,|B|=β,定义a+β=|{(a,0):a∈A}∪{(b,1):b∈B}|。另,a与β的积规定为|AxB|,A×B为A与B的笛卡儿积。

  序数,汉语表示序数的`方法较多。通常是在整数前加“第”,如:第一,第二。也有单用基数的。如:五行:一曰水,二曰火,三曰木,四曰金,五曰土。

  三、写法

  基数:1、2、3

  序数:第1、第2、第3

  数与计算知识点

  1、分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。

  2、分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零。

  3、分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。

  4、分数乘整数:数形结合、转化化归

  5、倒数:乘积是1的两个数叫做互为倒数。

小学数学的知识点总结10

  通过欣赏和设计图案的活动,进一步认识正方形、长方形、三角形和圆。

  小小运动会

  1、应用100以内的进位加法与退位减法的计算方法进行正确的计算。

  2、经历与他人交流各自算法的'过程,体会算法多样化。

  3、体会长方形、正方形、三角形和圆在生活中的普遍存在。

  4、能利用图形设计美丽的图案。

小学数学的知识点总结11

  1、认钟表,时和分,先看时针几时过,再看分针数小格,几时几分合一起,快快说出时间来。

  2、寻找图形的变化规律,可从形状、颜色、个数的增减等方面去思考。

  3、数列之间有规律,观察相邻数变化,通过计算找规律,后面数据很明了。

  4、统计数据有方法,一个一个来点数,边数边来做记号,数出数量填图表。

  5、两位数加减一位数、整十数,小朋友请注意,数字符号须看清,相同数位才加、减。

  6、大面额的人民币换成小面额的人民币,用数得组成来思考,想打面额的人民币里面有几个小面额的人民币的数。

  7、最小的'两位数是10,地两位数是99。

  8、一个两位数,位是十位,一个三位数,位是百位。

  9、求一个加数,用和减另一个加数。求被减数,用差加减数。

  10、两数比多少,求相差数用减法,求大数用加法,求小数用减法。

  11、三数相加、减,凑十能简便,如果能凑十,先把它来算。两位数加一位数,先看清个位数,判断进位不进位,再确定十位数。

  12、写数也从高位起,哪位是几就写几。除开位,哪位一个也没有,就写零来占占位。

  13、两数比大小,先看位数来比较,位数多来数就大,位数相同从高位比。

  14、数字宝宝真奇妙,位数不同意不同,几在十位是几十,几在个位是几个。

  15、相近两数比多少,可用大数比小数多一些,小数比大数少一些来描述。

小学数学的知识点总结12

  一、图形的变换

  图形变换的基本方式是平移、对称和旋转。

  1、轴对称:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。

  (1)学过的轴对称平面图形:长(正)方形、圆形、等腰三角形、等边三角形、等腰梯形等腰三角形有1条对称轴,等边三角形有3条对称轴,长方形有2条对称轴,正方形有4条对称轴,等腰梯形有1条对称轴,任意梯形和平行四边形不是轴对称图形。

  (2)圆有无数条对称轴。

  (3)对称点到对称轴的距离相等。

  (4)轴对称图形的特征和性质:

  ①对应点到对称轴的距离相等;

  ②对应点的连线与对称轴垂直;

  ③对称轴两边的图形大小、形状完全相同。

  2、对称图形包括轴对称图形和中心对称图形。平行四边形(除棱形)属于中心对称图形。

  3、旋转:在平面内,一个图形绕着一个顶点旋转一定的角度得到另一个图形的变化较做旋转,定点O叫做旋转中心,旋转的角度叫做旋转角,原图形上的一点旋转后成为的另一点成为对应点。

  (1)生活中的旋转:电风扇、车轮、纸风车

  (2)旋转要明确绕点,角度和方向。

  (3)长方形绕中点旋转180度与原来重合,正方形绕中点旋转90度与原来重合。等边三角形绕中点旋转120度与原来重合。

  旋转的性质:

  (1)图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;

  (2)其中对应点到旋转中心的距离相等;

  (3)旋转前后图形的大小和形状没有改变;

  (4)两组对应点非别与旋转中心的连线所成的角相等,都等于旋转角;

  (5)旋转中心是唯一不动的点。

  4、对称和旋转的画法:旋转要注意:顺时针、逆时针、度数

  二、因数和倍数

  1、整除:被除数、除数和商都是自然数,并且没有余数。整数与自然数的关系:整数包括自然数。

  2、因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。

  例:12是6的倍数,6是12的因数。

  (1)数a能被b整除,那么a就是b的倍数,b就是a的因数。因数和倍数是相互依存的,不能单独存在。

  (2)一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。一个数的因数的求法:成对地按顺序找。

  (3)一个数的倍数的个数是无限的,最小的倍数是它本身。一个数的倍数的求法:依次乘以自然数。

  (4)2、3、5的倍数特征

  1)个位上是0,2,4,6,8的数都是2的倍数。

  2)一个数各位上的数的和是3的倍数,这个数就是3的倍数。

  3)个位上是0或5的数,是5的倍数。

  4)能同时被2、3、5整除(也就是2、3、5的倍数)的最大的两位数是90,最小的三位数是120。

  同时满足2、3、5的倍数,实际是求2×3×5=30的倍数。

  5)如果一个数同时是2和5的倍数,那它的个位上的数字一定是0。

  3、完全数:除了它本身以外所有的因数的和等于它本身的数叫做完全数。

  如:6的因数有:1、2、3(6除外),刚好1+2+3=6,所以6是完全数,小的完全数有6、28等

  4、自然数按能不能被2整除来分:奇数、偶数。

  奇数:不能被2整除的数。叫奇数。也就是个位上是1、3、5、7、9的数。

  偶数:能被2整除的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。最小的奇数是1,最小的偶数是0.

  关系:奇数+、-偶数=奇数奇数+、-奇数=偶数偶数+、-偶数=偶数。

  5、自然数按因数的个数来分:质数、合数、1、0四类.质数(或素数):只有1和它本身两个因数。

  合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)。1:只有1个因数。“1”既不是质数,也不是合数。0:

  最小的质数是2,最小的合数是4,连续的两个质数是2、3。每个合数都可以由几个质数相乘得到,质数相乘一定得合数。20以内的质数:有8个(2、3、5、7、11、13、17、19)

  100以内的质数有25个:2、3、5、7、11、13、17、19、23、29、31、37、41、

  43、47、53、59、61、67、71、73、79、83、89、97

  100以内找质数、合数的技巧:

  看是否是2、3、5、7、11、13…的倍数,是的就是合数,不是的就是质数。

  关系:奇数×奇数=奇数质数×质数=合数

  6、最大、最小

  A的最小因数是:1;最小的奇数是:1;A的最大因数是:A;最小的偶数是:0;A的最小倍数是:A;最小的质数是:2;最小的自然数是:0;最小的合数是:4;

  7、分解质因数:把一个合数分解成多个质数相乘的形式。用短除法分解质因数(一个合数写成几个质数相乘的形式)。...

  比如:30分解质因数是:(30=2×3×5)

  8、互质数:公因数只有1的两个数,叫做互质数。

  两个质数的互质数:5和7两个合数的'互质数:8和9一质一合的互质数:7和8

  两数互质的特殊情况:

  ⑴1和任何自然数互质;

  ⑵相邻两个自然数互质;

  ⑶两个质数一定互质;

  ⑷2和所有奇数互质;

  ⑸质数与比它小的合数互质;

  9、公因数、最大公因数

  几个数公有的因数叫这些数的公因数。其中最大的那个就叫它们的最大公因数。

  用短除法求两个数或三个数的最大公因数(除到互质为止,把所有的除数连乘起来)几个数的公因数只有1,就说这几个数互质。

  如果两数是倍数关系时,那么较小的数就是它们的最大公因数。如果两数互质时,那么1就是它们的最大公因数。

  10、公倍数、最小公倍数

  几个数公有的倍数叫这些数的公倍数。其中最小的那个就叫它们的最小公倍数。

  用短除法求两个数的最小公倍数(除到互质为止,把所有的除数和商连乘起来)用短除法求三个数的最小公倍数(除到两两互质为止,把所有的除数和商连乘起来)如果两数是倍数关系时,那么较大的数就是它们的最小公倍数。如果两数互质时,那么它们的积就是它们的最小公倍数。

  11、求最大公因数和最小公倍数方法

  用12和16来举例1、

  求法一:(列举求同法)

  最大公因数的求法:

  12的因数有:1、12、2、6、3、416的因数有:1、16、2、8、4最大公因数是4

  最小公倍数的求法:

  12的倍数有:12、24、36、48、16的倍数有:16、32、48、最小公倍数是482、求法二:(分解质因数法)

  12=2×2×316=2×2×2×2

  最大公因数是:2×2=4(相同乘)

  最小公倍数是:2×2×3×2×2=48(相同乘×不同乘)

  三长方体和正方体

  1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。两个

  面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。长方体特点:

  (1)有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。

  (2)一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。

  2、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。

  正方体特点:

  (1)正方体有12条棱,它们的长度都相等。

  (2)正方体有6个面,每个面都是正方形,每个面的面积都相等。

  (3)正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。相同点长方体面不同点棱相对的棱的长度都相等都有6个面,6个面都是长方形。12条棱,(有可能有两个相对的面是正方形)。正方体

  8个顶点。6个面都是正方形。12条棱都相等。3、长方体、正方体有关棱长计算公式:

  长方体的棱长总和=(长+宽+高)×4=长×4+宽×4+高×4L=(a+b+h)×4长=棱长总和÷4-宽-高a=L÷4-b-h宽=棱长总和÷4-长-高b=L÷4-a-h高=棱长总和÷4-长-宽h=L÷4-a-b

  正方体的棱长总和=棱长×12L=a×12正方体的棱长=棱长总和÷12a=L÷12

  4、长方体或正方体6个面和总面积叫做它的表面积。

  长方体的表面积=(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)无底(或无盖)长方体表面积=长×宽+(长×高+宽×高)×2

  S=2(ab+ah+bh)-abS=2(ah+bh)+ab

  无底又无盖长方体表面积=(长×高+宽×高)×2S=2(ah+bh)贴墙纸正方体的表面积=棱长×棱长×6S=a×a×6用字母表示:S=6a2

  生活实际:

  油箱、罐头盒等都是6个面游泳池、鱼缸等都只有5个面水管、烟囱等都只有4个面。

  注意1:用刀分开物体时,每分一次增加两个面。(表面积相应增加)

  注意2:长方体或正方体的长、宽、高同时扩大几倍,表面积会扩大倍数的平方倍。(如长、宽、高各扩大2倍,表面积就会扩大到原来的4倍)。

  5、物体所占空间的大小叫做物体的体积。

  长方体的体积=长×宽×高V=abh长=体积÷宽÷高a=V÷b÷h

  宽=体积÷长÷高b=V÷a÷h高=体积÷长÷宽h=V÷a÷b

  正方体的体积=棱长×棱长×棱长

  V=a×a×a=a3读作“a的立方”表示3个a相乘,(即aaa)

  长方体或正方体底面的面积叫做底面积。

  长方体(或正方体)的体积=底面积×高用字母表示:V=Sh(横截面积相当于底面积,长相当于高)。

  注意:一个长方体和一个正方体的棱长总和相等,但体积不一定相等。

  6、箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积。

  固体一般就用体积单位,计量液体的体积,如水、油等。常用的容积单位有升和毫升也可以写成L和ml。

  1升=1立方分米1毫升=1立方厘米1升=1000毫升(1L=1dm31ml=1cm3)

  长方体或正方体容器容积的计算方法,跟体积的计算方法相同。

  但要从容器里面量长、宽、高。(所以,对于同一个物体,体积大于容积。)

  注意:长方体或正方体的长、宽、高同时扩大几倍,体积就会扩大倍数的立方倍。(如长、宽、高各扩大2倍,体积就会扩大到原来的8倍)。

  形状不规则的物体可以用排水法求体积,形状规则的物体可以用公式直接求体积。排水法的公式:V物体=V现在-V原来也可以V物体=S×(h现在-h原来)V物体=S×h升高× 进率

  8、【体积单位换算】大单位小单位

  ÷进率小单位大单位

  进率:1立方米=1000立方分米=1000000立方厘米(立方相邻单位进率1000)1立方分米=1000立方厘米=1升=1000毫升

  1立方厘米=1毫升

  1平方米=100平方分米=10000平方厘米1平方千米=100公顷=1000000平方米

  注意:长方体与正方体关系

  把长方体或正方体截成若干个小长方体(或正方体)后,表面积增加了,体积不变。

  重量单位进率,时间单位进率,长度单位进率× 进率

  【单位换算】大单位小单位÷进率小单位大单位

  长度单位:1千米=1000米1分米=10厘米1厘米=10毫米1分米=100毫米1米=10分米=100厘米=1000毫米(相邻单位进率10)

  面积单位:1平方千米=100公顷1平方米=100平方分米

  1平方分米=100平方厘米1公顷=10000平方米(平方相邻单位进率100)质量单位:1吨=1000千克1千克=1000克

  人民币:1元=10角1角=10分1元=100分

  四分数的意义和性质

  1、分数的意义:一个物体、一物体等都可以看作一个整体,把这个整体平均分成若干份,

  这样的一份或几份都可以用分数来表示。

  2、单位“1”:一个整体可以用自然数1来表示,通常把它叫做单位“1”。(也就是把什么平均分什么就是单位“1”。)

  3、分数单位:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。如

  数单位是。

  5145的分

  4、分数与除法A÷B=

  5、真分数和假分数、带分数

  AB(B≠0,除数不能为0,分母也不能够为0)例如:4÷5=

  1、真分数:分子比分母小的分数叫真分数。真分数

  (2)分数化为小数:

  方法一:把分数化为分母是10、100、1000

  如:

  310=0.3=

  53610=0.6

  14=

  25100=0.25

  方法二:用分子÷分母

  如:

  34=3÷4=0.75

  (3)带分数化为小数:

  先把整数后的分数化为小数,再加上整数

  如:2

  310=2+0.3=2.3

  12、比分数的大小:分母相同,分子大,分数就大;分子相同,分母小,分数才大。

  分数比较大小的一般方法:同分子比较;通分后比较;化成小数比较。

  13、分数化简包括两步:一是约分;二是把假分数化成整数或带分数。

  1218=0.5

  3814=0.25=0.75=0.2=0.4=0.6

  455558312345=0.8

  =0.125=0.375=0.625

  78=0.875

  120=0.05

  125=0.04。

  14、两个数互质的特殊判断方法:

  ①1和任何大于1的自然数互质。

  ②2和任何奇数都是互质数。

  ③相邻的两个自然数是互质数。

  ④相邻的两个奇数互质。

  ⑤不相同的两个质数互质。

  ⑥当一个数是合数,另一个数是质数时(除了合数是质数的倍数情况下),一般情况下这两个数也都是互质数。

  15、求最大公因数的方法:

  ①倍数关系:最大公因数就是较小数。

  ②互质关系:最大公因数就是1

  ③一般关系:从大到小看较小数的因数是否是较大数的因数。

  16、分数知识图解:

  分数的产生

  分数的意义分数与意义:把单位1平均分成几份,表示其中的一份或几份。

  分数与除法:分子(被除数),分母(除数),分数值(商)。真分数真分数小于1

  真分数与假分数假分数假分数大于1或等于1

  带分数(整数部分和真分数)

  假分数化带分数、整数(分子除以分母,商作整数部分,余数作分子)

  分数的基本性质:分数的分子、分母同时扩大或缩小相同的倍数,

  分数的基本性质分数的大小不变。

  通分、通分子:化成分母不同,大小不变的分数(通分)

  最大公因数

  约分求最大公因数

  最简分数分子分母互质的分数(最简真分数、最简假分数)约分及其方法最小公倍数

  通分求最小公倍数

  分数比大小(通分、通分子、化成小数)通分及其方法

  小数化分数小数化成分母是10、100、1000的分数再化简

  分数和小数的互化

  分数化小数分子除以分母,除不尽的取近似值

  五分数的加法和减法

  (1)同分母分数加、减法(分母不变,分子相加减)

  1、分数数的加法和减法

  (2)异分母分数加、减法(通分后再加减)

  (3)分数加减混合运算:同整数。

  (4)结果要是最简分数

  2、带分数加减法:带分数相加减,整数部分和分数部分分别相加减,再把所得的结果

  合并起来。

  附:具体解释

  (一)同分母分数加、减法

  1、同分母分数加、减法:

  同分母分数相加、减,分母不变,只把分子相加减。

  2、计算的结果,能约分的要约成最简分数。

  (二)异分母分数加、减法

  1、分母不同,也就是分数单位不同,不能直接相加、减。

  2、异分母分数的加减法:

  异分母分数相加、减,要先通分,再按照同分母分数加减法的方法进行计算。

  (三)分数加减混合运算

  1、分数加减混合运算的运算顺序与整数加减混合运算的顺序相同。

  在一个算式中,如果有括号,应先算括号里面的,再算括号外面的;如果只含有同一级运算,应从左到右依次计算。

  2、整数加法的交换律、结合律对分数加法同样适用。

  3、六统计与数学广角

  众数一组数据中出现次数最多的数叫众数。众数能够反映一组数据的集中情况。

  统计在一组数据中,众数可能不止一个,也可能没有众数。复式折线统计图

  综合应用打电话的最优方案

  121-12

  1612-13

  11213-14

  1201 -15

  1、众数:一组数据中出现次数最多的一个数或几个数,就是这组数据的众数。

  众数能够反映一组数据的集中情况。

  在一组数据中,众数可能不止一个,也可能没有众数。

  2、中位数:

  (1)按大小排列;

  (2)如果数据的个数是单数,那么最中间的那个数就是中位数;

  (3)如果数据的个数是双数,那么最中间的那两个数的平均数就是中位数。

  3、平均数的求法:总数÷总份数=平均数

  4、一组数据的一般水平:

  (1)当一组数据中没有偏大偏小的数,也没有个别数据多次出现,用平均数表示一般水平。

  (2)当一组数据中有偏大或偏小的数时,用中位数来表示一般水平。

  (3)当一组数据中有个别数据多次出现,就用众数来表示一般水平。

  4、平均数、中位数和众数的联系与区别:

  ①平均数:

  一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。容易受极端数据的影响,表示一组数据的平均情况。②中位数:

  将一组数据按大小顺序排列,处在最中间位置的一个数叫做这组数据的中位数。它不受极端数据的影响,表示一组数据的一般情况。③众数:

  在一组数据中出现次数最多的数叫做这组数据的众数。它不受极端数据的影响,表示一组数据的集中情况。

  5、统计图:我们学过条形统计图、复式折线统计图。

  条形统计图优点:条形统计图能形象地反映出数量的多少。

  折线统计图优点:折线统计图不仅能表示出数量的多少,还能反映出数量的变化情况。

  注:

  ①画图时注意:一“点”(描点)、二“连”(连线)三“标”(标数据)。

  ②要用不同的线段分别连接两组数据中的数。

  6、打电话:规律人人不闲着,每人都在传。(技巧:已知人数依次×2)

  (1)逐个法:所需时间最多。

  (2)分组法:相对节约时间。

  (3)同时进行法:最节约时间。

  七数学广角

  用天平找次品规律:

  1、把所有物品尽可能平均地分成3份,(如余1则放入到最后一份中;如余2则分别放入到前两份中),保证找出次品而且称的次数一定最少。

  2、数目与测试的次数的关系:2~3个物体,保证能找出次品需要测的次数是1次4~9个物体,保证能找出次品需要测的次数是2次10~27个物体,保证能找出次品需要测的次数是3次28~81个物体,保证能找出次品需要测的次数是4次82~243个物体,保证能找出次品需要测的次数是5次

  244~729个物体,保证能找出次品需要测的次数是6次

  3、找次品规律

  12345次数

  33×33×3×33×3×3×33×3×3×3×3

  392781243次品个数

小学数学的知识点总结13

  一、圆的特征

  1、圆是平面内封闭曲线围成的平面图形。

  2、圆的特征:外形美观,易滚动。

  3、圆心O:圆中心的点叫做圆心.圆心一般用字母O表示。

  圆多次对折之后,折痕的相交于圆的中心即圆心。圆心确定圆的位置。

  半径r:连接圆心到圆上任意一点的线段叫做半径。在同一个圆里,有无数条半径,且所有的半径都相等。半径确定圆的大小。

  直径d:通过圆心且两端都在圆上的线段叫做直径。在同一个圆里,有无数条直径,且所有的直径都相等。直径是圆内最长的线段。

  同圆或等圆内直径是半径的2倍:d=2r或r=d÷2

  4、等圆:半径相等的圆叫做同心圆,等圆通过平移可以完全重合。同心圆:圆心重合、半径不等的两个圆叫做同心圆。

  5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的直线叫做对称轴。

  有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角。

  有二条对称轴的图形:长方形

  有三条对称轴的图形:等边三角形

  有四条对称轴的图形:正方形

  有无条对称轴的图形:圆,圆环

  6、画圆

  (1)圆规两脚间的距离是圆的半径。(2)画圆步骤:定半径、定圆心、旋转一周。

  二、圆的周长:

  围成圆的曲线的'长度叫做圆的周长,周长用字母C表示。

  1、圆的周长总是直径的三倍多一些。

  2、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。

  即:圆周率π=周长÷直径≈3.14

  所以,圆的周长(c)=直径(d)×圆周率(π)—周长公式:c=πd,c=2πr

  圆周率π是一个无限不循环小数,3.14是近似值。

  3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。

  4、半圆周长=圆周长一半+直径=πr+d

  三、圆的面积s

  1、圆面积公式的推导

  如图把一个圆沿直径等分成若干份,剪开拼成长方形,份数越多拼成的图像越接近长方形。

  圆的半径=长方形的宽

  圆的周长的一半=长方形的长

  长方形面积=长×宽

  所以:圆的面积=圆的周长的一半(πr)×圆的半径(r)

  S圆=πr×r=πr2

  2、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则,而长方形的面积则最小。

  周长相同时,圆面积,利用这一特点,篮子、盘子做成圆形。

  3、圆面积的变化的规律:半径扩大多少倍,直径、周长也同时扩大多少倍,圆面积扩大的倍数是半径、直径扩大的倍数的平方倍。

  4、环形面积=大圆–小圆=πR2-πr2

  扇形面积=πr2×n÷360(n表示扇形圆心角的度数)

  5、跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加上两条直跑道的和。因为两条直跑道长度相等,所以,起跑线不同,相邻两条跑道起跑线也不同,间隔的距离是:2×π×跑道宽度。

  一个圆的半径增加a厘米,周长就增加2πa厘米。

  一个圆的直径增加b厘米,周长就增加πb厘米。

  6、任意一个正方形的内切圆即圆的直径是正方形的边长,它们的面积比是4∶π。

  7、常用数据

  π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7

小学数学的知识点总结14

  一、知识框架

  一级知识点数与代数二级知识点数的运算三级知识点

  1、列竖式计算除法。

  2、两位数除以一位数;

  除法的验算

  3、一步计算的问题

  4、两步计算的问题

  1、质量单位千克、克数与代数常见的量

  2、千克、克之间的换算,简单的实际问题

  3、24时计时法空间与图形空间与图形统计与概率图形的认识

  从三个方向观察用小正方体搭成的立体图形形状

  1.周长的认识

  2.长方形、正方形的周长计算描述事件发生的可能性。

  二、期末知识点

  第一单元除法(除法是乘法的逆运算)

  两位数除以一位数(商是两位数)的除法。是在二年级(上册)表内除法和二年级(下册)有余数除法的基础上安排的。

  1.计算:列竖式计算除法。

  2.口算:被除数十位和个位上的数分别除以除数都没有余数的除法,包括整十数除以一位数商是整十数。

  3.笔算:两位数除以一位数;除法的验算(用乘法验算)。

  4.估算:估计两位数除以一位数的商是几十多。

  5.一步计算的问题:在解决的实际问题中体会数量关系。总价÷单价=数量总价÷数量=单价

  6.两步计算的问题:先求总和或剩余是多少,再平均分的实际问题。

  练习:

  (1)用竖式计算,并验算:62÷266÷672÷347÷7

  (2)口算:36÷360÷268÷290÷3

  (3)列竖式计算:39÷389÷467÷274÷3

  (4)你能估算下面各题的商各是几十多吗?64÷584÷395÷481÷3

  (5)王老师用72元买笔记本,如果每本单价是2元,那么能买多少本?李老师用60元买了20本笔记本,那么每本笔记本多少钱?

  (6)一副乒乓球拍26元,一个乒乓球2元,用50元买一副乒乓球拍,剩下的钱能够买几个乒乓球?第二单元认数1.认数、读数、写数。

  整千数:数位与顺序,认、读、写数,口算整千数的加、减法,解决实际问题。非整千数:认、读、写数,口算整千数加整百数及相应的减法,按顺序整理数。

  练习:

  (1)口算:201+4000800030006000201000+100

  (2)写一写:两个千加两个百加一个十是多少?

  (3)三千零二是由几个千和几个一组成?

  (4)9670是()位数,它的最高位是()位,7在()位上,个位上是()。

  2.大小比较

  比较大小时的数学思考,比较大小的实际应用,非整千数最接近几千。

  练习:

  比较大小:3650和2520,7890和8790第三单元千克和克

  千克和克都是质量单位,物体含有物质的多少是它的质量。我国人民在生活中习惯以“物体有多重”代替“质量是多少”,因此没有使用“质量”这个词,仍然讲“有多重”。

  1.称一个物体有多重,一般用千克为单位。

  2.净含量是指包装袋内物品实际有多重。

  3.千克可以用KG表示,又叫公斤。

  4.从秤上读出物品的重量。

  5.称比较轻的物品,一般用克为单位。

  6.认识天平。

  7.千克和克之间的关系。1千克=1000克。

  练习

  (1)一袋盐重500克,两袋盐重()克?

  (2)2千克=()克

  (3)9000克=()千克第四单元加和减

  1.口算两位数加、减。解决与“倍”或“差”有关的两步计算实际问题。

  练习

  口算:44+2532+5714+6876642.画线段图解决问题。

  练习

  手套的价格是12元,帽子的价格是手套的3倍,你能用线段画出来并算出帽子是多少钱吗?第五单元24时记时法。

  1.24时记时法及它与普通记时法(12时记时法)的联系

  2.联系实际问题求经过时间的基本思路与方法。包括:求整时到整时的经过时间,求非整点时刻间的经过时间。(利用线段图)。

  求经过时间:

  记忆:结束时刻开始时刻=经过时间到达的时刻出发的时刻=经过时间3.两种计时方式的转化。

  普通记时法与24时记时法的互相转化普通记时法24时记时法凌晨1时1时

  早晨5时5时上午8时8时中午12时12时下午1时13时下午2时14时晚上6时18时晚上7时19时晚上8时20时晚上9时21时

  深夜12时24时(也是第二天的0时)

  记忆:中午12时以后的时刻,用24时记时法表示,就用钟面上的时刻加上12时。中午12时以后的时刻,用普通记时法表示,就用时刻减去12时。

  练习

  (1)图书馆的的公告牌上面写着:借书时间:12:0013:30,15:4017:00。图书馆每天的借书时间是多长?

  (2)用二十四小时计时法表示,:下午2:00,晚上9:00第六单元长方形和正方形

  1.认识长方形和正方形。掌握长方形、正方形的边与角有什么特点。(长方形对边相等,四个角都是直角。正方形每条边都相等,四个角都是直角。通常把长方形的长边叫做长,短边叫做宽。把正方形的每一条边都叫做边长。)

  2.探索、理解周长的含义及计算方法。计算长方形和正方形的周长。(物体某个面上一周边线的长度就是该物体某个面的周长)。

  练习

  (1)篮球场长26米,宽14米,求篮球场的周长。

  (2)操场长150米,宽70米,小强绕操场跑一周,小强一共跑了多少米?

  第七单元乘法

  1.三位数乘一位数的基本方法。(在二年级下册已经学习了两位数乘一位数)

  2.三位数的`中间或末尾是0时的乘法计算。3.连乘计算。练习:

  (1)200×3152×4261×3224×5(2)124×3×2115×2×4

  (3)一头牛一天吃20千克草,两头牛两天吃多少千克草?

  第八单元观察物体

  安排过一次“观察物体”,从物体(玩具、茶壶、汽车等)的前面、后面、左面、右面观察,并选择适宜的图形表示看到的物体的形状。本单元学习“观察物体”,从物体的正面、侧面和上面观察,并用视图表示看到的形状。

  1.在知道物体的前面、后面、左面、右面的基础上,认识物体的正面、侧面和上面。

  2.在不同的位置观察,看到的物体的面的个数往往是不相同的。

  3.进行简单几何体与其三视图之间的转化。

  第九单元统计与可能性

  学习简单的统计知识。

  练习

  (1)在一个口袋里放3个红球,一个黄球,从袋子里任意摸一个球,摸到红球的可能性大还是摸到黄球的可能性大?

  第十单元认识分数

  理解分数的意义,认、读、写简单的分数,同分母分数(分母小于10)的加减计算。

  1.分数的表示:分子、分母、分数线。

  2.同分母分数比较大小。

  3.同分母分数的加减。

小学数学的知识点总结15

  第一单元圆

  1、圆的定义:平面上的一种曲线图形。

  2、将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。圆心一般用字母O表示。它到圆上任意一点的距离都相等、

  3、半径:连接圆心到圆上任意一点的线段叫做半径。半径一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。

  4、圆心确定圆的位置,半径确定圆的大小。

  5、直径:通过圆心并且两端都在圆上的线段叫做直径。直径一般用字母d表示。

  6、在同一个圆内,所有的半径都相等,所有的直径都相等。

  7、在同一个圆内,有无数条半径,有无数条直径。

  8、在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。

  用字母表示为:

  d=2r

  r =1/2d

  用文字表示为:

  半径=直径÷2

  直径=半径×2

  9、圆的周长:围成圆的曲线的长度叫做圆的周长。

  10、圆的周长总是直径的3倍多一些,这个比值是一个固定的数。我们把圆的周长和直径的比值叫做圆周率,用字母表示。圆周率是一个无限不循环小数。在计算时,取π≈。世界上第一个把圆周率算出来的人是我国的数学家祖冲之。

  11、圆的周长公式:C=πd或C=2πr

  圆周长=π×直径

  圆周长=π×半径×2

  12、圆的面积:圆所占面积的大小叫圆的面积。

  13、把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,用字母(πr)表示,宽相当于圆的半径,用字母(r)表示,因为长方形的面积=长×宽,所以圆的面积= πr×r。

  圆的面积公式:S=πr2。

  14、圆的面积公式:S=πr2或者S=π(d/2)2或者S=π(C÷(2π))2≈

  15、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。

  16、在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。

  17、一个环形,外圆的半径是R,内圆的半径是r,它的面积是

  S=πR2—πr2

  或S=π(R2—r2)。

  (其中R=r+环的宽度、)

  19、半圆的周长等于圆的周长的一半加直径。半圆的周长与圆周长的一半的区别在于,半圆有直径,而圆周长的一半没有直径。

  半圆的周长公式:

  C=πd/2+d

  或C=πr+2r

  圆周长的一半=πr

  20、半圆面积=圆的面积÷2

  公式为:S=πr2/2

  21、在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。而面积扩大或缩小以上倍数的平方倍。

  例如:在同一个圆里,半径扩大4倍,那么直径和周长就都扩大4倍,而面积扩大16倍。

  22、两个圆的半径比等于直径比等于周长比,而面积比等于以上比的平方。

  例如:两个圆的半径比是2:3,那么这两个圆的直径比和周长比都是2:3,而面积比是4:9。

  圆周长和直径的比是π:1,比值是π

  圆周长和半径的比是2π:1,比值是2π

  23、当一个圆的半径增加a厘米时,它的周长就增加2πa厘米;

  当一个圆的直径增加a厘米时,它的周长就增加πa厘米。

  24、在同一圆中,圆心角占圆周角的几分之几,它所在扇形面积就占圆面积的几分之几;所对的弧就占圆周长的几分之几、

  25、当长方形,正方形,圆的周长相等时,圆的面积最大,长方形的面积最小

  26、扇形弧长公式:扇形的面积公式:

  S=nπr2/360

  (n为扇形的圆心角度数,r为扇形所在圆的半径)

  27、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。

  28、有一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。

  有2条对称轴的图形是:长方形

  有3条对称轴的图形是:等边三角形

  有4条对称轴的图形是:正方形

  有无数条对称轴的图形是:圆、圆环。

  29、直径所在的直线是圆的对称轴。

  31、永远记住要带单位,周长是(例如:cm),面积是平方(例如:cm2),体积是立方(例如:cm3)。

  32、圆的周长:

  ×1= ×2=

  ×3= ×4=

  ×5= ×6=

  ×7= ×8=

  ×9= ×10=

  33、圆的面积:

  ×12= ×22=

  ×32= ×42=

  ×52= ×62=

  ×72= ×82=

  ×92= ×102=314

  第二单元分数混合运算

  1、分数混合运算的.运算顺序与整数混合运算的运算顺序完全相同,都是先算乘除,再算加减,有括号的先算括号里的。

  ①如果是同一级运算,按照从左到右的顺序依次计算。

  ②如果是分数连乘,可先进行约分,再进行计算;

  ③如果是分数乘除混合运算时,要先把除法转换成乘法,然后按乘法运算。

  2、解决问题

  (1)用分数运算解决“求比已知量多(或少)几分之几的量是多少”的实际问题,方法是:

  第①种方法:可以先求出多或少的具体量,再用单位“1”的量加或减去多或少的部分,求出要求的问题。

  第②种方法:也可以用单位“1”加或减去多或少的几分之几,求出未知数占单位“1”的几分之几,再用单位“1”的量乘这个分数。

  (2)“已知甲与乙的和,其中甲占和的几分之几,求乙数是多少?”

  第①种方法:首先明确谁占单位“1”的几分之几,求出甲数,再用单位“1”减去甲数,求出乙数。

  第②种方法:先用单位“1”减去已知甲数所占和的几分之几,即得未知乙数所占和的几分之几,再求出乙数。

  (3)用方程解决稍复杂的分数应用题的步骤:

  ①要找准单位“1”。

  ②确定好其他量和单位“1”的量有什么关系,画出关系图,写出等量关系式。

  ③设未知量为X,根据等量关系式,列出方程。

  ④解答方程。

  (4)要记住以下几种算术解法解应用题:

  ①对应数量÷对应分率=单位“1”的量

  ②求一个数的几分之几是多少,用乘法计算。

  ③已知一个数的几分之几是多少,求这个数,用除法计算,还可以用列方程解答。

  3、要记住以下的解方程定律:

  加数+加数=和;

  加数=和–另一个加数。

  被减数–减数=差;

  被减数=差+减数;

  减数=被减数–差。

  因数×因数=积;

  因数=积÷另一个因数。

  被除数÷除数=商;

  被除数=商×除数;

  除数=被除数÷商。

  4、绘制简单线段图的方法:

  分数应用题,分两种类型,一种是知道单位“1”的量用乘法,另一种是求单位“1”的量,用除法。这两种类型应用题的数量关系可以分成三种:(一)一种量是另一种量的几分之几。(二)一种量比另一种量多几分之几。(三)一种量比另一种量少几分之几。绘制时关键处理好量与量之间的关系,在审题确定单位“1”的量。绘制步骤:

  ①首先用线段表示出这个单位“1”的量,画在最上面,用直尺画。

  ②分率的分母是几就把单位“1”的量平均分成几份,用直尺画出平均的等分。标出相关的量。

  ③再绘制与单位“1”有关的量,根据实际是上面的三种关系中的哪一种再画。标出相关的量。

  ④问题所求要标出“?”号和单位。

  5、补充知识点

  分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。

  分数乘法的计算法则

  分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零、。

  分数乘法意义

  分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。

  分数乘整数:数形结合、转化化归

  倒数:乘积是1的两个数叫做互为倒数。

  分数的倒数

  找一个分数的倒数,例如3/4把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是4/3、3/4是4/3的倒数,也可以说4/3是3/4的倒数。

  整数的倒数

  找一个整数的倒数,例如12,把12化成分数,即12/1,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是1/12,12是1/12的倒数。

  小数的倒数

  普通算法:找一个小数的倒数,例如,把化成分数,即1/4,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是4/1

  用1计算法:也可以用1去除以这个数,例如,1/等于4,所以的倒数4,因为乘积是1的两个数互为倒数。分数、整数也都使用这种规律。

  分数除法:分数除法是分数乘法的逆运算。

  分数除法计算法则:

  甲数除以乙数(0除外),等于甲数乘乙数的倒数。

  分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。

  分数除法应用题:先找单位1。单位1已知,求部分量或对应分率用乘法,求单位1用除法。

  第三单元观察物体

  1、观察物体一般从正面、上面、左面或右面来观察。

  2、同样高度的物体,在同一光源的照射下,离光源越近,这个物体的影子就越短;离光源越远,这个物体的影子就越长。

  3、站得高,才能望得远。

  4、确定观察的范围:

  1)先找到观察点、障碍点;

  2)连接观察点和障碍点后确定观察的范围。

  5、看不到的地方称作盲区。

  第四单元百分数的认识

  1、百分数的意义

  像84%,28%,……这样的数叫作百分数,表示一个数是另一个数的百分之几。百分数也叫百分比、百分率。百分数只表示两个数之间的关系,不能带单位名称,它表示的是一个比值。

  2、百分数的读法和写法

  ①百分数的读法:百分数的读法与分数的读法相同,但百分数读作“百分之几”,不读作“一百分之几”。

  ②百分数的写法:百分数相当于分母是100的分数,但百分数不能写成分数的形式,而是在分子的后面加上百分号(%)来表示。

  3、百分数和分数的区别

  ①意义不同

  百分数只表示一个数是另一个数的百分之几。它只能表示两个数之间的倍数关系,并不是表示某一个具体数量,所以百分数不能带单位。分数不仅可以表示两个数之间的倍数关系,还可以表示一定的数量,所以分数表示数量时可以带单位。

  ②写法不同

  百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。

  分数的最后结果中的分子只能是整数,计算结果不是最简分数的要化成最简分数。

  百分数的最后结果中的分子可以是整数,也可以是小数。如:18%,180%

  4、小数、分数、百分数的互化

  ①把小数化成百分数的方法:

  先把小数点向右移动两位,再在数的后面直接添上“%”,如

  ②把分数化成百分数的方法:

  可以先把分数化成分母是100的分数,再改写成百分数,如3/5=(除不尽的保留三位小数)。

  ③把百分数化成小数的方法:

  先把“%”去掉,同时把小数点向左移动两位,当移动的位数不够时,要添0补位。

  ④把百分数化成分数的方法:

  先把百分数改写成分母是100的分数,能约分的要约分成最简分数。当百分数的分子是小数时,要要根据分数的基本性质把分子和分母同时扩大相同的倍数,把分子变成整数后能约分的再约分。

  5、求一个数是另一个数的百分之几的方法

  求一个数是另一个数的百分之几的方法与求一个数是另一个数的几分之几的方法相同,就是用这个数除以另一个数,除不尽时通常保留三位小数,然后把小数点向右移动两位,再在数的后面加上%

  6、求百分率的方法:

  百分率一般是指部分占总体的百分之几。如合格率就是合格的产品数量占产品数量的百分之几。及格率就是及格人数占总人数的百分之几。结果用百分数的形式表示。

  常考的几种百分率:

  合格的数量÷总数量×100%=合格率

  及格的人数÷总人数×100%=及格率

  发芽的数量÷总数量×100%=发芽率

  优秀的人数÷总人数×100%=优秀率

  出席的人数÷总人数×100%=出席率

  缺席的人数÷总人数×100%=缺席率

  命中的次数÷总次数×100%=命中率

  7、求一个数的百分之几是多少的实际问题的解法

  与求一个数的几分之几是多少的问题的解答方法相同,都是用乘法来计算,用这个数乘百分之几。计算时可以把这个数化成小数来计算,也可以把这个数化成分数来计算,要根据具体情况分析,选择简便的计算方法。

  第五单元数据处理

  三种统计图:

  条形统计图(表示各个量的多少)

  折线统计图(表示数量多少、反映增减变化)

  扇形统计图(表示部分与整体的关系)。

  一、绘制条形统计图(主要是用于比较数量大小)

  1、写出统计图的标题,在上方的右侧表明制图日期。

  2、确定横轴、纵轴。

  3、在横轴上适当分配条形的位置,确定条形的宽度和间隔。(直条的宽窄要一致,间隔也要一致,单位长度要统一)

  4、纵轴上确定单位长度。确定单位长度所代表的量要根据最大和最小的来综合考虑。

  5、根据数据的大小画出长短不同的直条。

  6、给直条图形不同的颜色(或底纹),并在统计图右上角注明图例。

  二、关于复试条形统计图

  1、制作复试条形统计图与单式条形统计图的制作方法相同。只是在每组数据中各量要用颜色或底纹区分。

  2、复试条形统计图———直条的宽窄要一致,间隔要一致,单位长度要统一。

  3、运用横向、纵向、综合、对比等不同方法观察,可以读懂复试条形统计图,从中获取尽可能多的信息。

  4、复试条形统计图有纵向和横向两种画法。

  三、绘制复试折线统计图(不仅可以比较大小,还可以比较数量变化的快慢)

  a、只有一条折线的折线统计图叫做单式折线统计图。

  b、用不同的折线表示不同的数量变化情况的折线统计图叫做复试折线统计图。

  考点:三种单式统计图和两种复式统计图。

  1、三种统计图:条形统计图表示数量的多少、折线统计图表示数量多少、反映增减变化、扇形统计图表示部分与整体的关系。

  2、复式条形统计图:用两种不同的条形来分别表示不同的类型。复式折线统计图:用两条不同的线来表示,一条用实线,另一条用虚线。

  3、反映某城市一天气温变化,最好用折线统计图,反映某校六年级各班的人数,用(条形)统计图比较好,反映笑笑家食品支出占全部支出的多少,最好用扇形统计图。

  第六单元比的认识

  (一)比的基本概念

  1、两个数相除又叫做两个数的比。比的前项除以后项所得的商,叫做比值。

  2、比值通常用分数、小数和整数表示。

  3、比的后项不能为0。

  4、同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商;

  5、根据分数与除法的关系,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。

  6、比的基本性质:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。

  (二)求比值

  1、求比值:用比的前项除以比的后项

  (三)化简比

  1、化简比:用比的前项除以比的后项求出分数的比值后,在把分数比值改成比。

  (四)比的应用

  1、比的第一种应用:已知两个或几个数量的和,这两个或几个数量的比,求这两个或这几个数量是多少?

  例如:六年级有60人,男女生的人数比是5:7,男女生各有多少人?

  题目解析:60人就是男女生人数的和。

  解题思路:第一步求每份:60÷(5+7)=5人

  第二步求男女生:男生:5×5=25人女生:5×7=35人。

  2、比的第二种应用:已知一个数量是多少,两个或几个数的比,求另外几个数量是多少?

  例如:六年级有男生25人,男女生的比是5:7,求女生有多少人?全班共有多少人?

  题目解析:“男生25人”就是其中的一个数量。

  解题思路:第一步求每份:25÷5=5人

  第二步求女生:女生:5×7=35人。全班:25+35=60人

  3、比的第三种应用:已知两个数量的差,两个或几个数的比,求这两个或这几个数量是多少?

  例如:六年级的男生比女生多20人(或女生比男生少20人),男女生的比是7:5,男女生各有多少人?全班共有多少人?

  4、要求量=已知量×要求量份数/已知量份数

  5、比在几何里的运用:

  (1)已知长方形的周长,长和宽的比是a:b。求长和宽、面积。

  长=周长÷2×a/(a+b)

  宽=周长÷2×b/(a+b)

  面积=长×宽

  (2)已知已知长方体的棱长和,长、宽、高的比是a:b:c。求长、宽、高、体积

  长=周长÷4×a/(a+b+c)

  宽=周长÷4×b/(a+b+c)

  高=周长÷4×c/(a+b+c)

  体积=长×宽×高

  (3)已知三角形三个角的比是a:b:c,求三个内角的度数。

  三个角分别为:

  180×a/(a+b+c)

  180×b/(a+b+c)

  180×c/(a+b+c)

  (4)已知三角形的周长,三条边的长度比是a:b:c,求三条边的长度。

  三条边分别为:

  周长×a/(a+b+c)

  周长×b/(a+b+c)

  周长×c/(a+b+c)

  第七单元百分数的应用

  百分数的基本概念

  1、百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。

  百分数表示两个数之间的比率关系,不表示具体的数量,所以百分数不能带单位。

  2、百分数的意义:表示一个数是另一个数的百分之几。

  例如:25%的意义:表示一个数是另一个数的25%。

  3、百分数通常不写成分数形式,而在原来分子后面加上“%”来表示。分子部分可为小数、整数,可以大于100,小于100或等于100。

  4、小数与百分数互化的规则:

  把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;

  把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

  5、百分数与分数互化的规则:

  把分数化成百分数,通常先把分数化成小数(除不尽的保留三位小数),再把小数化成百分数;

  把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。

【小学数学的知识点总结】相关文章:

小学数学的知识点总结12-01

小学数学知识点归纳总结03-06

小学数学知识点总结集锦03-10

小学数学必备知识点03-20

数学高考知识点总结12-04

数学高考知识点总结06-18

数学中考知识点总结07-16

小学数学知识点详解08-15

小学数学简单的统计知识点06-15

中考数学知识点总结12-02