中考数学知识点总结
总结是对过去一定时期的工作、学习或思想情况进行回顾、分析,并做出客观评价的书面材料,它能够给人努力工作的动力,快快来写一份总结吧。那么我们该怎么去写总结呢?以下是小编收集整理的中考数学知识点总结,欢迎大家分享。
中考数学知识点总结1
1、数学的基本概念、定义、公式,数学知识点之间的内在联系,基本的数学解题思路与方法,是复习的重中之重。回归课本,要先对知识点进行梳理,把教材上的每一个例题、习题再做一遍,确保基本概念、公式等牢固掌握,要稳扎稳打,不要盲目攀高,欲速则不达。
2、要提高复习效率,必须使自己的思维与老师的思维同步。而预习则是达到这一目的的重要途径。没有预习,听老师讲课,会感到老师讲的都重要,抓不住老师讲的`重点;而预习了之后,再听老师讲课,就会在记忆上对老师讲的内容有所取舍,把重点放在自己还未掌握的内容上,提高学习效率。
3、学好数学要做大量的题,但反过来做了大量的题,数学不一定好。“不要以题量论英雄”,题海战术,有时候往往起到事倍功半的效果,因此要提高解题的效率。做题的目的在于检查学的知识,方法是否掌握得很好。如果掌握得不准,甚至有偏差,那么多做题的结果,反而巩固了缺欠,在准确地把握住基本知识和方法的基础上做一定量的练习是必要的,但是要有针对性地做题,突出重点,抓住关键。
4、复习中,所谓突出重点,主要是指突出教材中的重点知识,突出不易理解或尚未理解深透的知识,突出数学思想与解题方法。数学思想与方法是数学的精髓,是联系数学中各类知识的纽带。要抓住教材中的重点内容,掌握分析方法,从不同角度出发思索问题,由此探索一题多解、一题多变和一题多用之法。培养正确地把日常语言转化为代数、几何语言。并逐步掌握听、说、读、写译的数学语言技能。
中考数学知识点总结2
三角函数关系
倒数关系
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
商的关系
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方关系
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)
同角三角函数关系六角形记忆法
构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。
倒数关系
对角线上两个函数互为倒数;
商数关系
六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。(主要是两条虚线两端的三角函数值的乘积,下面4个也存在这种关系。)。由此,可得商数关系式。
平方关系
在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。
锐角三角函数定义
锐角角A的'正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。
正弦(sin)等于对边比斜边;sinA=a/c
余弦(cos)等于邻边比斜边;cosA=b/c
正切(tan)等于对边比邻边;tanA=a/b
余切(cot)等于邻边比对边;cotA=b/a
正割(sec)等于斜边比邻边;secA=c/b
余割(csc)等于斜边比对边。cscA=c/a
互余角的三角函数间的关系
sin(90°-α)=cosα,cos(90°-α)=sinα,
tan(90°-α)=cotα,cot(90°-α)=tanα.
平方关系:
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
积的关系:
sinα=tanα·cosα
cosα=cotα·sinα
tanα=sinα·secα
cotα=cosα·cscα
secα=tanα·cscα
cscα=secα·cotα
倒数关系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
中考数学知识点
1、反比例函数的概念
一般地,函数(k是常数,k0)叫做反比例函数。反比例函数的解析式也可以写成的形式。自变量x的取值范围是x0的一切实数,函数的取值范围也是一切非零实数。
2、反比例函数的图像
反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。由于反比例函数中自变量x0,函数y0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
3、反比例函数的性质
反比例函数k的符号k>0k<0图像yO xyO x性质①x的取值范围是x0,
y的取值范围是y0;
②当k>0时,函数图像的两个分支分别
在第一、三象限。在每个象限内,y
随x 的增大而减小。
①x的取值范围是x0,
y的取值范围是y0;
②当k<0时,函数图像的两个分支分别
在第二、四象限。在每个象限内,y
随x 的增大而增大。
4、反比例函数解析式的确定
确定及诶是的方法仍是待定系数法。由于在反比例函数中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k的值,从而确定其解析式。
5、反比例函数的几何意义
设是反比例函数图象上任一点,过点P作轴、轴的垂线,垂足为A,则
(1)△OPA的面积.
(2)矩形OAPB的面积。这就是系数的几何意义.并且无论P怎样移动,△OPA的面积和矩形OAPB的面积都保持不变。
矩形PCEF面积=,平行四边形PDEA面积=
中考数学知识点总结3
圆的定理:
1不在同一直线上的三点确定一个圆。
2垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧
推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
推论2圆的两条平行弦所夹的弧相等
3圆是以圆心为对称中心的中心对称图形
4圆是定点的距离等于定长的点的集合
5圆的内部可以看作是圆心的距离小于半径的点的集合
6圆的外部可以看作是圆心的距离大于半径的.点的集合
7同圆或等圆的半径相等
8到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
9定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
10推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
中考数学知识点复习口诀
有理数的加法运算
同号相加一边倒;异号相加“大”减“小”,
符号跟着大的跑;绝对值相等“零”正好。
合并同类项
合并同类项,法则不能忘,只求系数和,字母、指数不变样。
去、添括号法则
去括号、添括号,关键看符号,
括号前面是正号,去、添括号不变号,
括号前面是负号,去、添括号都变号。
一元一次方程
已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒。
平方差公式
平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。
完全平方公式
完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;
首±尾括号带平方,尾项符号随中央。
因式分解
一提(公因式)二套(公式)三分组,细看几项不离谱,
两项只用平方差,三项十字相乘法,阵法熟练不马虎,
四项仔细看清楚,若有三个平方数(项),
就用一三来分组,否则二二去分组,
五项、六项更多项,二三、三三试分组,
以上若都行不通,拆项、添项看清楚。
单项式运算
加、减、乘、除、乘(开)方,三级运算分得清,
系数进行同级(运)算,指数运算降级(进)行。
一元一次不等式解题步骤
去分母、去括号,移项时候要变号,同类项合并好,再把系数来除掉,
两边除(以)负数时,不等号改向别忘了。
一元一次不等式组的解集
大大取较大,小小取较小,小大、大小取中间,大小、小大无处找。
一元二次不等式、一元一次绝对值不等式的解集
大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。
分式混合运算法则
分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);
乘法进行化简,因式分解在先,分子分母相约,然后再行运算;
加减分母需同,分母化积关键;找出最简公分母,通分不是很难;
变号必须两处,结果要求最简。
中考数学知识点归纳:平面直角坐标系
平面直角坐标系
1、平面直角坐标系
在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。
其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两轴的交点O(即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。
为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。
注意:x轴和y轴上的点,不属于任何象限。
2、点的坐标的概念
点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当时,(a,b)和(b,a)是两个不同点的坐标。
中考数学知识点总结4
数学是研究数量结构、变化、以及空间模型等概念的科学。它是物理、化学等学科的基础,而且与我们的生活息息相关。所以说,学好数学对于我们每个同学来说都是非常重要的。下面我向大家介绍一下初中数学的学习方法与技巧:
一、平时的数学学习:
1、课前认真预习。预习的目的是为了能更好得听老师讲课,通过预习,掌握度要达到百分之八十。带着预习中不明白的问题去听老师讲课,来解答这类的问题。预习还可以使听课的整体效率提高。具体的预习方法:将书上的题目做完,画出知识点,整个过程大约持续15-20分钟。在时间允许的情况下,还可以将练习册做完。
2、让数学课学与练结合。在数学课上,光听是没用的。当老师让同学去黑板上演算时,自己也要在草稿纸上练。如果遇到不懂的难题,一定要提出来,不能不求甚解。否则考试遇到类似的题目就可能不会做。听老师讲课时一定要全神贯注,要注意细节问题,否则“千里之堤,毁于蚁穴”。
3、课后及时复习。写完作业后对当天老师讲的内容进行梳理,可以适当地做25分钟左右的课外题。可以根据自己的`需要选择适合自己的课外书。其课外题内容大概就是今天上的课。
4、单元测验是为了检测近期的学习情况。其实分数代表的是你的过去,关键的是对于每次考试的总结和吸取教训,是为了让你在期中、期末考得更好。老师经常会在没通知的情况下进行考试,所以要及时做到“课后复习”。
二、期中期末数学复习:
要将平时的单元检测卷订成册,并且将错题再做一遍。如果整张试卷考得都不好,那么可以复印将试卷重做一遍。除试卷外,还可以将作业上的错题、难题、易错题重做一遍。另外,自己还可以做2——3张期末模拟卷。
三、数学考试技巧:
如果想得高分,在选择、填空、计算题上是不能丢分的。在考数学的时候思想不能开小差,而且遇到难题时不能想“没考好怎么办啊”等内容。在通常情况下,期末考试的难题都是不知道怎么做,但有可能突然明白的那种。遇到这种题目要沉着冷静,利用题目给你的一切条件进行分析,如这次考试有两个空白的钟,还有去年七年级期末的几题填空。这些条件都对你的解题有很大帮助。在期中、期末考试中有充足的时间,将自己的速度压下来,不是越快越好,争取一次做成功。大概留35分钟的时间检查。
最终提醒大家:多做题有一定作用,但上课听讲、认真答题及提高准确率、总结经验才是最重要的。还要将所学的知识用到生活中去,做到学以致用。当你运用数学知识解决了生活中实际问题的时候,你就会感受到学习数学的快乐。
中考数学知识点总结5
一、代数式
1. 概念:用基本的运算符号(加、减、乘、除、乘方、开方)把数与字母连接而成的式子叫做代数式。单独的一个数或字母也是代数式。
2. 代数式的值:用数代替代数式里的字母,按照代数式的运算关系,计算得出的结果。
二、整式
单项式和多项式统称为整式。
1. 单项式:1)数与字母的乘积这样的代数式叫做单项式。单独的一个数或字母(可以是两个数字或字母相乘)也是单项式。
2) 单项式的系数:单项式中的 数字因数及性质符号叫做单项式的系数。
3) 单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。
2. 多项式:1)几个单项式的.和叫做多项式。在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。一个多项式有几项就叫做几项式。
2)多项式的次数:多项式中,次数最高的项的次数,就是这个多项式的次数。
3. 多项式的排列:
1).把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。
2).把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。
由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。
三、整式的运算
1. 同类项——所含字母相同,并且相同字母的次数也相同的项叫做同类项,几个常数项也叫同类项。同类项与系数无关,与字母排列的顺序也无关。
2. 合并同类项:把多项式中的同类项合并成一项叫做合并同类项。即同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
3. 整式的加减:有括号的先算括号里面的,然后再合并同类项。
4. 幂的运算:
5. 整式的乘法:
1) 单项式与单项式相乘法则:把它们的系数、同底数幂分别相乘,其余只在一个单项式里含有的字母连同它的指数作为积的因式。
2) 单项式与多项式相乘法则:用单项式去乘多项式的每一项,再把所得的积相加。
3) 多项式与多项式相乘法则:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
6. 整式的除法
1) 单项式除以单项式:把系数与同底数幂分别相除作为上的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
2) 多项式除以单项式:把这个多项式的每一项除以单项式,再把所得的商相加。
四、因式分解——把一个多项式化成几个整式的积的形式
1) 提公因式法:(公因式——多项式各项都含有的公共因式)吧公因式提到括号外面,将多项式写成因式乘积的形式。 取各项系数的最大公约数作为因式的系数,取相同字母最低次幂的积。公因式可以是单项式,也可以是多项式。
2) 公式法:A.平方差公式; B.完全平方公式
中考数学知识点总结6
1、变量与常量
在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值与它对应,那么就说x是自变量,y是x的函数。
2、函数解析式
用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3、函数的三种表示法及其优缺点
(1)解析法
两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法
把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法
用图像表示函数关系的方法叫做图像法。
4、由函数解析式画其图像的'一般步骤
(1)列表:列表给出自变量与函数的一些对应值。
(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点。
(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
中考数学知识点总结7
考点1
相似三角形的概念、相似比的意义、画图形的放大和缩小。
考核要求:
(1)理解相似形的概念;
(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小。
考点2
平行线分线段成比例定理、三角形一边的平行线的有关定理
考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算。
注意:被判定平行的一边不可以作为条件中的对应线段成比例使用。
考点3
相似三角形的概念
考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义。
考点4
相似三角形的判定和性质及其应用
考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用。
考点5
三角形的重心
考核要求:知道重心的定义并初步应用。
考点6
向量的有关概念
考点7
向量的加法、减法、实数与向量相乘、向量的线性运算
考核要求:掌握实数与向量相乘、向量的线性运算
考点8
锐角三角比(锐角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值。
考点9
解直角三角形及其应用
考核要求:
(1)理解解直角三角形的意义;
(2)会用锐角互余、锐角三角比和勾股定理等解直角三角形和解决一些简单的实际问题,尤其应当熟练运用特殊锐角的三角比的值解直角三角形。
考点10
函数以及函数的定义域、函数值等有关概念,函数的表示法,常值函数
考核要求:
(1)通过实例认识变量、自变量、因变量,知道函数以及函数的定义域、函数值等概念;
(2)知道常值函数;
(3)知道函数的表示方法,知道符号的意义。
考点11
用待定系数法求二次函数的解析式
考核要求:
(1)掌握求函数解析式的方法;
(2)在求函数解析式中熟练运用待定系数法。
注意求函数解析式的步骤:一设、二代、三列、四还原。
考点12
画二次函数的图像
考核要求:
(1)知道函数图像的意义,会在平面直角坐标系中用描点法画函数图像
(2)理解二次函数的图像,体会数形结合思想;
(3)会画二次函数的大致图像。
考点13
二次函数的图像及其基本性质
考核要求:
(1)借助图像的直观、认识和掌握一次函数的性质,建立一次函数、二元一次方程、直线之间的联系;
(2)会用配方法求二次函数的顶点坐标,并说出二次函数的有关性质。
注意:
(1)解题时要数形结合;
(2)二次函数的平移要化成顶点式。
考点14
圆心角、弦、弦心距的概念
考核要求:清楚地认识圆心角、弦、弦心距的概念,并会用这些概念作出正确的判断。
考点15
圆心角、弧、弦、弦心距之间的关系
考核要求:认清圆心角、弧、弦、弦心距之间的关系,在理解有关圆心角、弧、弦、弦心距之间的关系的定理及其推论的基础上,运用定理进行初步的几何计算和几何证明。
考点16
垂径定理及其推论
垂径定理及其推论是圆这一板块中最重要的知识点之一。
考点17
直线与圆、圆与圆的位置关系及其相应的数量关系
直线与圆的位置关系可从与之间的关系和交点的个数这两个侧面来反映。在圆与圆的位置关系中,常需要分类讨论求解。
考点18
正多边形的有关概念和基本性质
考核要求:熟悉正多边形的有关概念(如半径、边心距、中心角、外角和),并能熟练地运用正多边形的基本性质进行推理和计算,在正多边形的计算中,常常利用正多边形的半径、边心距和边长的一半构成的直角三角形,将正多边形的计算问题转化为直角三角形的计算问题。
考点19
画正三、四、六边形。
考核要求:能用基本作图工具,正确作出正三、四、六边形。
考点20
确定事件和随机事件
考核要求:
(1)理解必然事件、不可能事件、随机事件的`概念,知道确定事件与必然事件、不可能事件的关系;
(2)能区分简单生活事件中的必然事件、不可能事件、随机事件。
考点21
事件发生的可能性大小,事件的概率
考核要求:
(1)知道各种事件发生的可能性大小不同,能判断一些随机事件发生的可能事件的大小并排出大小顺序;
(2)知道概率的含义和表示符号,了解必然事件、不可能事件的概率和随机事件概率的取值范围;
(3)理解随机事件发生的频率之间的区别和联系,会根据大数次试验所得频率估计事件的概率。
注意:
(1)在给可能性的大小排序前可先用“一定发生”、“很有可能发生”、“可能发生”、“不太可能发生”、“一定不会发生”等词语来表述事件发生的可能性的大小;
(2)事件的概率是确定的常数,而概率是不确定的,可是近似值,与试验的次数的多少有关,只有当试验次数足够大时才能更精确。
考点22
等可能试验中事件的概率问题及概率计算
考核要求:
(1)理解等可能试验的概念,会用等可能试验中事件概率计算公式来计算简单事件的概率;
(2)会用枚举法或画“树形图”方法求等可能事件的概率,会用区域面积之比解决简单的概率问题;
(3)形成对概率的初步认识,了解机会与风险、规则公平性与决策合理性等简单概率问题。
注意:
(1)计算前要先确定是否为可能事件;
(2)用枚举法或画“树形图”方法求等可能事件的概率过程中要将所有等可能情况考虑完整。
考点23
数据整理与统计图表
考核要求:
(1)知道数据整理分析的意义,知道普查和抽样调查这两种收集数据的方法及其区别;
(2)结合有关代数、几何的内容,掌握用折线图、扇形图、条形图等整理数据的方法,并能通过图表获取有关信息。
考点24
统计的含义
考核要求:
(1)知道统计的意义和一般研究过程;
(2)认识个体、总体和样本的区别,了解样本估计总体的思想方法。
考点25
平均数、加权平均数的概念和计算
考核要求:
(1)理解平均数、加权平均数的概念;
(2)掌握平均数、加权平均数的计算公式。注意:在计算平均数、加权平均数时要防止数据漏抄、重抄、错抄等错误现象,提高运算准确率。
考点26
中位数、众数、方差、标准差的概念和计算
考核要求:
(1)知道中位数、众数、方差、标准差的概念;
(2)会求一组数据的中位数、众数、方差、标准差,并能用于解决简单的统计问题。
注意:
(1)当一组数据中出现极值时,中位数比平均数更能反映这组数据的平均水平;
(2)求中位数之前必须先将数据排序。
考点27
频数、频率的意义,画频数分布直方图和频率分布直方图
考核要求:
(1)理解频数、频率的概念,掌握频数、频率和总量三者之间的关系式;
(2)会画频数分布直方图和频率分布直方图,并能用于解决有关的实际问题。解题时要注意:频数、频率能反映每个对象出现的频繁程度,但也存在差别:在同一个问题中,频数反映的是对象出现频繁程度的绝对数据,所有频数之和是试验的总次数;频率反映的是对象频繁出现的相对数据,所有的频率之和是1。
考点28
中位数、众数、方差、标准差、频数、频率的应用
考核要求:
(1)了解基本统计量(平均数、众数、中位数、方差、标准差、频数、频率)的意计算及其应用,并掌握其概念和计算方法;
(2)正确理解样本数据的特征和数据的代表,能根据计算结果作出判断和预测;
(3)能将多个图表结合起来,综合处理图表提供的数据,会利用各种统计量来进行推理和分析,研究解决有关的实际生活中问题,然后作出合理的解决。
如何整理数学学科课堂笔记?
一、内容提纲。
老师讲课大多有提纲,并且讲课时老师会将一堂课的线索脉络、重点难点等,简明清晰地呈现在黑板上。同时,教师会使之富有条理性和直观性。记下这些内容提纲,便于课后复习回顾,整体把握知识框架,对所学知识做到胸有成竹、清晰完整。
二、疑难问题。
将课堂上未听懂的问题及时记下来,便于课后请教同学或老师,把问题弄懂弄通。教师在组织课堂教学时,受到时空的限制,不可能做到顾及每一位同学。相应的,一些问题对部分学生来说,是属于疑难问题,由于课堂上来不及思考成熟,记下疑难问题,可在课后继续加以思考和探究,加以理解和掌握,不致出现知识的断层、方法的缺陷。
三、思路方法。
对老师在课堂上介绍的解题方法和分析思路也应及时记下,课后加以消化,若有疑惑,先作独立分析,因为有可能是自己理解错误造成的,也有可能是老师讲课疏忽造成的,记下来后,便于课后及时与老师商榷和探讨。勤记老师讲的解题技巧、思路及方法,这对于启迪思维,开阔视野,开发智力,培养能力,并对提高解题水平大有益处。在这基础上,若能主动钻研,另辟蹊径,则更难能可贵。
四、归纳总结。注意记下老师的课后总结,这对于浓缩一堂课的内容,找出重点及各部分之间的联系,掌握基本概念、公式、定理,寻找规律,融会贯通课堂内容都很有作用。同时,很多有经验的老师在课后小结时,一方面是承上归纳所学内容,另一方面又是启下布置预习任务或点明后面所要学的内容,做好笔记可以把握学习的主动权,提前作准备,做到目标任务明确。
五、错误反思。
学习过程中不可避免地会犯这样或那样的错误,记下自己所犯的错误,并用红笔醒目地加以标注,以警示自己,同时也应注明错误成因,正确思路及方法,在反思中成熟,在反思中提高。
数学常用解题技巧有哪些?
第一,应坚持由易到难的做题顺序。
近年来高考数学试题的设置是8道选择题、6道填空题、6到大题,通常称为866结构。在实体设置的结构中有三个小高峰,选择题是由易到难,最难的题是第8题。填空题同样是这样设置的。也是第9题容易到第14题最难,大题从第15题到第20题,它们的设置也是这样的。根据这样的试题结构,应先做前面容易的,基础好一点的考生就先做前7个选择,前5个填空、前5个大题,称为是755结构。基础差的就是644,先把自己能做的、会做的拿到手。这是第一点。
第二,审题是关键。
把题给看清楚了再动笔答题,看清楚题以后问什么、已知什么、让你做什么,把这些问题搞清楚了,自己制订了一个完整的解题策略,在开始写的时候,这个时候是很快就可以完成的。
第三,属于非智力因素导致想不起来。
本来是很简单的题比如说是做到第三题、第四题的时候不是难题,但想不起来了,卡住了,这时候怎么办?虽然是简单题却不会做怎么办?应先跳过去,不是这道题不会做吗?后面还有很多的简单题呢,把后面的题做一做,不要在考场上愣神,先跳过去做其他的题,等稳定下来以后再回过头来看会顿悟,豁然开朗。
第四,做选择题的时候应运用最好的解题方法。
因为选择题和填空题都是看结果不看过程,因此在这个过程中都应不择手段,只要是能把正确的结论找到就行。考生常用的方法是直接法,从已知的开始也不看它的四个选项,从头到尾写完了之后一看答案就写上去了。另外就是特质法(音),一些出现字母、特别是不等式,这时候给它赋一个值,代进去这时候速度会比较快,正确地找出结果来。再就是数形结合法。最后实在不行了,就将四个选项代入验证,看看哪个符合就是哪个了。填空题用上述的直接法、特质法、数形结合法三种方法都适合。做大题的时候要特别注意解题步骤,规范答题可以减少失分。简单地说,规范答题就是从上一步的原因到下一步的结论,这是一个必然的过程,让谁写、谁看都是这样的。因为什么所以什么是一个必然的过程,这是规范答题。
学霸分享的数学复习技巧
1、把答案盖住看例题
例题不能带着答案去看,不然会认为自己就是这么,其实自己并没有理解透彻。
所以,在看例题时,把解答盖住,自己去做,做完或做不出时再去看。这时要想一想,自己做的哪里与解答不同,哪里没想到,该注意什么,哪一种方法更好,还有没有另外的解法。
经过上面的训练,自己的思维空间扩展了,看问题也全面了。如果把题目彻底搞清了,在题后精炼几个批注,说明此题的“题眼”及巧妙之处,收获会更大。
2、研究每题都考什么
数学能力的提高离不开做题,“熟能生巧”这个简单的道理大家都懂。但做题不是搞题海战术,而是要通过一题联想到很多题。
3、错一次反思一次
每次业及考试或多或少会发生些错误,这并不可怕,要紧的是避免类似的错误再次重现。因此平时注意把错题记下来。
学生若能将每次考试或练习中出现的错误记录下来分析,并尽力保证在下次考试时不发生同样错误,那么以后人生中最重要的高考也就能避免犯错了。
4、分析试卷总结经验
每次考试结束试卷发下来,要认真分析得失,总结经验教训。特别是将试卷中出现的错误进行分类。
中考数学知识点总结8
(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;
(2)有理数的分类:①整数②分数
(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的.数分成四个区域,这四个区域的数也有自己的特性;
(4)自然数0和正整数;a>0a是正数;a<0a是负数;
a≥0a是正数或0a是非负数;a≤0?a是负数或0a是非正数.
有理数比大小:
(1)正数的绝对值越大,这个数越大;
(2)正数永远比0大,负数永远比0小;
(3)正数大于一切负数;
(4)两个负数比大小,绝对值大的反而小;
(5)数轴上的两个数,右边的数总比左边的数大;
(6)大数-小数>0,小数-大数<0.
中考数学知识点总结9
一、知识点:
1、“三线八角”
①如何由线找角:一看线,二看型。同位角是“F”型;内错角是“Z”型;同旁内角是“U”型。
②如何由角找线:组成角的三条线中的公共直线就是截线。
2、平行公理:
如果两条直线都和第三条直线平行,那么这两条直线也平行。简述:平行于同一条直线的两条直线平行。补充定理:
如果两条直线都和第三条直线垂直,那么这两条直线也平行。简述:垂直于同一条直线的两条直线平行。
3、平行线的判定和性质:
判定定理条件同位角相等内错角相等同旁内角互补结论两直线平行两直线平行两直线平行条件两直线平行两直线平行两直线平行性质定理结论同位角相等内错角相等同旁内角互补
4、图形平移的性质:
图形经过平移,连接各组对应点所得的线段互相平行(或在同一直线上)并且相等。
5、三角形三边之间的关系:
三角形的任意两边之和大于第三边;三角形的任意两边之差小于第三边。
若三角形的三边分别为a、b、c,则abcab
6、三角形中的主要线段:
三角形的高、角平分线、中线。
注意:
①三角形的高、角平分线、中线都是线段。
②高、角平分线、中线的应用。
7、三角形的内角和:
三角形的3个内角的和等于180°;直角三角形的两个锐角互余;
三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于与它不相邻的任意一个内角。
8、多边形的内角和:
n边形的内角和等于(n-2)180°;任意多边形的外角和等于360°。
第八章幂的运算
nn
幂(power)指乘方运算的结果。a指将a自乘n次(n个a相乘)。把a看作乘方的结果,叫做a的n次幂。
对于任意底数a,b,当m,n为正整数时,有
mnm+n
aa=a(同底数幂相乘,底数不变,指数相加)mnm-n
a÷a=a(同底数幂相除,底数不变,指数相减)mnmn(a)=a(幂的乘方,底数不变,指数相乘)
nnn
(ab)=aa(积的乘方,把积的每一个因式乘方,再把所得的幂相乘)0
a=1(a≠0)(任何不等于0的数的0次幂等于1)-nn
a=1/a(a≠0)(任何不等于0的数的-n次幂等于这个数的n次幂的倒数)
n
科学记数法:把一个绝对值大于10(或者小于1)的整数记为a10的形式(其中1≤|a|<10),这种记数法叫做科学记数法.
复习知识点:
1.乘方的概念
求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在a中,a叫做底数,n叫做指数。
2.乘方的性质
(1)负数的奇次幂是负数,负数的偶次幂的正数。
2
n(2)正数的任何次幂都是正数,0的任何正整数次幂都是0。
第九章整式的乘法与因式分解
一、整式乘除法
单项式与单项式相乘,把它们的系数,相同字母分别相乘,对于只在一个单项式里含有的字
52525+27
母,则连同它的指数作为积的一个因式.acbc=(ab)(cc)=abc=abc注:运算顺序先乘方,后乘除,最后加减
单项式相除,把系数与同底数幂分别相除作为商的因式,只在被除式里含有的字母,则连同它的指数作为商的一个因式
单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加,m(a+b+c)=ma+mb+mc注:不重不漏,按照顺序,注意常数项、负号.本质是乘法分配律。
多项式除以单项式,先把这个多项式的.每一项除以这个单项式,再把所得的商相加.
多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相乘(a+b)(m+n)=am+an+bm+bn
乘法公式:平方差公式:两个数的和与这两个数的差的积,等于这两个数的平方差.
22
(a+b)(a-b)=a-b
完全平方公式:两数和[或差]的平方,等于它们的平方和,加[或减]它们积的2
222
倍.(a±b)=a±2ab+b
因式分解:把一个多项式化成几个整式积的形式,也叫做把这个多项式分解因式.因式分解方法:
1、提公因式法.关键:找出公因式
公因式三部分:
①系数(数字)一各项系数最大公约数;
②字母--各项含有的相同字母;
③指数--相同字母的最低次数;
步骤:
第一步是找出公因式;
第二步是提取公因式并确定另一因式.
需注意,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.
注意:
①提取公因式后各因式应该是最简形式,即分解到“底”;
②如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的.
22
2、公式法.
①a-b=(a+b)(a-b)两个数的平方差,等于这两个数的和与这两个数的差的积a、
222
b可以是数也可是式子
②a±2ab+b=(a±b)完全平方两个数平方和加上或减去这两个数的积的2倍,等于这两个数的和[或差]的平方.3322
③x-y=(x-y)(x+xy+y)立方差公式
2
3、十字相乘(x+p)(x+q)=x+(p+q)x+pq因式分解三要素:
(1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式
(2)因式分解必须是恒等变形;
(3)因式分解必须分解到每个因式都不能分解为止.弄清因式分解与整式乘法的内在的关系:互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差
添括号法则:如括号前面是正号,括到括号里的各项都不变号,如括号前是负号各项都得改符号。用去括号法则验证
第十章二元一次方程组
1、含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程(linearequationsoftwounknowns)。
2、含有两个未知数的两个一次方程所组成的方程组叫做二元一次方程组。
3、二元一次方程组中两个方程的公共解叫做二元一次方程组的解。
4、代入消元法:把二元一次方程中一个方程的一个未知数用含另一个未知数的式子表示出来,再带入另一个方程,实现消元,进而求得这个二元一次方程组的解。这种方法叫做代入消元法,简称代入法。
5、加减消元法:当方程中两个方程的某一未知数的系数相等或互为相反数时,把这两个方程的两边相加或相减来消去这个未知数,从而将二元一次方程化为一元一次方程,最后求得方程组的解,这种解方程组的方法叫做加减消元法,简称加减法.
6、二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答”五步,即:
(1)审:通过审题,把实际问题抽象成数学问题,分析已知数和未知数,并用字母表示其中的两个未知数;
(2)找:找出能够表示题意两个相等关系;
(3)列:根据这两个相等关系列出必需的代数式,从而列出方程组;
(4)解:解这个方程组,求出两个未知数的值;
(5)答:在对求出的方程的解做出是否合理判断的基础上,写出答案.
第十一章一元一次不等式
一元一次不等式
重点:不等式的性质和一元一次不等式的解法。
难点:一元一次不等式的解法和一元一次不等式解决在现实情景下的实际问题。知识点一:不等式的概念
1.不等式:
用“<”(或“≤”),“>”(或“≥”)等不等号表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.
要点诠释:
(1)不等号的类型:
①“≠”读作“不等于”,它说明两个量之间的关系是不等的,但不能明确两个量谁大谁小;
(2)要正确用不等式表示两个量的不等关系,就要正确理解“非负数”、“非正数”、“不大于”、“不小于”等数学术语的含义。
2.不等式的解:
能使不等式成立的未知数的值,叫做不等式的解。要点诠释:
由不等式的解的定义可以知道,当对不等式中的未知数取一个数,若该数使不等式成立,则这个数就是不等式的一个解,我们可以和方程的解进行对比理解,一般地,要判断一个数是否为不等式的解,可将此数代入不等式的左边和右边利用不等式的概念进行判断。
3.不等式的解集:
一般地,一个含有未知数的不等式的所有解,组成这个不等式的解集。求不等式的解集的过程叫做解不等式。如:不等式x-4<1的解集是x<5.不等式的解集与不等式的解的区别:解集是能使不等式成立的未知数的取值范围,是所有解的集合,而不等式的解是使不等式成立的未知数的值.二者的关系是:解集包括解,所有的解组成了解集。要点诠释:
不等式的解集必须符合两个条件:
(1)解集中的每一个数值都能使不等式成立;
(2)能够使不等式成立的所有的数值都在解集中。知识点
二:不等式的基本性质
基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变。符号语言表示为:如果,那么
基本性质2:不等式的两边都乘上(或除以)同一个正数,不等号的方向不变。
符号语言表示为:如果,并且,那么(或)。
基本性质3:不等式的两边都乘上(或除以)同一个负数,不等号的方向改变。
符号语言表示为:如果要点诠释:,并且,那么(或)
(1)不等式的基本性质1的学习与等式的性质的学习类似,可对比等式的性质掌握;
(2)要理解不等式的基本性质1中的“同一个整式”的含义不仅包括相同的数,还有相同的单项式或多项式;
(3)“不等号的方向不变”,指的是如果原来是“>”,那么变化后仍是“>”;如果原来是“≤”,那么变化后仍是“≤”;“不等号的方向改变”指的是如果原来是“>”,那么变化后将成为“<”;如果原来是“≤”,那么变化后将成为“≥”;
(4)运用不等式的性质对不等式进行变形时,要特别注意性质3,在乘(除)同一个数时,必须先弄清这个数是正数还是负数,如果是负数,要记住不等号的方向一定要改变。知识点三:一元一次不等式的概念
只含有一个未知数,且含未知数的式子都是整式,未知数的次数是1,系数不为0.这样的不等式,叫做一元一次不等式。要点诠释:
(1)一元一次不等式的概念可以从以下几方面理解:
①左右两边都是整式(单项式或多项式);
②只含有一个未知数;
③未知数的最高次数为1。
(2)一元一次不等式和一元一次方程可以对比理解。
相同点:二者都是只含有一个未知数,未知数的最高次数都是1,左右两边都是整式;不同点:一元一次不等式表示不等关系(用“>”、“<”、“≥”、“≤”连接),一元一次方程表示相等关系(用“=”连接)。知识点
四:一元一次不等式的解法
1.解不等式:
求不等式解的过程叫做解不等式。
2.一元一次不等式的解法:
与一元一次方程的解法类似,其根据是不等式的基本性质,解一元一次不等式的一般步骤为:
(1)去分母;
(2)去括号;
(3)移项;
(4)合并同类项;
(5)系数化为
1.要点诠释:
(1)在解一元一次不等式时,每个步骤并不一定都要用到,可根据具体问题灵活运用
(2)解不等式应注意:
①去分母时,每一项都要乘同一个数,尤其不要漏乘常数项;
②移项时不要忘记变号;
③去括号时,若括号前面是负号,括号里的每一项都要变号;
④在不等式两边都乘(或除以)同一个负数时,不等号的方向要改变。
3.不等式的解集在数轴上表示:
在数轴上可以直观地把不等式的解集表示出来,能形象地说明不等式有无限多个解,它对以后正确确定一元一次不等式组的解集有很大帮助。要点诠释:
在用数轴表示不等式的解集时,要确定边界和方向:
(1)边界:有等号的是实心圆圈,无等号的是空心圆圈;
(2)方向:大向右,小向左规律方法指导(包括对本部分主要题型、思想、方法的总结)
1、不等式的基本性质是解不等式的主要依据。(性质2、3要倍加小心)
2、检验一个数值是不是已知不等式的解,只要把这个数代入不等式,然后判断不等式是否成立,若成立,就是不等式的解;若不成立,则就不是不等式的解。
3、解一元一次不等式是一个有目的、有根据、有步骤的不等式变形,最终目的是将原不等式变为
或
的形式,其一般步骤是:
(1)去分母;
(2)去括号;
(3)移项;
(4)合并同类项;
(5)化未知数的系数为1。
这五个步骤根据具体题目,适当选用,合理安排顺序。但要注意,去分母或化未知数的系数为1时,在不等式两边同乘以(或除以)同一个非零数时,如果是个正数,不等号方向不变,如果是个负数,不等号方向改变。
解一元一次不等式的一般步骤及注意事项变形名称具体做法注意事项去分母
(1)不含分母的项不能漏乘
(2)注意分数线有括号作用,去掉分在不等式两边同乘以分母的最小公倍数母后,如分子是多项式,要加括号
(3)不等式两边同乘以的数是个负数,不等号方向改变。
(1)运用分配律去括号时,不要漏乘根据题意,由内而外或由外而内去括号均括号内的项可
(2)如果括号前是“”号,去括号时,括号内的各项要变号把含未知数的项都移到不等式的一边(通7去括号移项移项(过桥)变号常是左边),不含未知数的项移到不等式的另一边把不等式两边的同类项分别合并,把不等合并同类项式化为或的形式合并同类项只是将同类项的系数相加,字母及字母的指数不变。
在不等式两边同除以未知数的系数,若且,则不等式的解集为;若系数化1且,则不等式的
(1)分子、分母不能颠倒
(2)不等号改不改变由系数的正负性决定。
则不
(3)计算顺序:先算数值后定符号且,解集为;若且等式的解集为;若则不等式的解集为;
4、将一元一次不等式的解集在数轴上表示出来,是数学中数形结合思想的重要体现,要注意的是“三定”:一是定边界点,二是定方向,三是定空实。
5、用一元一次不等式解答实际问题,关键在于寻找问题中的不等关系,从而列出不等式并求出不等式的解集,最后解决实际问题。
6、常见不等式的基本语言的意义:
(1)(3)(5)(7),则x是正数;
(2),则x是非正数;
(4),则x大于y;
(6),则x不小于y;
(8),则x是负数;,则x是非负数;,则x小于y;,则x不大于y;
(9)或,则x,y同号;
(10)或,则x,y异号;
(11)x,y都是正数,若,则;若,则;
(12)x,y都是负数,若,则;若,则
第十二章证明
教学目标:
1.掌握定义、命题、定理、逆命题、互逆命题等概念,知道一个命题是真命题,它的逆命题不一定是真命题。
2.基本事实是其真实性不加证明的真命题,弄清真命题与定理的区别。
3.会用举反例说明一个命题是假命题;掌握三角形内角和定理的证明。重点:定义、命题、定理、逆命题、互逆命题等概念的理解与运用
难点:会用举反例说明一个命题是假命题;掌握三角形内角和定理的证明。内容:
1.以基本事实:“同位角相等,两直线平行”证明:
(1)“内错角相等,两直线平行”、“同旁内角互补,两直线平行”、“平行于同一条直线的两条直线平行”
2.基本事实:“过直线外一点,有且只有一条直线与这条直线平行”“两直线平行,同位角相等”证明:
(1)两只相平行,内错角相等
(2)两只相平行,同旁内角互补
(3)三角形内角和定理”
(4)直角三角形的两个锐角互余
(5)有两个锐角互余的三角形是直角三角形
(6)三角形的外角等于与它不相邻的两个外角的和
中考数学知识点总结10
在日常的练习、作业和考试中,学生都会或多或少地出现一些做错的题目,而对待错题的态度不同,学习的效果就会有很大的差别。丁老师就来告诉同学们怎么来用好我们的错题吧!
错题主要涉及错题收集和存档、错题改正、错题分享、错题应用四个环节。
一、错题收集和存档:
这里的错题,不仅指各级各类数学考试中的错题,还包括平时数学作业中做错的题目。最好把错题都摘录到一个固定的本子上面(错题本),便于自己以后查阅。即使是曾经错了而现在理解了的题目也最好登记在册,它们形成独具个性的学习轨迹,有利于知识的理解、识记、储存和提取。
在进行错题收集的时候,一定要注意分类。分类的方法很多,可以按照错题原因分类、按照错题中所隐含知识的章节进行分类,甚至还可以按照题型进行分类。这样整理好的错题是系统的,到最后复习时就有比较强的针对性。
二、错题改正:
收集错题以后,接下来就是改错了,这是错题管理的目的。学生要争取自己独立对错题进行分析,然后找出正确的解答,并订正。在自己独立思考的基础上,如果还是得不到答案,这时候就需要积极地求助他人了,可以是学得比较好的同学,也可以是老师。让他们帮自己分析原因,在他们的启发引导下进行改正。找到出错的症结所在,最好能在错题后面附上自己的心得体会,可以依次回答以下问题:
这道题目错在什么地方?
这道题目为什么做错了?(错在计算、化简?错在概念理解?错在理解题意?错在逻辑关系?错在以偏概全?错在粗心大意?错在思维品质?错在类比?等等。)
这道题目正确的做法是什么?
这道题目有没有其它解法?哪种方法更好?
错题改正这个过程其实就是学生再学习、再认识、再提高的过程,它使学生对易出错的知识的理解更全面透彻,掌握更加牢固,同时也提高了学生自主学习的能力。一般意义上,任何学习都需要反思,错题改正是反思的具体途径之一。
整理错题并不是为了做得好看,是为了实用,对自己的学习有帮助。因而没有固定的标准,关键要符合学生自己的习惯。但是学生一定要抽时间翻阅自己辛勤劳动的结晶,对其中的错题进行温习,这样做有时候可以收到意想不到的效果,会有新的体会。其实整理好的错题集就相当于是以前做过的.大量习题中的精华荟萃(这要建立在学生认真整理的基础上),是最适合学生个人的学习资料,比任何一本参考书、习题集都有用,有价值。
三、错题分享:
在现行的学习体制下,学生之间的竞争意识很强,但是主动交流分享意识非常薄弱。其实同学就是一个巨大的学习资源库,只要每个学生都愿意敞开心扉,真诚地交流,相互扶持,相互帮助和鼓励,学生就可以从同学身上学到很多东西。正所谓“你有一种思想,我有一种思想,交流之后我们就同时拥有了两种思想”,学生之间的错题集也可以相互交流。这是因为每个学生出错的原因各不相同,所以每个人建立的错题集也不同,通过相互交流可以从别人的错误中汲取教训,拓展自己的视野,得到启发,以警示自己不犯同样错误。不同的人从相同的题目中得到的是不同的体会,通过交流大家就可以领略到知识的不同侧面,从而对知识掌握得更加牢固。在交流的氛围中,学生改变了学习方式,增强了学习数学的积极性。
四、错题应用:
将错题收集在一起并改正,还不能完全说明学生对这一知识点的漏洞就补好了。最好的状况是对于每一个错题,学生自己还必须查找资料,找出与之相同或相关的题型,进行练习解答。如果没有困难,则说明学生对这一知识点可能已经掌握。此时,学生可以尝试着进行更高难度的事情:错题改编。将题目中的条件和结论换一下,还成立吗?把条件减弱或者把结论加强,命题还成立吗?或者尝试着编一道类似的题目,还能做吗?经历了这么一个思维洗礼,学生对知识的理解会更深刻,对方法的把握会更透彻,不管条件怎么变,他们基本上都可以应付自如了。一般情况下,学生在学校可能没有这么充裕的时间来做这样的事情,但是学生之间相互协助,每人找一个类型的题目,或者每人提出一个想法,全班合起来就基本找全了所有的题型,改编了很多道类似的题目。
错题管理有助于学生的数学学习。但是,错题管理并不是学习的目的,而是帮助学生进行有效学习的一种手段。制作错题集更不是任务,不一定要做得精致、全面,它只是一种训练思维的载体。最关键的是,学生和老师不能轻易放过错题,彻底弄清楚错题所反映的问题,学以致用。在反思学习的过程中完善自己的知识结构,提升解决问题的能力,实现有效学习和有效教学的终极目标。
中考数学知识点总结11
1、有理数的'加法运算:
同号相加一边倒;异号相加“大”减“小”,符号跟着大的跑;绝对值相等“零”正好、
2、合并同类项:
合并同类项,法则不能忘,只求系数和,字母、指数不变样、
3、去、添括号法则:
去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号、
4、一元一次方程:
已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒、
5、平方差公式:
平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆、
1、完全平方公式:
完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;
首±尾括号带平方,尾项符号随中央、
2、因式分解:
一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚、
3、单项式运算:
加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行、
4、一元一次不等式解题的一般步骤:
去分母、去括号,移项时候要变号,同类项合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了、
5、一元一次不等式组的解集:
大大取较大,小小取较小,小大、大小取中间,大小、小大无处找、
一元二次不等式、一元一次绝对值不等式的解集:
大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。
中考数学知识点总结12
中位线概念
(1)三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线。
(2)梯形中位线定义:连接梯形两腰中点的线段叫做梯形的中位线。
注意(1)要把三角形的中位线与三角形的中线区分开。三角形中线是连接一顶点和它的对边中点的线段,而三角形中位线是连接三角形两边中点的线段。
(2)梯形的'中位线是连接两腰中点的线段而不是连结两底中点的线段。
(3)两个中位线定义间的联系:可以把三角形看成是上底为零时的梯形,这时三角形的中位线就变成梯形的中位线。
中位线定理
(1)三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半.
(2)梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半.
中位线定理推广
三角形有三条中位线,首尾相接时,每个小三角形面积都等于原三角形的四分之一,这四个三角形都互相全等。
中考数学知识点总结13
1、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。
2、逆定理:平分弦不是直径的直径垂直于弦,并且平分弦所对的2条弧。
3、有关圆周角和圆心角的性质和定理
①在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。
②一条弧所对的圆周角等于它所对的圆心角的一半。
直径所对的圆周角是直角。90度的圆周角所对的弦是直径。
圆心角计算公式:θ=L/2πr×360°=180°L/πr=L/r弧度
即圆心角的度数等于它所对的弧的度数;圆周角的度数等于它所对的弧的度数的一半。
③如果一条弧的长是另一条弧的2倍,那么其所对的圆周角和圆心角是另一条弧的2倍。
4、有关外接圆和内切圆的性质和定理
①一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等;
②内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。
③R=2S△÷LR:内切圆半径,S:三角形面积,L:三角形周长。
④两相切圆的连心线过切点连心线:两个圆心相连的直线。
⑤圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。
5、如果两圆相交,那么连接两圆圆心的线段直线也可垂直平分公共弦。
6、弦切角的度数等于它所夹的弧的度数的一半。
7、圆内角的度数等于这个角所对的弧的度数之和的一半。
8、圆外角的度数等于这个角所截两段弧的度数之差的一半。
9、周长相等,圆面积比长方形、正方形、三角形的面积大。
10、形如y=k/x(k≠0)或y=kx^—1的函数叫做反比例函数,k叫做反比例系数。它的图像是双曲线。^—1表示负一次。
11、在函数y=k/x(k≠0),当k>0时,表达式中的想x、y符号相同,点(x,y)在第一、三象限,所以函数y=k/x(k≠0)的图像位于第一、三象限;当k<0时,表达式中的想x、y符号相反,点(x,y)在第二、四象限,所以函数y=k/x(k≠0)的图像位于第二、四象限。
12、在y=k/x(k≠0)中,当k>0时,在第一象限内,y随着x的增大而减小;若y的值随着x的值的增大而增大,则k的取值范围是k<0。
13、设P(a,b)是反比例函数y=k/x(k≠0)上任意一点,则ab的值等于k。经过反比例函数上的任意一点P,分别向x轴、y轴作垂线段,则所成的矩形面积为k;过P点向x轴或y轴作垂线段,连接OP,则所成的三角形面积为k/2。
14、如果两个数的比值与另两个数的比值相等,就说这四个数成比例。
15、如果a/b=c/d,那么ad=bc;如果ad=bc,且bd≠0,那么a/b=c/d;如果a/b=c/d,那么(a+b)/b=(c+d)/d。谁都不能为0。为0无意义。
16、一般的,如果三个数a,b,c满足比例式a:b=b:c,则b就叫做a,c的比例中项。(如果是线段的话,只能取正的,如果是数,正负都可以)
17、黄金分割:把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是(√5—1)/2,取其前三位数字的近似值是0.618。
18、证明三角形相似的方法:
(1)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。照我们老师的方法来说就是A字型和8字型。
(2)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
(3)如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。
(4)如果两个三角形的.三组对应边的比相等,那么这两个三角形相似。
(5)对应角相等,对应边成比例的两个三角形叫做相似。
19、积的算术平方根:积的算术平方根等于积中各因式的算术平方根的积。
20、二次根式比较大小的方法:
(1)利用近似值比大小。
(2)把二次根式的系数移入二次根号内,然后比大小。
(3)分别平方,然后比大小。
21、商的算术平方根:商的算术平方根等于被除式的算术平方根除以除式的算术平方根。
22、分母有理化的方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式。
23、最简二次根式:
(1)满足下列两个条件的二次根式,叫做最简二次根式。
①被开方数的因数是整数,因式是整式。
②被开方数中不含能开的尽的因数或因式。
(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母。
(3)化简二次根式时,往往需要把被开方数先分解因数或分解因式。
(4)二次根式计算的最后结果必须化为最简二次根式。
中考数学知识点总结14
1. 因式分把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化.
2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”.
3.公因式的'确定:系数的最大公约数?相同因式的最低次幂.
注意公式:a+b=b+a; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3.
4.因式分解的公式:
(1)平方差公式: a2-b2=(a+ b)(a- b);
(2)完全平方公式: a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2.
5.因式分解的注意事项:
(1)选择因式分解方法的一般次序是:一 提取、二 公式、三 分组、四 十字;
(2)使用因式分解公式时要特别注意公式中的字母都具有整体性;
(3)因式分解的最后结果要求分解到每一个因式都不能分解为止;
(4)因式分解的最后结果要求每一个因式的首项符号为正;
(5)因式分解的最后结果要求加以整理;
(6)因式分解的最后结果要求相同因式写成乘方的形式.
6.因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子看作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项.
7.完全平方式:能化为(m+n)2的多项式叫完全平方式;对于二次三项式x2+px+q, 有“ x2+px+q是完全平方式 ? ”.
中考数学知识点总结15
不等式与不等式组
1.定义:
用符号〉,=,〈号连接的式子叫不等式。
2.性质:
①不等式的两边都加上或减去同一个整式,不等号方向不变。
②不等式的两边都乘以或者除以一个正数,不等号方向不变。
③不等式的两边都乘以或除以同一个负数,不等号方向相反。
3.分类:
①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的.最高次数是1的不等式叫一元一次不等式。
②一元一次不等式组:
a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。
b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
4.考点:
①解一元一次不等式(组)
②根据具体问题中的数量关系列不等式(组)并解决简单实际问题
③用数轴表示一元一次不等式(组)的解集
【中考数学知识点总结】相关文章:
数学中考知识点总结07-16
中考数学知识点总结11-07
数学中考知识点总结(通用)07-17
中考数学知识点总结12-02
数学中考知识点06-29
人教版中考数学知识点总结06-17
数学中考的知识点大全08-13
中考数学必考知识点06-16
中考数学知识点总结(15篇)12-09