初一数学知识点总结集合[15篇]
总结是对某一阶段的工作、学习或思想中的经验或情况进行分析研究的书面材料,他能够提升我们的书面表达能力,让我们一起认真地写一份总结吧。那么总结应该包括什么内容呢?以下是小编帮大家整理的初一数学知识点总结,欢迎阅读与收藏。
初一数学知识点总结1
本章重点:一元一次不等式的解法,
本章难点:了解不等式的解集和不等式组的解集的确定,正确运用不等式基本性质3。
本章关键:彻底弄清不等式和等式的基本性质的区别.
(1)不等式概念:用不等号(“≠”、“”)表示的不等关系的式子叫做不等式(2)不等式的基本性质,它是解不等式的理论依据.
(3)分清不等式的解集和解不等式是两个完全不同的概念.(4)不等式的解一般有无限多个数值,把它们表示在数轴上,(5)一元一次不等式的概念、解法是本章的重点和核心
(6)一元一次不等式的解集,在数轴上表示一元一次不等式的解集
(7)由两个一元一次不等式组成的一元一次不等式组.一元一次不等式组可以由几个(同未知数的)一元一次不等式组成(8).利用数轴确定一元一次不等式组的解集第六章:
1.二元一次方程,二元一次方程组以及它的解,明确二元一次方程组的解是一对未知数的值,会检验一对数值是不是某一个二元一次方程组的解.
2.一次方程组的两种基本解法,能灵活运用代入法,加减法解二元一次方程组及简单的三元一次方程组.
3.根据给出的应用问题,列出相应的二元一次方程组或三元一次方程组,从而求出问题的解,并能根据问题的实际意义,检查结果是否合理.本章的重点是:二元一次方程组的解法代入法,加减法以及列一次方程组解简单的应用问题.
本章的难点是:
1.会用适当的消元方法解二元一次方程组及简单的三元一次方程组;2.正确地找出应用题中的相等关系,列出一次方程组.第七章
本章重点是:整式的乘除运算,特别是对幂的运算及乘法公式的应用要达到熟练程度.本章难点是:对乘法公式结构特征和公式中字母意义的理解及乘法公式的灵活应用1.幂的运算性质,正确地表述这些性质,并能运用它们熟练地进行有关计算.
2.单项式乘以(或除以)单项式,多项式乘以(或除以)单项式,以及多项式乘以多项式的法则,熟练地运用它们进行计算.
3.乘法公式的推导过程,能灵活运用乘法公式进行计算.4.熟练地运用运算律、运算法则进行运算,
5.体会用字母表示数和用字母表示式子的意义.通过式的变形,深入理解转化的思想方法.第八章:
1、认识事物的几种方法:观察与实验归纳与类比猜想与证明生活中的说理数学中的说理
2、定义、命题、公理、定理3、简单几何图形中的.推理4、余角、补交、对顶角5、平行线的判定判定:一个公理两个定理。
公理:两直线被第三条直线所截,如果同位角相等(数量关系)两直线平行(位置关系)定理:内错角相等(数量关系)两直线平行(位置关系)定理:同旁内角互补(数量关系)两直线平行(位置关系).平行线的性质:
两直线平行,同位角相等两直线平行,内错角相等两直线平行,同旁内角互补
由图形的“位置关系”确定“数量关系”第九章:
重点:因式分解的方法,
难点:分析多项式的特点,选择适合的分解方法1.因式分解的概念;
2.因式分解的方法:提取公因式法、公式法、分组分解法(十字相乘法)3.运用因式分解解决一些实际问题.(包括图形习题)第十章:
重点是:用统计知识解决现实生活中的实际问题.难点是:用统计知识解决实际问题.
1.统计初步的基本知识,平均数、中位数、众数等的计算、2.了解数据的收集与整理、绘画三种统计图.
3.应用统计知识解决实际问题能解决与统计相关的综合问题.
初一数学知识点总结2
第一章:有理数
★0既不是正数,也不是负数。0是正数和负数的分界。★整数的概念:正整数、0、负整数统称为整数。★分数的概念:正负数和负分数统称为分数。★有理数的概念:整数和分数统称为有理数。
★数轴的概念:规定了原点、正方向、单位长度的一条直线叫数轴。
(1)在直线上任意取一点表示数0,这个点叫做原点;
(2)通常规定直线上从原点向右(上)为正方向,从原点向左(或下)为负方向;(3)选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,
依次表示1,2,3,---;从原点向左,用类似的方法依次表示-1,-2,-3。
★相反数的概念:只有符号不同的两个数叫做互为相反数。0的相反数是0。互为相反数的两个点关于原点对称。
★绝对值的概念:一般地,数轴上表示数的a的点与原点的距离叫做数a的绝对值。记作a。
由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
★有理数比较大小:在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数。所以由这个规定可知:(1)正数大于0,0大于负数;正数大于负数;(2)两个负数,绝对值大的反而小。
备注:异号两数比较大小,要考虑它们的正负;同号两数比较大小,要考虑它们的绝对值。
★有理数加法法则:
1、同号两数相加,取相同的符号,并把绝对值相加。
2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
3、一个数同0相加,仍是这个数。
★有理数的加法中,两个数相加,交换加数的位置,和不变。加法交换律:a+b=b+a.★有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。加法结合律:(a+b)+c=a+(b+c)。【结合原则:同号结合;同分母结合;互为相反数结合;凑整结合。】
★有理数减法法则:减去一个数,就等于加上这个数的相反数。即:a-b=a+(-b).
★有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘都得0。
备注:几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。
★有理数中仍然有:乘积是1的两个数互为倒数。
★一般地,有理数乘法中,两个数相乘,交换因数的位置,积不变。乘法交换率:abba;三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变。乘法结合律:(ab)ca(bc)。
★一般地,一个数同两个数的和相乘,等于把这个数分别同中两个数相乘,再把积相加。分配律:a(bc)abac
★有理数除法法则:除以一个不等于0的数,等于乘上这个数的倒数。
备注:从有理数除法法则容易得出:两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。
★有理数的乘方:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。a的n次方也可以读作a的n次幂。
备注:负数的奇次幂是负数,负数的偶次幂是正数。
正数的任何次幂都是正数。0的任何正整数次幂都是0。
★有理数的混合运算,应注意以下运算顺序:先乘方,再乘除,最后加减。2。同级运算,从左到右依次计算。3。如有括号,先做括号内的运算,按小括号、中括号、大括号依次计算。
★科学计数法:把一个大于10的数表示成ax10(其中a是整数数位只有一位的数,n是正整数)
★近似数与准确数的接近程度,可以用精确度表示。
★有效数字:从一个数的左边第一个非0数字起,到末位数字止,所有的数字都是这个数的有效数字。
第二章:整式的加减(为一元一次方程的学习打下基础)
◆单项式概念:比如100t、a的平方、2.5x、vt,-n,它们都是数或者字母的积,像这样的式子叫做单项式。单独的一个数或一个字母也是单项式。单项式中数字因数叫做这个单项式的系数。
◆一个单项式中,所有字母的指数的和叫做这个单项式的次数。
◆多项式的概念:几个单项式的和叫做多项式。其中每个单项式叫做多项式的项,不存在字母的项叫做常数项。
◆多项式里次数最高项的.次数,叫做这个多项式的次数。◆整式的概念:单项式与多项式统称整式。
◆同类项概念:所含字母相同,并且相同字母的指数也相同的项叫做同类项。几个常数项也是同类项。
◆把多项式中的同类项合并成一项,叫做合并同类项。
◆合并同类项后,所得项的系数是合并前各同类项的系数之和,且字母部分不变。◆去括号法则:
如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
第三章:一元一次方程
▲含有未知数的等式叫方程(equation)。
▲使方程左右两边相等的未知数的值,叫做方程的解(solution)。▲只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程。▲等式的性质:1、等式两边加(或减)同一个数(或式子),结果仍相等。
2、等式;两边乘同一个数,或除以同一个不为0的数,结果仍相等。▲用一元一次方程分析和解决实际问题的基本过程如下:
(实际问题)设未知数,列方程数学问题(一元一次方程)解方程(数学问题的解)检验(实际问题的答案)。
▲解方程的具体步骤:1、去分母(方程两边同乘各分母的最小公倍数);2、去括号(去括号法则);3、移项(定义);4、合并同类项(法则,同类项的定义);5、系数化为1。
▲实际问题与一元一次方程:一元一次方程是最简单的方程。运用方程解决问题的关键是分析问题中的数量关系,找出其中的相等关系,并由此列出方程。
第四章:图形认识的初步
※我们把从实物中抽象出的各种图形统称为几何图形。几何图形是数学研究的主要对象
之一。几何图形又分为立体图形和平面图形。
※长方体、正方体、圆柱、圆锥、球、棱锥等都是几何体。几何体也简称体(solid)。包围着体的是面(surface)。面有平面和曲面。
※几何图形都是由点、线、面、体组成的,点是构成图形的基本元素。※经过两点有一条直线,并且只有一条直线。简述:两点确定一条直线。※直线一般用1个小写字母表示或者用直线上的两个大写字母表示。※射线和线段都是直线的一部分。类似于直线的表示。
※两点的所有连线中,线段最短。简述:两点之间,线段最短。※连接两点间的线段的长度,叫做中两点的距离(distance)。
※在国际单位制中,长度的基本单位是米(m)。常用的单位还有千米、分米、厘米、毫米、微米等。
1纳米等于十亿分之一米。
※在天文学上,常用天文单位和光年计算星体间的距离。1天文单位是地球到太阳的平812
均距离,约1.5x10千米,1光年就是光1年走过的距离,约等于9.46x10千米。
※航海上经常用到的长度单位海里(1海里=1852米);※有公共端点的两条射线组成的图形叫做角(angle)。这个公共点叫做角的顶点,这两条射线是角的两条边。
※我们常用量角器量角,度(degree)、分、秒是常用的角的度量单位。
※角的度、分、秒是60进制的。以度、分、秒为单位的角的度量制,叫做角度制。※常用的量角工具有,量角器,工程常用的经纬仪。
※从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。
※余角(complementaryangle):如果两个角的和等于90度(直角),就说中这两个角互为余角,即其中每一个角是另一个角的余角。余角的性质:等角的余角相等。
※补角(supplementaryangle):如果两个角的和等于180度(平角),就说这两个角互为补角,其中一个角是另一个角的补角。补角的性质:等角的补角相等。
※上北下南;左西右东。西北,即是北偏西45度。
第五章平行线与相交线
一.台球桌面上的角
※1.互为余角和互为补角的有关概念与性质
如果两个角的和为90°(或直角),那么这两个角互为余角;如果两个角的和为180°(或平角),那么这两个角互为补角;
注意:这两个概念都是对于两个角而言的,而且两个概念强调的是两个角的数量关系,与两个角的相互位置没有关系。
它们的主要性质:同角或等角的余角相等;同角或等角的补角相等。
二.探索直线平行的条件
※两条直线互相平行的条件即两条直线互相平行的判定定理,共有三条:①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行。
三.平行线的特征
※平行线的特征即平行线的性质定理,共有三条:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。
四.用尺规作线段和角※
1.关于尺规作图
尺规作图是指只用圆规和没有刻度的直尺来作图。
※2.关于尺规的功能
直尺的功能是:在两点间连接一条线段;将线段向两方向延长。
圆规的功能是:以任意一点为圆心,任意长度为半径作一个圆;以任意一点为圆心,任意长度为半径画一段弧。
初一数学知识点总结3
1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2.三角形的分类
3.三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
4.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
5.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
6.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
7.高线、中线、角平分线的意义和做法
8.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
9.三角形内角和定理:三角形三个内角的`和等于180°
推论1直角三角形的两个锐角互余;
推论2三角形的一个外角等于和它不相邻的两个内角和;
推论3三角形的一个外角大于任何一个和它不相邻的内角;
三角形的内角和是外角和的一半。
10.三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。
11.三角形外角的性质
(1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;
(2)三角形的一个外角等于与它不相邻的两个内角和;
(3)三角形的一个外角大于与它不相邻的任一内角;
(4)三角形的外角和是360°。
12.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
13.多边形的内角:多边形相邻两边组成的角叫做它的内角。
14.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
15.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
16.多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为平面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。
17.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。
18.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。
19.公式与性质
多边形内角和公式:n边形的内角和等于(n-2)·180°
20.多边形外角和定理:
(1)n边形外角和等于n·180°-(n-2)·180°=360°
(2)多边形的每个内角与它相邻的外角是邻补角,所以n边形内角和加外角和等于n·180°
21.多边形对角线的条数:
(1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形。
(2)n边形共有n(n-3)/2条对角线。
初一数学知识点总结4
1、单项式的定义:
由数或字母的积组成的式子叫做单项式。
说明:单独的一个数或者单独的一个字母也是单项式.
2、单项式的系数:
单项式中的数字因数叫这个单项式的系数.
说明:
⑴单项式的系数可以是整数,也可能是分数或小数。如3x的系数是3的32
系数是1;4.8a的'系数是4.8; 3
⑵单项式的系数有正有负,确定一个单项式的系数,要注意包含在它前面的符号,4xy2的系数是4;2x2y的系数是4;
⑶对于只含有字母因数的单项式,其系数是1或-1,不能认为是0,如ab的系数是-1;ab的系数是1;
⑷表示圆周率的π,在数学中是一个固定的常数,当它出现在单项式中时,应将其作为系数的一部分,而不能当成字母。如2πxy的系数就是2。
3、单项式的次数:
一个单项式中,所有字母的指数的和叫做这个单项式的次数.
说明:
⑴计算单项式的次数时,应注意是所有字母的指数和,不要漏掉字母指数是1
的情况。如单项式2xyz的次数是字母z,y,x的指数和,即4+3+1=8,而不是7次,应注意字母z的指数是1而不是0;
⑵单项式的指数只和字母的指数有关,与系数的指数无关。
⑶单项式是一个单独字母时,它的指数是1,如单项式m的指数是1,单项式是单独的一个常数时,一般不讨论它的次数;
4、在含有字母的式子中如果出现乘号,通常将乘号写作“x ”或者省略不写。
5、在书写单项式时,数字因数写在字母因数的前面,数字因数是带分数时转化成假分数.。
初一数学知识点总结5
初一下册知识点总结
1.同底数幂的乘法:am?an=am+n ,底数不变,指数相加。
2.同底数幂的除法:am÷an=am-n ,底数不变,指数相减。
3.幂的乘方与积的乘方:(am)n=amn ,底数不变,指数相乘; (ab)n=anbn ,积的乘方等于各因式乘方的积。
4.零指数与负指数公式:
(1)a0=1 (a≠0); a-n= ,(a≠0)。 注意:00,0-2无意义。
(2)有了负指数,可用科学记数法记录小于1的数,例如:0.0000201=2.01×10-5。
5.(1)平方差公式:(a+b)(a-b)= a2-b2,两个数的和与这两个数的差的积等于这两个数的平方差;
(2)完全平方公式:
① (a+b)2=a2+2ab+b2, 两个数和的平方,等于它们的平方和,加上它们的积的2倍;
② (a-b)2=a2-2ab+b2 , 两个数差的平方,等于它们的平方和,减去它们的积的2倍;
※ ③ (a+b-c)2=a2+b2+c2+2ab-2ac-2bc
6.配方:
(1)若二次三项式x2+px+q是完全平方式,则有关系式: ;
※ (2)二次三项式ax2+bx+c经过配方,总可以变为a(x-h)2+k的形式。
注意:当x=h时,可求出ax2+bx+c的最大(或最小)值k。
※(3)注意: 。
7.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;
系数不为零时,单项式中所有字母指数的和,叫单项式的次数。
8.多项式的项数与次数:多项式中所含单项式的`个数就是多项式的项数,每个单项式叫多项式的项;
多项式里,次数最高项的次数叫多项式的次数;
注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式。
9.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项。
10.合并同类项法则:系数相加,字母与字母的指数不变。
11.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号。
注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列。
平面几何部分
1、补角重要性质:同角或等角的补角相等.
余角重要性质:同角或等角的余角相等.
2、①直线公理:过两点有且只有一条直线.
线段公理:两点之间线段最短.
②有关垂线的定理:(1)过一点有且只有一条直线与已知直线垂直;
(2)直线外一点与直线上各点连结的所有线段中,垂线段最短.
比例尺:比例尺1:m中,1表示图上距离,m表示实际距离,若图上1厘米,表示实际距离m厘米.
3、三角形的内角和等于180
三角形的一个外角等于与它不相邻的两个内角的和
三角形的一个外角大于与它不相邻的任何一个内角
4、n边形的对角线公式:
各个角都相等,各条边都相等的多边形叫做正多边形
5、n边形的内角和公式:180(n-2); 多边形的外角和等于360
6、判断三条线段能否组成三角形:
①a+b>c(a b为最短的两条线段)②a-b
7、第三边取值范围:
a-b< c
8、对应周长取值范围:
若两边分别为a,b则周长的取值范围是 2a
如两边分别为5和7则周长的取值范围是 14
9、相关命题:
(1) 三角形中最多有1个直角或钝角,最多有3个锐角,最少有2个锐角。
(2) 锐角三角形中最大的锐角的取值范围是60≤X<90 。最大锐角不小于60度。
(3)任意一个三角形两角平分线的夹角=90+第三角的一半。
(4) 钝角三角形有两条高在外部。
(5) 全等图形的大小(面积、周长)、形状都相同。
(6) 面积相等的两个三角形不一定是全等图形。
(7) 三角形具有稳定性。
(8) 角平分线到角的两边距离相等。
(9)有一个角是60的等腰三角形是等边三角形。
初一数学知识点总结6
(一)有理数及其运算
一、有理数的基础知识
1、三个重要的定义:
(1)正数:像1、2.5、这样大于0的数叫做正数;
(2)负数:在正数前面加上“-”号,表示比0小的数叫做负数;
(3)0即不是正数也不是负数.
2、有理数的分类:
(1)按定义分类:
正整数整数0负整数有理数正分数分数负分数
(2)按性质符号分类:
正整数正有理数正分数有理数0
负整数负有理数负分数3、数轴
数轴有三要素:原点、正方向、单位长度.画一条水平直线,在直线上取一点表示0(叫做原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴.在数轴上的所表示的数,右边的数总比左边的数大,所以正数都大于0,负数都小于0,正数大于负数.
4、相反数
如果两个数只有符号不同,那么其中一个数就叫另一个数的相反数.0的相反数是0,互为相反的两上数,在数轴上位于原点的两则,并且与原点的距离相等.
5、绝对值
(1)绝对值的几何意义:一个数的绝对值就是数轴上表示该数的点与原点的距离
(2)绝对值的代数意义:一个正数的绝对值是它本身;0的绝对值是0;一个负数的绝对值是它的相反数,可用字母a表示如下:
(a0)aa0(a0)
a(a0)
(3)两个负数比较大小,绝对值大的反而小
二、有理数的运算
1、有理数的加法
(1)有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不等的异号两数相加,取绝对值较大数的符号,并用较大的绝对值减去较小的绝对值;互为相反的两个数相加得0;一个数同0相加,仍得这个数.
(2)有理数加法的运算律:
加法的交换律:a+b=b+a;加法的结合律:(a+b)+c=a+(b+c)
用加法的运算律进行简便运算的基本思路是:先把互为相反数的数相加;把同分母的分数先相加;把符号相同的数先相加;把相加得整数的数先相加。
2、有理数的减法
(1)有理数减法法则:减去一个数等于加上这个数的相反数.
(2)有理数减法常见的错误:顾此失彼,没有顾到结果的符号;仍用小学计算的习惯,不把减法变加法;只改变运算符号,不改变减数的符号,没有把减数变成相反数.
(3)有理数加减混合运算步骤:先把减法变成加法,再按有理数加法法则进行运算;
3、有理数的乘法
(1)有理数乘法的法则:两个有理数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0
(2)有理数乘法的运算律:交换律:ab=ba;结合律:(ab)c=a(bc);交换律:a(b+c)=ab+ac
(3)倒数的定义:乘积是1的两个有理数互为倒数,即ab=1,那么a和b互为倒数;倒数也可以看成是把分子分母的位置颠倒过来.
4、有理数的除法
有理数的除法法则:除以一个数,等于乘上这个数的倒数,0不能做除数.这个法则可以把除法转化为乘法;除法法则也可以看成是:两个数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数都等于0.
5、有理数的乘法
(1)有理数的乘法的定义:求几个相同因数a的运算叫做乘方,乘方是一种运算,是几个相同的因数的特殊乘法运算,记做“a”其中a叫做底数,表示相同的因数,n叫做指数,表示相同因数的个数,它所表示的意义是n个a相乘,不是n乘以a,乘方的结果叫做幂.
(2)正数的任何次方都是正数,负数的偶数次方是正数,负数的奇数次方是负数6、有理数的混合运算
(1)进行有理数混合运算的关建是熟练掌握加、减、乘、除、乘方的运算法则、运算律及运算顺序.比较复杂的混合运算,一般可先根据题中的加减运算,把算式分成几段,计算时,先从每段的乘方开始,按顺序运算,有括号先算括号里的,同时要注意灵活运用运算律简化运算.
(2)进行有理数的混合运算时,应注意:一是要注意运算顺序,先算高一级的运算,再算低一级的运算;二是要注意观察,灵活运用运算律进行简便运算,以提高运算速度及运算能力.(2)整式的加减
1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.
2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.
n4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式.
5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.整式分类为:.
6.同类项:所含字母相同,并且相同字母的'指数也相同的单项式是同类项
7.合并同类项法则:系数相加,字母与字母的指数不变.
8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“”号,括号里的各项都要变号.
9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列(3)一元一次方程
一、方程的有关概念
1、方程的概念:
(1)含有未知数的等式叫方程.
(2)在一个方程中,只含有一个未知数,并且未知数的指数是1,系数不为0,这样的方程叫一元一次方程.
2、等式的基本性质:
(1)等式两边同时加上(或减去)同一个代数式,所得结果仍是等式.若a=b,则a+c=b+c或ac=bc
(2)等式两边同时乘以(或除以)同一个数(除数不能为0),所得结果仍是等式.若a=b,则ac=bc或
abcc
(3)对称性:等式的左右两边交换位置,结果仍是等式.若a=b,则b=a
(4)传递性:如果a=b,且b=c,那么a=c,这一性质叫等量代换
二、解方程
1、移项的有关概念:
把方程中的某一项改变符号后,从方程的一边移到另一边,叫做移项.这个法则是根据等式的性质1推出来的,是解方程的依据.要明白移项就是根据解方程变形的需要,把某一项从方程的左边移到右边或从右边移到左边,移动的项一定要变号.
2、解一元一次方程的步骤:(1)去分母等式的性质2
注意拿这个最小公倍数乘遍方程的每一项,切记不可漏乘某一项,分母是小数的,要先利用分数的性质,把分母化为整数,若分子是代数式,则必加括号.
(2)去括号去括号法则、乘法分配律
严格执行去括号的法则,若是数乘括号,切记不漏乘括号内的项,减号后去括号,括号内各项的符号一定要变号.
(3)移项等式的性质1
越过“=”的叫移项,属移项者必变号;未移项的项不变号,注意不遗漏,移项时把含未知数的项移在左边,已知数移在右边,书写时,先写不移动的项,把移动过来的项改变符号写在后面
(4)合并同类项合并同类项法则注意在合并时,仅将系数加到了一起,而字母及其指数均不改变
(5)系数化为1等式的性质2
两边同除以未知数的系数,记住未知数的系数永远是分母(除数),切不可分子、分母颠倒
(6)检验
二、列方程解应用题
1、列方程解应用题的一般步骤:
(1)将实际问题抽象成数学问题;
(2)分析问题中的已知量和未知量,找出等量关系;
(3)设未知数,列出方程;
(4)解方程;
(5)检验并作答.
2、一些实际问题中的规律和等量关系:
(1)日历上数字排列的规律是:横行每整行排列7个连续的数,竖列中,下面的数比上面的数大7.日历上的数字范围是在1到31之间,不能超出这个范围
(2)几种常用的面积公式:
长方形面积公式:S=ab,a为长,b为宽,S为面积;正方形面积公式:S=a2,a为边长,S为面积;
梯形面积公式:S=1(ab)h,a,b为上下底边长,h为梯形的高,S为梯形面积;22圆形的面积公式:Sr,r为圆的半径,S为圆的面积;三角形面积公式:S1ah,a为三角形的一边长,h为这一边上的高,S为三角形的2面积.
(3)几种常用的周长公式:长方形的周长:L=2(a+b),a,b为长方形的长和宽,L为周长.正方形的周长:L=4a,a为正方形的边长,L为周长.圆:L=2πr,r为半径,L为周长
(4)柱体的体积等于底面积乘以高,当体积不变时,底面越大,高度就越低.所以等积变化的相等关系一般为:变形前的体积=变形后的体积.
(5)打折销售这类题型的等量关系是:利润=售价成本.
(6)行程问题中关建的等量关系:路程=速度×时间,以及由此导出的其化关系.
(7)在一些复杂问题中,可以借助表格分析复杂问题中的数量关系,找出若干个较直接的等量关系,借此列出方程,列表可帮助我们分析各量之间的相互关系.
(8)在行程问题中,可将题目中的数字语言用“线段图”表达出来,分析问题中的数量关系,从而找出等量关系,列出方程
(9)关于储蓄中的一些概念:
本金:顾客存入银行的钱;利息:银行给顾客的酬金;本息:本金与利息的和;期数:存入的时间;利率:每个期数内利息与本金的比;利息=本金×利率×期数;本息=本金+利息.
(4)图形初步认识
(一)多姿多彩的图形
立体图形:棱柱、棱锥、圆柱、圆锥、球等.
1、几何图形
平面图形:三角形、四边形、圆等.主(正)视图从正面看
2、几何体的三视图侧(左、右)视图从左(右)边看
俯视图从上面看
(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图
(2)能根据三视图描述基本几何体或实物原型
3、立体图形的平面展开图
(1)同一个立体图形按不同的方式展开,得到的平现图形不一样的
(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型
4、点、线、面、体(1)几何图形的组成
点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.
(2)点动成线,线动成面,面动成体.(二)直线、射线、线段1、基本概念
图形直线射线线段端点个数表示法作法叙述无直线a直线AB(BA)作直线AB;作直线a一个射线AB作射线AB反向延长射线AB两个线段a线段AB(BA)作线段a;作线段AB;连接AB延长线段AB;反向延长线段BA延长叙述不能延长2、直线的性质
经过两点有一条直线,并且只有一条直线.简单地:两点确定一条直线.3、画一条线段等于已知线段(1)度量法
(2)用尺规作图法
4、线段的大小比较方法(1)度量法(2)叠合法
5、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点.图形:
AMB
符号:若点M是线段AB的中点,则AM=BM=AB,AB=2AM=2BM.6、线段的性质
两点的所有连线中,线段最短.简单地:两点之间,线段最短.7、两点的距离连接两点的线段长度叫做两点的距离.8、点与直线的位置关系
(1)点在直线上(2)点在直线外.(三)角
1、角:由公共端点的两条射线所组成的图形叫做角
2、角的表示法(四种):
3、角的度量单位及换算
4、角的分类∠β范围锐角0<∠β<90°直角∠β=90°钝角90°
初一数学知识点总结7
一、目标与要求
1、通过处理实际问题,让学生体验从算术方法到代数方法是一种进步;
2、初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念;
3、培养学生获取信息,分析问题,处理问题的能力。
二、重点
从实际问题中寻找相等关系;
建立列方程解决实际问题的思想方法,学会合并同类项,会解ax+bx=c类型的一元一次方程。
三、难点
从实际问题中寻找相等关系;
分析实际问题中的已经量和未知量,找出相等关系,列出方程,使学生逐步建立列方程解决实际问题的思想方法。
四、知识框架
五、知识点、概念总结
1、一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。
2、一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a0)。
3、条件:一元一次方程必须同时满足4个条件:
(1)它是等式;
(2)分母中不含有未知数;
(3)未知数最高次项为1;
(4)含未知数的项的系数不为0。
4、等式的性质:
等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。
等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。
等式的性质三:等式两边同时乘方(或开方),等式仍然成立。
解方程都是依据等式的这三个性质等式的性质一:等式两边同时加一个数或减同一个数,等式仍然成立。
5、合并同类项
(1)依据:乘法分配律
(2)把未知数相同且其次数也相同的相合并成一项;常数计算后合并成一项
(3)合并时次数不变,只是系数相加减。
6、移项
(1)含有未知数的项变号后都移到方程左边,把不含未知数的项移到右边。
(2)依据:等式的性质
(3)把方程一边某项移到另一边时,一定要变号。
7、一元一次方程解法的一般步骤:
使方程左右两边相等的未知数的值叫做方程的解。
一般解法:
(1)去分母:在方程两边都乘以各分母的最小公倍数;
(2)去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号)
(3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号
(4)合并同类项:把方程化成ax=b(a0)的形式;
(5)系数化成1:在方程两边都除以未知数的系数a,得到方程的解x=b/a。
8、同解方程
如果两个方程的解相同,那么这两个方程叫做同解方程。
9、方程的同解原理:
(1)方程的两边都加或减同一个数或同一个等式所得的'方程与原方程是同解方程。
(2)方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。
10、列一元一次方程解应用题:
(1)读题分析法:多用于和,差,倍,分问题
仔细读题,找出表示相等关系的关键字,例如:大,小,多,少,是,共,合,为,完成,增加,减少,配套—————,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程。
(2)画图分析法:多用于行程问题
利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础。
11、列方程解应用题的常用公式:
12、做一元一次方程应用题的重要方法:
(1)认真审题(审题)
(2)分析已知和未知量
(3)找一个合适的等量关系
(4)设一个恰当的未知数
(5)列出合理的方程(列式)
(6)解出方程(解题)
(7)检验
(8)写出答案(作答)
一元一次方程牵涉到许多的实际问题,例如工程问题、种植面积问题、比赛比分问题、路程问题,相遇问题、逆流顺流问题、相向问题分段收费问题、盈亏、利润问题。
初一数学知识点总结8
二元一次方程组
1.二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程.注意:一般说二元一次方程有无数个解.
2.二元一次方程组:两个二元一次方程联立在一起是二元一次方程组.
3.二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解.注意:一般说二元一次方程组只有唯一解(即公共解).4.二元一次方程组的解法:(1)代入消元法;(2)加减消元法;(3)注意:判断如何解简单是关键.※5.一次方程组的应用:
(1)对于一个应用题设出的未知数越多,列方程组可能容易一些,但解方程组可能比较麻烦,反之则“难列
易解”;
(2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;
(3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知
数的关系.
一元一次不等式(组)
1.不等式:用不等号“>”“<”“≤”“≥”“≠”,把两个代数式连接起来的式子叫不等式.2.不等式的基本性质:
不等式的基本性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向要改变.
3.不等式的解集:能使不等式成立的未知数的值,叫做这个不等式的解;不等式所有解的集合,叫做这个不
博源教育曾老师1378780036612
等式的解集.
4.一元一次不等式:只含有一个未知数,并且未知数的次数是1,系数不等于零的不等式,叫做一元一次不等式;它的标准形式是ax+b>0或ax+b<0,(a≠0).
5.一元一次不等式的解法:一元一次不等式的解法与解一元一次方程的解法类似,但一定要注意不等式性质
3的应用;注意:在数轴上表示不等式的解集时,要注意空圈和实点.
6.一元一次不等式组:含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组;
注意:ab>0
abab0a0b0或a0b0;
amamab<0
0a0b0或a0b0;ab=0a=0或b=0;a=m.
7.一元一次不等式组的解集与解法:所有这些一元一次不等式解集的公共部分,叫做这个一元一次不等式组的解集;解一元一次不等式时,应分别求出这个不等式组中各个不等式的解集,再利用数轴确定这个不等式组的解集.
8.一元一次不等式组的解集的四种类型:设a>b
xaxb不等式组的解集xaxb是xa不等式的组解集是xbba>ba>xaxb不等式组的解集是axbxaxb不等式组解集是空集ba>xy0x、y是正数xy0ba>,
9.几个重要的判断:,
xy0x、y是负数xy0xy0x、y异号且正数绝对值大,xy0-2-
xy0x、y异号且负数绝对值大xy0.博源教育曾老师1378780036613
整式的乘除
1.同底数幂的乘法:aman=am+n,底数不变,指数相加.
2.幂的乘方与积的乘方:(am)n=amn,底数不变,指数相乘;(ab)n=anbn,积的乘方等于各因式乘方的积.3.单项式的乘法:系数相乘,相同字母相乘,只在一个因式中含有的字母,连同指数写在积里.4.单项式与多项式的乘法:m(a+b+c)=ma+mb+mc,用单项式去乘多项式的每一项,再把所得的积相加.5.多项式的乘法:(a+b)(c+d)=ac+ad+bc+bd,先用多项式的每一项去乘另一个多项式的每一项,再把所得的积相加.6.乘法公式:
(1)平方差公式:(a+b)(a-b)=a2-b2,两个数的和与这两个数的差的积等于这两个数的平方差;(2)完全平方公式:
①(a+b)=a+2ab+b,两个数和的平方,等于它们的平方和,加上它们的积的2倍;②(a-b)2=a2-2ab+b2,两个数差的平方,等于它们的`平方和,减去它们的积的2倍;③(a+b-c)2=a2+b2+c2+2ab-2ac-2bc,略.7.配方:
p(1)若二次三项式x+px+q是完全平方式,则有关系式:22
222
2q;
(2)二次三项式ax2+bx+c经过配方,总可以变为a(x-h)2+k的形式,利用a(x-h)2+k①可以判断ax+bx+c值的符号;②当x=h时,可求出ax+bx+c的最大(或最小)值k.(3)注意:x22
21x21xx22.
8.同底数幂的除法:am÷an=am-n,底数不变,指数相减.9.零指数与负指数公式:(1)a0=1(a≠0);a-n=
1an,(a≠0).注意:00,0-2无意义;
博源教育曾老师1378780036614
(2)有了负指数,可用科学记数法记录小于1的数,例如:0.0000201=2.01×10-5.
10.单项式除以单项式:系数相除,相同字母相除,只在被除式中含有的字母,连同它的指数作为商的一个因式.
11.多项式除以单项式:先用多项式的每一项除以单项式,再把所得的商相加.
※12.多项式除以多项式:先因式分解后约分或竖式相除;注意:被除式-余式=除式商式.13.整式混合运算:先乘方,后乘除,最后加减,有括号先算括号内.线段、角、相交线与平行线
几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)
1.角平分线的定义:一条射线把一个角分成两个相等的部分,这条射线叫角的平分线.(如图)OA几何表达式举例:(1)∵OC平分∠AOBC∴∠AOC=∠BOCB(2)∵∠AOC=∠BOC∴OC是∠AOB的平分线2.线段中点的定义:几何表达式举例:(1)∵C是AB中点∴AC=BCCB点C把线段AB分成两条相等的线段,点C叫线段中点.(如图)A(2)∵AC=BC∴C是AB中点3.等量公理:(如图)(1)等量加等量和相等;(2)等量减等量差相等;(3)等量的等倍量相等;(4)等量的等分量相等.几何表达式举例:(1)∵AC=DB∴AC+CD=DB+CD即AD=BC
博源教育曾老师137878003661AB5(2)∵∠AOC=∠DOB∴∠AOC-∠BOC=∠DOB-∠BOCCACDB(1)OED(2)即∠AOB=∠DOC(3)∵∠BOC=∠GFMACM又∵∠AOB=2∠BOCGOBF(3)∠EFG=2∠GFM∴∠AOB=∠EFGACBEGF(4)(4)∵AC=12AB,EG=12EF又∵AB=EF∴AC=EG4.等量代换:几何表达式举例:∵a=cb=c∴a=b5.补角重要性质:同角或等角的补角相等.(如图)13几何表达式举例:∵a=cb=d又∵c=d∴a=b几何表达式举例:∵a=c+db=c+d∴a=b几何表达式举例:∵∠1+∠3=180°∠2+∠4=180°24又∵∠3=∠4∴∠1=∠26.余角重要性质:同角或等角的余角相等.(如图)几何表达式举例:∵∠1+∠3=90°132∠2+∠4=90°又∵∠3=∠44博源教育曾老师1378780036616∴∠1=∠27.对顶角性质定理:对顶角相等.(如图)CAOBD几何表达式举例:∵∠AOC=∠DOB∴8.两条直线垂直的定义:两条直线相交成四个角,有一个角是直角,这两条直线互相垂直.(如图)AC几何表达式举例:(1)∵AB、CD互相垂直∴∠COB=90°BO(2)∵∠COB=90°∴AB、CD互相垂直D9.三直线平行定理:两条直线都和第三条直线平行,那么,这两条直线也平行.(如图)ACEBDF几何表达式举例:∵AB∥EF又∵CD∥EF∴AB∥CD10.平行线判定定理:两条直线被第三条直线所截:(1)若同位角相等,两条直线平行;(如图)(2)若内错角相等,两条直线平行;(如图)
-6-
几何表达式举例:(1)∵∠GEB=∠EFD∴AB∥CD(2)∵∠AEF=∠DFE博源教育曾老师1378780036617(3)若同旁内角互补,两条直线平行.(如图)11.平行线性质定理:ACHFEGBD∴AB∥CD(3)∵∠BEF+∠DFE=180°∴AB∥CD几何表达式举例:(1)∵AB∥CD(1)两条平行线被第三条直线所截,同位角相等;(如图)(2)两条平行线被第三条直线所截,内错角相等;(如图)(3)两条平行线被第三条直线所截,同旁内角互补.(如图)ACHFEGBD∴∠GEB=∠EFD(2)∵AB∥CD∴∠AEF=∠DFE(3)∵AB∥CD∴∠BEF+∠DFE=180°几何B级概念:(要求理解、会讲、会用,主要用于填空和选择题)
一基本概念:
直线、射线、线段、角、直角、平角、周角、锐角、钝角、互为补角、互为余角、邻补角、两点间的距离、相交线、平行线、垂线段、垂足、对顶角、延长线与反向延长线、同位角、内错角、同旁内角、点到直线的距离、平行线间的距离、命题、真命题、假命题、定义、公理、定理、推论、证明.二定理:
1.直线公理:过两点有且只有一条直线.2.线段公理:两点之间线段最短.
3.有关垂线的定理:
(1)过一点有且只有一条直线与已知直线垂直;
(2)直线外一点与直线上各点连结的所有线段中,垂线段最短.4.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.
博源教育曾老师1378780036618
三公式:
直角=90°,平角=180°,周角=360°,1°=60′,1′=60″.四常识:
1.定义有双向性,定理没有.
2.直线不能延长;射线不能正向延长,但能反向延长;线段能双向延长.
3.命题可以写为“如果那么”的形式,“如果”是命题的条件,“那么”是命题的结论.
4.几何画图要画一般图形,以免给题目附加没有的条件,造成误解.5.数射线、线段、角的个数时,应该按顺序数,或分类数.
6.几何论证题可以运用“分析综合法”、“方程分析法”、“代入分析法”、“图形观察法”四种方法分析.7.方向角:
初一数学知识点总结9
第五章《相交线与平行线》
一、知识点
5.1相交线5.1.1相交线
有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角。
两条直线相交有4对邻补角。
有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角。两条直线相交,有2对对顶角。对顶角相等。
5.1.2两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
注意:⑴垂线是一条直线。
⑵具有垂直关系的两条直线所成的4个角都是90。
⑶垂直是相交的特殊情况。
⑷垂直的记法:a⊥b,AB⊥CD。
画已知直线的垂线有无数条。
过一点有且只有一条直线与已知直线垂直。
连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
5.2平行线5.2.1平行线
在同一平面内,两条直线没有交点,则这两条直线互相平行,记作:a∥b。在同一平面内两条直线的关系只有两种:相交或平行。
平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
如果两条直线都与第三条直线平行,那么这两条直线也互相平行。5.2.2直线平行的条件
两条直线被第三条直线所截,在两条被截线的同一方,截线的同一旁,这样的两个角叫做同位角。两条直线被第三条直线所截,在两条被截线之间,截线的两侧,这样的两个角叫做内错角。
两条直线被第三条直线所截,在两条被截线之间,截线的同一旁,这样的两个角叫做同旁内角。判定两条直线平行的方法:
方法1两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。简单说成:同位角相等,两直线平行。
方法2两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。简单说成:内错角相等,两直线平行。
方法3两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。简单说成:同旁内角互补,两直线平行。
5.3平行线的性质
平行线具有性质:
性质1两条平行线被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。性质2两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。
性质3两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做着两条平行线的距离。判断一件事情的语句叫做命题。5.4平移
⑴把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。
⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点,连接各组对应点的线段平行且相等。
图形的这种移动,叫做平移变换,简称平移。
第六章《平面直角坐标系》
一、知识点
6.1平面直角坐标系
6.1.1有序数对
有顺序的两个数a与b组成的数对,叫做有序数对。
6.1.2平面直角坐标系
平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴取2向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点。
平面上的任意一点都可以用一个有序数对来表示。
建立了平面直角坐标系以后,坐标平面就被两条坐标轴分为了Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限。坐标轴上的点不属于任何象限。
6.2坐标方法的简单应用
6.2.1用坐标表示地理位置
利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程如下:
⑴建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;
⑵根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;
⑶在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。6.2.2用坐标表示平移
在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b))。
在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度。
第七章《三角形》
一、知识点
7.1与三角形有关的线段
7.1.1三角形的边
由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。相邻两边组成的角,叫做三角形的内角,简称三角形的角。
顶点是A、B、C的三角形,记作“△ABC”,读作“三角形ABC”。三角形两边的和大于第三边。7.1.2三角形的高、中线和角平分线7.1.3三角形的稳定性
三角形具有稳定性。7.2与三角形有关的角7.2.1三角形的内角
三角形的内角和等于180。
7.2.2三角形的外角
三角形的一边与另一边的延长线组成的角,叫做三角形的外角。三角形的一个外角等于与它不相邻的两个内角的和。三角形的一个外角大于与它不相邻的任何一个内角。
7.3多边形及其内角和7.3.1多边形
在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。n边形的对角线公式:
n(n-3)2各个角都相等,各条边都相等的多边形叫做正多边形。
7.3.2多边形的内角和
n边形的内角和公式:180(n-2)多边形的外角和等于360。
7.4课题学习镶嵌
1三角形→由不在同一直线上的三条线段首尾顺次相接所组成的图形。☆2判断三条线段能否组成三角形。
①a+b>c(ab为最短的两条线段)②a-b
a-b 进而求得这个二元一次方程组的解。这种方法叫做代入消元法,简称代入法。 两个二元一次方程中同一未知数的`系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。这种方法叫做加减消元法,简称加减法。 第九章《不等式与不等式组》 一、知识点 9.1不等式 9.1.1不等式及其解集 用“<”或“>”号表示大小关系的式子叫做不等式。使不等式成立的未知数的值叫做不等式的解。 能使不等式成立的未知数的取值范围,叫做不等式解的集合,简称解集。含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。 9.1.2不等式的性质 不等式有以下性质: 不等式的性质1不等式两边加(或减)同一个数(或式子),不等号的方向不变。不等式的性质2不等式两边乘(或除以)同一个正数,不等号的方向不变。不等式的性质3不等式两边乘(或除以)同一个负数,不等号的方向改变。9.2实际问题与一元一次不等式 解一元一次方程,要根据等式的性质,将方程逐步化为x=a的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为x<a(或x>a)的形式。 9.3一元一次不等式组 把两个不等式合起来,就组成了一个一元一次不等式组。 几个不等式的解集的公共部分,叫做由它们所组成的不等式的解集。解不等式就是求它的解集。 对于具有多种不等关系的问题,可通过不等式组解决。解一元一次不等式组时。一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集。9.4课题学习利用不等关系分析比赛 知识点、概念总结 1.不等式:用符号"<",">","≤","≥"表示大小关系的式子叫做不等式。 2.不等式分类:不等式分为严格不等式与非严格不等式。 一般地,用纯粹的大于号、小于号">","<"连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)"≥","≤"连接的不等式称为非严格不等式,或称广义不等式。 3.不等式的解:使不等式成立的未知数的值,叫做不等式的解。 4.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。 5.不等式解集的表示方法: (1)用不等式表示:一般的,一个含未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式表达出来,例如:x-1≤2的解集是x≤3 (2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地说明不等式有无限多个解,用数轴表示不等式的解集要注意两点:一是定边界线;二是定方向。 6.解不等式可遵循的一些同解原理 (1)不等式F(x) (2)如果不等式F(x) (3)如果不等式F(x) 7.不等式的性质: (1)如果x>y,那么yy;(对称性) (2)如果x>y,y>z;那么x>z;(传递性) (3)如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法则) (4)如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz (5)如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z (6)如果x>y,m>n,那么x+m>y+n(充分不必要条件) (7)如果x>y>0,m>n>0,那么xm>yn (8)如果x>y>0,那么x的n次幂>y的n次幂(n为正数) 8.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。 9.解一元一次不等式的一般顺序: (1)去分母(运用不等式性质2、3) (2)去括号 (3)移项(运用不等式性质1) (4)合并同类项 (5)将未知数的系数化为1(运用不等式性质2、3) (6)有些时候需要在数轴上表示不等式的解集 10.一元一次不等式与一次函数的综合运用: 一般先求出函数表达式,再化简不等式求解。 11.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成 了一个一元一次不等式组。 12.解一元一次不等式组的步骤: (1)求出每个不等式的解集; (2)求出每个不等式的解集的公共部分;(一般利用数轴) (3)用代数符号语言来表示公共部分。(也可以说成是下结论) 13.解不等式的诀窍 (1)大于大于取大的(大大大); 例如:X>-1,X>2,不等式组的解集是X>2 (2)小于小于取小的(小小小); 例如:X<-4,X<-6,不等式组的解集是X<-6 (3)大于小于交叉取中间; (4)无公共部分分开无解了; 14.解不等式组的口诀 (1)同大取大 例如,x>2,x>3,不等式组的解集是X>3 (2)同小取小 例如,x<2,x<3,不等式组的解集是X<2 (3)大小小大中间找 例如,x<2,x>1,不等式组的解集是1 (4)大大小小不用找 例如,x<2,x>3,不等式组无解 15.应用不等式组解决实际问题的步骤 (1)审清题意 (2)设未知数,根据所设未知数列出不等式组 (3)解不等式组 (4)由不等式组的解确立实际问题的解 (5)作答 16.用不等式组解决实际问题:其公共解不一定就为实际问题的解,所以需结合生活实际具体分析,最后确定结果。 1、单项式的定义: 由数或字母的积组成的式子叫做单项式。 说明:单独的一个数或者单独的一个字母也是单项式. 2、单项式的系数: 单项式中的数字因数叫这个单项式的系数. 说明:⑴单项式的系数可以是整数,也可能是分数或小数。如3x的系数是3的32 系数是1;4.8a的系数是4.8; 3 ⑵单项式的系数有正有负,确定一个单项式的系数,要注意包含在它前面的符号, ?4xy2的系数是4;2x2y的系数是4; ⑶对于只含有字母因数的单项式,其系数是1或-1,不能认为是0,如?ab的 系数是-1;ab的系数是1; ⑷表示圆周率的π,在数学中是一个固定的常数,当它出现在单项式中时,应将其作为系数的一部分,而不能当成字母。如2πxy的`系数就是2. 3、单项式的次数: 一个单项式中,所有字母的指数的和叫做这个单项式的次数. 说明:⑴计算单项式的次数时,应注意是所有字母的指数和,不要漏掉字母指数是1 的情况。如单项式2xyz的次数是字母z,y,x的指数和,即4+3+1=8, 而不是7次,应注意字母z的指数是1而不是0; ⑵单项式的指数只和字母的指数有关,与系数的指数无关。 ⑶单项式是一个单独字母时,它的指数是1,如单项式m的指数是1,单项式是单独的一个常数时,一般不讨论它的次数; 4、在含有字母的式子中如果出现乘号,通常将乘号写作“* ”或者省略不写。 5、在书写单项式时,数字因数写在字母因数的前面,数字因数是带分数时转化成假分数.。 有理数: (1)凡能写成形式的数,都是有理数,整数和分数统称有理数. 注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数; (2)有理数的分类:①② (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的'数也有自己的特性; (4)自然数0和正整数;a>0a是正数;a<0a是负数; a≥0a是正数或0a是非负数;a≤0a是负数或0a是非正数. 1、 我们把实物中抽象的各种图形统称为几何图形(geometric figure). 2、有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,它们是立体图形(solidfigure). 3、有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,它们是平面图形(planefigure). 4、将由平面图形围成的立体图形表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图(net). 5、几何体简称为体(solid). 6、包围着体的是面(surface),面有平的面和曲的面两种. 7、面与面相交的地方形成线(line),线和线相交的地方是点(point). 8、点动成面,面动成线,线动成体. 9、经过探究可以得到一个基本事实:经过两点有一条直线,并且只有一条直线.简述为:两点确定一条直线(公理). 10、当两条不同的直线有一个公共点时,我们就称这两条直线相交(intersection),这个公共点叫做它们的交点(pointof intersection). 11、点M把线段AB分成相等的两条线段AM和MB,点M叫做线段AB的中点(center). 12、经过比较,我们可以得到一个关于线段的基本事实:两点的所有连线中,线段最短.简单说成:两点之间,线段最短.(公理) 13、连接两点间的线段的长度,叫做这两点的距离(distance). 14、角∠(angle)也是一种基本的几何图形. 15、把一个周角360等分,每一份就是1度(degree)的'角,记作1°;把一度的角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的角,记作1″. 16、从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线(angular bisector). 17、如果两个角的和等于90°(直角),就是说这两个叫互为余角(complementaryangle),即其中的每一个角是另一个角的余角. 18、如果两个角的和等于180°(平角),就说这两个角互为补角(supplementaryangle),即其中一个角是另一个角的补角 19、等角的补角相等,等角的余角相等. 1.同一平面内,两直线不平行就相交。 2.两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互 为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。 3.垂直定义:两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。其 中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。4.垂直三要素:垂直关系,垂直记号,垂足 5.垂直公理:过一点有且只有一条直线与已知直线垂直。6.垂线段最短; 7.点到直线的距离:直线外一点到这条直线的垂线段的长度。8.两条直线被第三条直线所截:同位角F(在两条直线的同一旁,第三条直线的同一侧),内错角Z(在 两条直线内部,位于第三条直线两侧),同旁内角U(在两条直线内部,位于第三条直线同侧)。9.平行公理:过直线外一点有且只有一条直线与已知直线平行。 10.如果两条直线都与第三条直线平行,那么这两条直线也互相平行。如果b//a,c//a,那么b//cP174题 11.平行线的判定。结论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。平行线的性质: 1.两直线平行,同位角相等。2.两直线平行,内错角相等。3.两直线平行,同旁内角互补。 12.★命题:“如果+题设,那么+结论。” 三角形和多边形 1.三角形内角和为180° 2.构成三角形满足的条件:三角形两边之和大于第三边。 判断方法:在△ABC中,a、b为两短边,c为长边,如果a+b>c则能构成三角形,否则(a+bc)不能构成三角形(即三角形最短的两边之和大于最长的边) 3.三角形边的取值范围:三角形的任一边:小于两边之和,大于两边之差(的绝对值)【重点题目】三角形的两边分别为3和7,则三角形的第三边的取值范围为4.等面积法:三角形面积1底高,三角形有三条高,也就对应有三条底边,任取其中一组底和高,21三角形同一个面积公式就有三个表示方法,任取其中两个写成连等(可两边同时2消去)底高 2底高,知道其中三条线段就可求出第四条。例如:如图1,在直角△ABC中,ACB=900,CD 是斜边AB 上的高,则有ACBCCDAB A CB1D【重点题目】P708题例直角三角形的三边长分别为3、4、5,则斜边上的高为5.等高法:高相等,底之间具有一定关系(如成比例或相等) 【例】AD是△ABC的中线,AE是△ABD的中线,SABC4cm2,则SABE=6.三角形的特性:三角形具有【重点题目】P695题7.外角: 【基础知识】什么是外角?外角定理及其推论【重点题目】P75例2P765、6、8题8.n边形的★内角和★外角和√对角线条数为 【基础知识】正多边形:各边相等,各角相等;正n边形每个内角的度数为【重点题目】P83、P84练习1,2,3;P843,4,5,6;P904、5题9.√镶嵌:围绕一个拼接点,各图形组成一个周角(不重叠,无空隙)。 单一正多边形的镶嵌:镶嵌图形的每个内角能被360整除:只有6个等边三角形(60),4个正方形(90),3个正六边形(120)三种 (两种正多边形的)混合镶嵌:混合镶嵌公式nm3600:表示n个内角度数为的正多边形与 0000m个内角度数为的正多边形围绕一个拼接点组成一个周角,即混合镶嵌。 【例】用正三角形与正方形铺满地面,设在一个顶点周围有m个正三角形、n个正方形,则m,n的值分别为多少? 平面直角坐标系 ▲基本要求:在平面直角坐标系中1.给出一点,能够写出该点坐标2.给出坐标,能够找到该点 ▲建系原则:原点、正方向、横纵轴名称(即x、y) √语言描述:以…(哪一点)为原点,以…(哪一条直线)为x轴,以…(哪一条直线)为y轴建立直角坐标系 ▲基本概念:有顺序的两个数组成的数对称为(有序数对)【三大规律】1.平移规律★ 点的平移规律(P51归纳) 例将P(2,3)向左平移3个单位,向上平移5个单位得到点Q,则Q点的坐标为图形的平移规律(P52归纳) 重点题目:P53练习;P543、4题;P557题。2.对称规律▲ 关于x轴对称,纵坐标取相反数关于y轴对称,横坐标取相反数 关于原点对称,横、纵坐标同时取相反数 例:P点的坐标为(5,7),则P点 (1.)关于x轴对称的点为(2.)关于y轴的对称点为(3.)关于原点的对称点为3.位置规律★ 假设在平面直角坐标系上有一点P(a,b)y1.如果P点在第一象限,有a>0,b>0(横、纵坐标都大于0)第二象限第一象限2.如果P点在第二象限,有a0(横坐标小于0,纵坐标大于0)X3.如果P点在第三象限,有a5.小长方形的面积表示频数。纵轴为频数。等距分组时,通常直接用小长方形的高表示频数,即纵 组距轴为“频数” 6.频数分布折线图√根据频数分布图画出频数分布折线图:①取每个小长方形的上边的.中点,以及x 轴上与最左、最右直方相距半个组距的点。②连线【重点题目】P1693、4题 二元一次方程组和不等式、不等式组 1.解二元一次方程组,基本的思想是;2.二元一次方程(组):含两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程。把具有相同未知数的两个二元一次方程组合起来,就组成了二元一次方程组。(具体题目见本单元测试卷填空部分) 3.★解二元一次方程组。常用的方法有和。P96、P100归纳4.★列二元一次方程组解实际问题。关键:找等量关系常见的类型有:分配问题P1185题;P1084、5题;P102练习3;P1048题;P1034题;追及问题P1037题、P1186题;顺流逆流P102练习2;P1082题;药物配制P1087题;行程问题P99练习4;P1083,6题顺流逆流公式:v顺v静v水v逆vv静水5.不等式的性质(重点是性质三)P1285、7题6.利用不等式的性质解不等式,并把解集在数轴上表示出来(课本上的练例、习题)P1342 步骤:去分母,去括号,移项,合并同类项,系数化为一;其中去分母与系数化为一要特别小心,因为要在不等式两端同时乘或除以某一个数,要考虑不等号的方向是否发生改变的问题。7.用不等式表示,P1282题,P127练习2;P123练习28.利用数轴或口诀解不等式组(课本上的例、习题) 数轴:P140归纳口诀(简单不等式):同大取大,同小取小,大(于)小小(于)大取中间,大(于)大小(于)小,解不见了。 9.列不等式(组)解决实际问题:P12910;P1289题;P133例2;P1355、6、7、8、9,P139例2;P140练习2,P1413、4题不等式组的解集的确定方法(a>b):自己将表格补充完整:不等式组 4 在数轴上表示的解集解集x>a口诀大大取大;x>ax>bx<ax<bx<ax>b小大大小中间找;ba小小取小;x>ax<b空集大大小小不见了。 解一元一次方程: 1、解一元一次方程的一般步骤 去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化。 2、解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号。 3、在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c。 使方程逐渐转化为ax=b的最简形式体现化归思想。 将ax=b系数化为1时,要准确计算,一弄清求x时,方程两边除以的是a还是b,尤其a为分数时;二要准确判断符号,a、b同号x为正,a、b异号x为负。 14、一元一次方程的应用 1、一元一次方程解应用题的类型 (1)探索规律型问题; (2)数字问题; (3)销售问题(利润=售价﹣进价,利润率=利润进价×100%); (4)工程问题(①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量); (5)行程问题(路程=速度×时间); (6)等值变换问题; (7)和,差,倍,分问题; (8)分配问题; (9)比赛积分问题; (10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度)。 2、利用方程解决实际问题的基本思路: 首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答。 列一元一次方程解应用题的五个步骤 (1)审:仔细审题,确定已知量和未知量,找出它们之间的等量关系。 (2)设:设未知数(x),根据实际情况,可设直接未知数(问什么设什么),也可设间接未知数。 (3)列:根据等量关系列出方程。 (4)解:解方程,求得未知数的值。 (5)答:检验未知数的值是否正确,是否符合题意,完整地写出答句。 初一数学方法技巧 1、请概括的说一下学习的方法 曰:“像做其他事一样,学习数学要研究方法。我为你们推荐的方法是:超前学习,展开联想,多做总结,找出合情合理。 2、请谈谈超前学习的好处 曰:“首先,超前学习能挖掘出自身的潜力,培养自学能力。经过超前学习,会发现自己能独立解决许多问题,对提高自信心,培养学习兴趣很有帮助。” 其次,够消除对新知识的“隐患”。超前学习能够发现在现有的.基础上,自己对新知识认识的不妥之处。相反地,若直接听别人说。似乎自己也能一开始就达到这种理解水平,实践证明,并非这样。 再次,超前学习中的有些内容,当时不能透彻理解,但经过深思之后,即使搁置一边,大脑也会潜意识“加工”。当教师进度进行到这块内容时,我们做第二次理解,会深刻的多。 最后,超前学习能提高听课质量。超前学习以后,我们发现新知识中的多数自己完全可以理解。只有少数地方需借助于别人。这样,在课堂上,我们即能将可以集中注意力的时间放“这少数地方”的理解上,即“好钢用在刀刃上”。事实上,一节课,能集中注意力的时间并不太多。 3、请谈谈联想与总结 曰:联想与总结贯穿与学习过程中的始终。对每一知识的认识,必定要有认识基础。寻找认识基础的过程即是联想,而认识基础的是对以前知识的总结。以前总结的越简洁、清晰、合理,越容易联想。这样就可以把新知识熔进原来的知识结构中为以后的某次联想奠定基础。联想与总结在解题中特别有效。也许你以前并没有这样的认识,但解题能力却很强,这说明你很聪明,你在不自觉中使用这种做法。如果你能很明确的认识这一点,你的能力会更强。 4、那么我们怎样预习呢? 曰:“先说说学习的目标: (1)知道知识产生的背景,弄清知识形成的过程。 (2)或早或晚的知道知识的地位和作用: (3)总结出认识问题的规律(或说出认识问题使用了以前的什么规律)。 再说具体的做法: (1)对概念的理解。数学具有高度的抽象性。通常要借助具体的东西加以理解。有时借助字面的含义:有时借助其他学科知识。有时借助图形……理解概念的境界是意会。一定要在理解概念上下一番苦功夫后再做题。 (2)对公式定理的预习,公式定理是使用最多的“规律”的总结。如:完全平方公式,勾股定理等。往往公式的推导定理的证明蕴含着丰富的数学方法及相当有用的解题规律。如三角形内角平分线定理的证明。我们应当先自己推导公式或证明定理,若做不成再参考别人的做法。无论是自己完成的,还是看别人的,都要说出这样做是怎样想出来的。 (3)对于例题及习题的处理见上面的(2)及下面的第五条。 【初一数学知识点总结】相关文章: 数学初一知识点总结07-04 初一数学棱锥知识点总结11-29 初一数学下知识点总结12-07 初一数学下册知识点总结11-29 初一数学知识点总结07-11 初一数学知识点的总结11-07 【必备】初一数学重要的知识点总结11-21 初一上数学知识点总结11-07 初一数学整式的加减知识点总结11-07 (荐)初一数学知识点总结07-12初一数学知识点总结10
初一数学知识点总结11
初一数学知识点总结12
初一数学知识点总结13
初一数学知识点总结14
初一数学知识点总结15