高一数学知识点总结

时间:2024-07-08 10:41:12 数学 我要投稿

【精】高一数学知识点总结15篇

  总结在一个时期、一个年度、一个阶段对学习和工作生活等情况加以回顾和分析的一种书面材料,它可以帮助我们有寻找学习和工作中的规律,为此我们要做好回顾,写好总结。那么总结应该包括什么内容呢?以下是小编为大家整理的高一数学知识点总结,希望能够帮助到大家。

【精】高一数学知识点总结15篇

高一数学知识点总结1

  一、集合有关概念

  1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

  2、集合的中元素的三个特性:

  1.元素的确定性;2.元素的互异性;3.元素的无序性

  说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

  (2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

  (3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

  (4)集合元素的三个特性使集合本身具有了确定性和整体性。

  3、集合的.表示:{…}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

  1.用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

  2.集合的表示方法:列举法与描述法。

  二、集合间的基本关系

  1.“包含”关系—子集

  注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

  反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA

  2.“相等”关系(5≥5,且5≤5,则5=5)

  实例:设A={x|x2-1=0}B={-1,1}“元素相同”

  结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B

  ①任何一个集合是它本身的子集。AíA

  ②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)

  ③如果AíB,BíC,那么AíC

  ④如果AíB同时BíA那么A=B

  3.不含任何元素的集合叫做空集,记为Φ

  规定:空集是任何集合的子集,空集是任何非空集合的真子集。

  三、集合的运算

  1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.

  记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}.

  2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}.

  3、交集与并集的性质:A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,A∪φ=A,A∪B=B∪A.

高一数学知识点总结2

  函数的概念

  函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数f(x)和它对应,那么就称f:A---B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.

  (1)其中,x叫做自变量,x的.取值范围A叫做函数的定义域;

  (2)与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.

  函数的三要素:定义域、值域、对应法则

  函数的表示方法:(1)解析法:明确函数的定义域

  (2)图想像:确定函数图像是否连线,函数的图像可以是连续的曲线、直线、折线、离散的点等等。

  (3)列表法:选取的自变量要有代表性,可以反应定义域的特征。

  4、函数图象知识归纳

  (1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.

  (2)画法

  A、描点法:B、图象变换法:平移变换;伸缩变换;对称变换,即平移。

  (3)函数图像平移变换的特点:

  1)加左减右——————只对x

  2)上减下加——————只对y

  3)函数y=f(x)关于X轴对称得函数y=-f(x)

  4)函数y=f(x)关于Y轴对称得函数y=f(-x)

  5)函数y=f(x)关于原点对称得函数y=-f(-x)

  6)函数y=f(x)将x轴下面图像翻到x轴上面去,x轴上面图像不动得

  函数y=|f(x)|

  7)函数y=f(x)先作x≥0的图像,然后作关于y轴对称的图像得函数f(|x|)

高一数学知识点总结3

  集合的分类:

  1.有限集含有有限个元素的集合

  2.无限集含有无限个元素的集合

  3.空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集注意:有两种可能

  (1)A是B的`一部分;

  (2)A与B是同一集合。反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.“相等”关系(5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0}B={-1,1}“元素相同”

  结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B

  ①任何一个集合是它本身的子集。A?A

  ②真子集:如果A?B,且A?B那就说集合A是集合B的真子集,记作AB(或BA)

  ③如果A?B,B?C,那么A?C

  ④如果A?B同时B?A那么A=B

  3.不含任何元素的集合叫做空集,记为Φ

  规定:空集是任何集合的子集,空集是任何非空集合的真子集。

高一数学知识点总结4

  解三角形

  (1)正弦定理和余弦定理

  掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.

  (2)应用

  能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.

  数列

  (1)数列的概念和简单表示法

  ①了解数列的概念和几种简单的`表示方法(列表、图象、通项公式).

  ②了解数列是自变量为正整数的一类函数.

  (2)等差数列、等比数列

  ①理解等差数列、等比数列的概念.

  ②掌握等差数列、等比数列的通项公式与前项和公式.

  ③能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.

  ④了解等差数列与一次函数、等比数列与指数函数的关系.

高一数学知识点总结5

  一:函数及其表示

  知识点详解文档包含函数的概念、映射、函数关系的判断原则、函数区间、函数的三要素、函数的定义域、求具体或抽象数值的函数值、求函数值域、函数的表示方法等

  1. 函数与映射的区别:

  2. 求函数定义域

  常见的用解析式表示的函数f(x)的定义域可以归纳如下:

  ①当f(x)为整式时,函数的定义域为R.

  ②当f(x)为分式时,函数的定义域为使分式分母不为零的实数集合。

  ③当f(x)为偶次根式时,函数的定义域是使被开方数不小于0的实数集合。

  ④当f(x)为对数式时,函数的定义域是使真数为正、底数为正且不为1的实数集合。

  ⑤如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合,即求各部分有意义的实数集合的交集。

  ⑥复合函数的定义域是复合的各基本的函数定义域的交集。

  ⑦对于由实际问题的背景确定的函数,其定义域除上述外,还要受实际问题的制约。

  3. 求函数值域

  (1)、观察法:通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域;

  (2)、配方法;如果一个函数是二次函数或者经过换元可以写成二次函数的形式,那么将这个函数的右边配方,通过自变量的范围可以求出该函数的值域;

  (3)、判别式法:

  (4)、数形结合法;通过观察函数的图象,运用数形结合的.方法得到函数的值域;

  (5)、换元法;以新变量代替函数式中的某些量,使函数转化为以新变量为自变量的函数形式,进而求出值域;

  (6)、利用函数的单调性;如果函数在给出的定义域区间上是严格单调的,那么就可以利用端点的函数值来求出值域;

  (7)、利用基本不等式:对于一些特殊的分式函数、高于二次的函数可以利用重要不等式求出函数的值域;

  (8)、最值法:对于闭区间[a,b]上的连续函数y=f(x),可求出y=f(x)在区间[a,b]内的极值,并与边界值f(a).f(b)作比较,求出函数的最值,可得到函数y的值域;

  (9)、反函数法:如果函数在其定义域内存在反函数,那么求函数的值域可以转化为求反函数的定义域。

高一数学知识点总结6

  一、点、线、面概念与符号

  平面α、β、γ,直线a、b、c,点A、B、C;

  A∈a——点A在直线a上或直线a经过点;

  aα——直线a在平面α内;

  α∩β= a——平面α、β的交线是a;

  α∥β——平面α、β平行;

  β⊥γ——平面β与平面γ垂直.

  二、点、线、面常用定理

  1.异面直线判断定理

  过平面外一点与平面内一点的直线,和平面内不过该点的直线是异面直线.

  2.线与线平行的判定定理

  (1)平行于同一直线的两条直线平行;

  (2)垂直于同一平面的两条直线平行;

  (3)如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行;

  (4)如果两个平行平面同时和第三个平面相交,那么它们的`交线平行;

  (5)如果一条直线平行于两个相交平面,那么这条直线平行于两个平面的交线.

  3.线与线垂直的判定

  若一条直线垂直于一个平面,那么这条直线垂直于平面内所有直线.

  4.线与面平行的判定

  (1)平面外一条直线和平面内一条直线平行,则该直线与此平面平行;

  (2)若两个平面平行,则在一个平面内的任何一条直线必平行于另一个平面.

高一数学知识点总结7

  第一章.集合与函数的概念

  一、集合的概念与运算:

  1、集合的特性与表示法:集合中的元素应具有:确定性互异性无序性;集合的表示法有:

  列举法描述法文氏图等。2、集合的分类:①有限集、无限集、空集。

  ②数集:yyx2点集:x,yxy1

  23、子集与真子集:若xA则xBAB若AB但ABAB

  若Aa1,a2,a3,an,则它的子集个数为2n个4、集合的运算:①ABxxA且xB,若ABA则AB②ABxxA或xB,若ABA则BA③CUAxxU但xA

  5、映射:对于集合A中的任一元素a,按照某个对应法则f,集合B中都有唯一的元素b与

  之对应,则称f:AB为A到的映射,其中a叫做b的原象,b叫a的象。二、函数的概念及函数的性质:

  1、函数的概念:对于非空的数集A与B,我们称映射f:AB为函数,记作yfx,

  其中xA,yB,集合A即是函数的定义域,值域是B的子集。定义域、值域、对应法则称为函数的三要素。2、函数的性质:

  ⑴定义域:10简单函数的定义域:使函数有意义的x的取值范围,例:ylg(3x)2x5的

  2x505x3定义域为:3x0220复合函数的定义域:若yfx的定义域为xa,b,则复合函数yfgx的定义域为不等式agxb的解集。3实际问题的定义域要根据实际问题的实际意义来确定定义域。⑵值域:10利用函数的.单调性:yxpx(po)y2x2ax3x2,3

  0202利用换元法:y2x13xy3x1x珠晖区青少年活动中心中学部(博学教育培训中心)

  30数形结合法yx2x5

  ⑶单调性:10明确基本初等函数的单调性:yaxbyax2bxcyyaxkx(k0)

  a0且a1ylogaxa0且a1yxnnR

  20定义:对x1D,x2D且x1x2

  若满足fx1fx2,则fx在D上单调递增若满足fx1fx2,则fx在D上单调递减。

  ⑷奇偶性:10定义:fx的定义域关于原点对称,若满足fx=-fx——奇函数若满足fx=fx——偶函数。20特点:奇函数的图像关于原点对称,偶函数的图像关于y轴对称。若fx为奇函数且定义域包括0,则f00若fx为偶函数,则有fxf(5)对称性:10yax2bxc的图像关于直线xx

  b2a对称;

  20若fx满足faxfaxfxf2ax,则fx的图像

  关于直线xa对称。

  30函数yfxa的图像关于直线xa对称。

  第二章、基本初等函数

  一、指数及指数函数:

  1、指数:amanamnam/an=amnamamnmn

  naman0a1a0

  2、指数函数:①定义:ya(a0,a1)

  ②图象和性质:a>1时,xR,y(0,),在R上递增,过定点(0,1)0<a<1时,xR,y(0,),在R上递减,过定点(0,1)例如:y3x2x3的图像过定点(2,4)珠晖区青少年活动中心中学部(博学教育培训中心)

  二、对数及对数函数:

  1、对数及运算:abNlogaNblog1alogmnaloagmlaonglogamnloamg0,alaogaloagNNlomgalanoglogmnanlogablogcalogcblogb>0(0<a,b<1或a,b>1alogb<0(0<a<1,b>1,或a>1,0<b<1a2、对数函数:

  ①定义:ylogaxa0且a1与yax(a0,a1)互为反函数。

  ②图像和性质:10a>1时,x0,,yR,在0,递增,过定点(1,0)200<a<1时,x0,,yR,在0,递减,过定点(1,0)。三、幂函数:①定义:yxnnR

  ②图像和性质:10n>0时,过定点(0,0)和(1,1),在x0,上单调递增。20n<0时,过定点(1,1),在x0,上单调递减。

  第三章、函数的应用

  一、函数的零点及性质:

  1、定义:对于函数yfx,若x0使得fx00,则称x0为yfx的零点。2、性质:10若fafb<0,则函数yfx在a,b上至少存在一个零点。20函数yfx在a,b上存在零点,不一定有fafb<03在相邻两个零点之间所有的函数值保持同号。二、二分法求方程fx0的近似解

  1、原理与步骤:①确定一闭区间a,b,使fafb<0,给定精确度;

  珠晖区青少年活动中心中学部(博学教育培训中心)

  ②令x1ab2,并计算fx1;

  ③若fx1=0则x1为函数的零点,若fafx1<0,则x0a,x1,令b=x1;若fx1fb<0则x0x1,b,令a=x1

  ④直到ab<时,我们把a或b称为fx0的近似解。

  三、函数模型及应用:

  常见的函数模型有:①直线上升型:ykxb;②对数增长型:ylogax③指数爆炸型:yn(1p)x,n为基础数值,p为增长率。

  训练题

  一、选择题

  1.已知全集U1,2,3,4,A=1,2,B=2,3,则A(CuB)等于()A.{1,2,3}B.{1,2,4}C.{1)D.{4}

  2.已知函数f(x)ax在(O,2)内的值域是(a2,1),则函数yf(x)的图象是()

  3.下列函数中,有相同图象的一组是()Ay=x-1,y=

  (x1)2By=x1x1,y=

  x12

  Cy=lgx-2,y=lg

  x100Dy=4lgx,y=2lgx2

  4.已知奇函数f(x)在[a,b]上减函数,偶函数g(x)在[a,b]上是增函数,则在[-b,-a](b>a>0)上,f(x)与g(x)分别是(A.f(x)和g(x)都是增函数

  )

  B.f(x)和g(x)都是减函数

  D.f(x)是减函数,g(x)是增函数。

  C.f(x)是增函数,g(x)是减函数5.方程lnx=A.(1,2)

  2x必有一个根所在的区间是()B.(2,3)

  C.(e,3)

  D.(e,+∞)

  6.下列关系式中,成立的是()A.log34>()>log110

  5310B.log110>()>log34

  31珠晖区青少年活动中心中学部(博学教育培训中心)

  C.log34>log110>()

  3150D.log110>log34>()

  31507.已知函数f(x)的定义域为R,f(x)在R上是减函数,若f(x)的一个零点为1,则不等式

  f(2x1)0的解集为()

  A.(,)B.(,)C.(1,)D.(,1)

  22118.设f(log2x)=2x(x>0)则f(3)的值为(A.128

  B.256

  C.512

  )

  D.8

  9.已知a>0,a≠1则在同一直角坐标系中,函数y=a-x和y=loga(-x)的图象可能是()

  333222111-224-2-124-2-124-2-124A

  10.若loga23-2B

  -2C

  -2D

  珠晖区青少年活动中心中学部(博学教育培训中心)

  三、解答题:(本题共6小题,满分74分)

  16.计算求值:(lg8+lg1000)lg5+3(lg2)2+lg6-1+lg0.006

  17.已知f(x)=x2-2(1-a)x+2在区间(-∞,4]上是减函数,求实数a的取值范围。

  18.已知函数f(x)3x,f(a2)18,g(x)3ax4x定义域[0,1];(1)求a的值;

  (2)若函数g(x)在[0,1]上是单调递减函数,求实数的取值范围;

  19.已知函数f(x-3)=lga2x226-x(a>1,且a≠1)

  1)求函数f(x)的解析式及其定义域2)判断函数f(x)的奇偶性

高一数学知识点总结8

  一、集合有关概念

  1. 集合的含义

  2. 集合的中元素的三个特性:

  (1) 元素的确定性,

  (2) 元素的互异性,

  (3) 元素的无序性,

  3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

  (1) 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

  (2) 集合的表示方法:列举法与描述法。

  ? 注意:常用数集及其记法:

  非负整数集(即自然数集) 记作:N

  正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R

  1) 列举法:{a,b,c……}

  2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}

  3) 语言描述法:例:{不是直角三角形的三角形}

  4) Venn图:

  4、集合的分类:

  (1) 有限集 含有有限个元素的集合

  (2) 无限集 含有无限个元素的集合

  (3) 空集 不含任何元素的集合 例:{x|x2=-5}

  二、集合间的基本关系

  1.“包含”关系—子集

  注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

  反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A

  2.“相等”关系:A=B (5≥5,且5≤5,则5=5)

  实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”

  即:① 任何一个集合是它本身的子集。A?A

  ②真子集:如果A?B,且A? B那就说集合A是集合B的真子集,记作A B(或B A)

  ③如果 A?B, B?C ,那么 A?C

  ④ 如果A?B 同时 B?A 那么A=B

  3. 不含任何元素的集合叫做空集,记为Φ

  规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

  ? 有n个元素的集合,含有2n个子集,2n-1个真子集

  三、集合的运算

  运算类型 交 集 并 集 补 集

  定 义 由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={x|x A,且x B}.

  由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即A B ={x|x A,或x B}).

  设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)

  二、函数的有关概念

  1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.

  注意:

  1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。

  求函数的定义域时列不等式组的主要依据是:

  (1)分式的分母不等于零;

  (2)偶次方根的被开方数不小于零;

  (3)对数式的真数必须大于零;

  (4)指数、对数式的底必须大于零且不等于1.

  (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.

  (6)指数为零底不可以等于零,

  (7)实际问题中的函数的定义域还要保证实际问题有意义.

  相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)

  2.值域 : 先考虑其定义域

  (1)观察法

  (2)配方法

  (3)代换法

  3. 函数图象知识归纳

  (1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 .

  (2) 画法

  A、 描点法:

  B、 图象变换法

  常用变换方法有三种

  1) 平移变换

  2) 伸缩变换

  3) 对称变换

  4.区间的概念

  (1)区间的分类:开区间、闭区间、半开半闭区间

  (2)无穷区间

  (3)区间的数轴表示.

  5.映射

  一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A B为从集合A到集合B的一个映射。记作f:A→B

  6.分段函数

  (1)在定义域的不同部分上有不同的解析表达式的函数。

  (2)各部分的自变量的取值情况.

  (3)分段函数的.定义域是各段定义域的交集,值域是各段值域的并集.

  补充:复合函数

  如果y=f(u)(u∈M),u=g(x)(x∈A),则 y=f[g(x)]=F(x)(x∈A) 称为f、g的复合函数。

  二.函数的性质

  1.函数的单调性(局部性质)

  (1)增函数

  设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1

  如果对于区间D上的任意两个自变量的值x1,x2,当x1f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.

  注意:函数的单调性是函数的局部性质;

  (2) 图象的特点

  如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.

  (3).函数单调区间与单调性的判定方法

  (A) 定义法:

  ○1 任取x1,x2∈D,且x1

  ○2 作差f(x1)-f(x2);

  ○3 变形(通常是因式分解和配方);

  ○4 定号(即判断差f(x1)-f(x2)的正负);

  ○5 下结论(指出函数f(x)在给定的区间D上的单调性).

  (B)图象法(从图象上看升降)

  (C)复合函数的单调性

  复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”

  注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集.

  8.函数的奇偶性(整体性质)

  (1)偶函数

  一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.

  (2).奇函数

  一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.

  (3)具有奇偶性的函数的图象的特征

  偶函数的图象关于y轴对称;奇函数的图象关于原点对称.

  利用定义判断函数奇偶性的步骤:

  ○1首先确定函数的定义域,并判断其是否关于原点对称;

  ○2确定f(-x)与f(x)的关系;

  ○3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.

  (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1来判定;

  (3)利用定理,或借助函数的图象判定 .

  9、函数的解析表达式

  (1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.

  (2)求函数的解析式的主要方法有:

  1) 凑配法

  2) 待定系数法

  3) 换元法

  4) 消参法

  10.函数最大(小)值(定义见课本p36页)

  ○1 利用二次函数的性质(配方法)求函数的最大(小)值

  ○2 利用图象求函数的最大(小)值

  ○3 利用函数单调性的判断函数的最大(小)值:

  如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);

  如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);

高一数学知识点总结9

  集合间的基本关系

  1。“包含”关系—子集

  注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

  反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA

  2。“相等”关系:A=B(5≥5,且5≤5,则5=5)

  实例:设A={x|x2—1=0}B={—1,1}“元素相同则两集合相等”

  即:①任何一个集合是它本身的子集。AA

  ②真子集:如果AB,且AB那就说集合A是集合B的真子集,记作AB(或BA)

  ③如果AB,BC,那么AC

  ④如果AB同时BA那么A=B

  3。不含任何元素的集合叫做空集,记为Φ

  规定:空集是任何集合的'子集,空集是任何非空集合的真子集。

  有n个元素的集合,含有2n个子集,2n—1个真子集

  集合的运算

  运算类型交集并集补集

  定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集。记作AB(读作‘A交B’),即AB={x|xA,且xB}。

  由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:AB(读作‘A并B’),即AB={x|xA,或xB})。

  设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)

高一数学知识点总结10

  一、直线与方程

  (1)直线的倾斜角

  定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率

  ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即ktan。斜率反映直线与轴的倾斜程度。

  当0,90时,k0;当90,180时,k0;当90时,k不存在。

  yy1(x1x2)②过两点的直线的斜率公式:k2x2x1注意下面四点:(1)当x1x2时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

  (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。(3)直线方程

  ①点斜式:yy1k(xx1)直线斜率k,且过点x1,y1

  注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。

  当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。

  ②斜截式:ykxb,直线斜率为k,直线在y轴上的截距为b③两点式:④截矩式:

  yy1y2y1xayxx1x2x1(x1x2,y1y2)直线两点x1,y1,x2,y2

  1b其中直线l与x轴交于点(a,0),与y轴交于点(0,b),即l与x轴、y轴的截距分别为a,b。

  ⑤一般式:AxByC0(A,B不全为0)

  1各式的适用范围○2特殊的方程如:注意:○

  平行于x轴的直线:yb(b为常数);平行于y轴的直线:xa(a为常数);(5)直线系方程:即具有某一共同性质的直线(一)平行直线系

  平行于已知直线A0xB0yC00(A0,B0是不全为0的常数)的直线系:

  A0xB0yC0(C为常数)

  (二)过定点的直线系

  ()斜率为k的直线系:yy0kxx0,直线过定点x0,y0;

  ()过两条直线l1:A1xB1yC10,l2:A2xB2yC20的交点的直线系方程为

  ,其中直线l2不在直线系中。A1xB1yC1A2xB2yC20(为参数)(6)两直线平行与垂直

  当l1:yk1xb1,l2:yk2xb2时,l1//l2k1k2,b1b2;l1l2k1k21

  注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。(7)两条直线的交点

  l1:A1xB1yC10l2:A2xB2yC20相交交点坐标即方程组A1xB1yC10的一组解。

  A2xB2yC20方程组无解l1//l2;方程组有无数解l1与l2重合(8)两点间距离公式:设A(x1,y1),B是平面直角坐标系中的两个点,(x2,y2)则|AB|(x2x1)2(y2y1)2

  (9)点到直线距离公式:一点Px0,y0到直线l1:AxByC0的距离d(10)两平行直线距离公式

  在任一直线上任取一点,再转化为点到直线的距离进行求解。

  Ax0By0CAB22

  二、圆的方程

  1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的

  半径。

  2、圆的方程

  (1)标准方程xaybr2,圆心a,b,半径为r;

  22(2)一般方程x2y2DxEyF0当DE2224F0时,方程表示圆,此时圆心为22D2,1E,半径为r22D2E24F

  当DE4F0时,表示一个点;当DE4F0时,方程不表示任何图

  形。

  (3)求圆方程的方法:一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;

  另外要注意多利用圆的几何性质:如弦的`中垂线必经过原点,以此来确定圆心的位置。3、直线与圆的位置关系:

  直线与圆的位置关系有相离,相切,相交三种情况,基本上由下列两种方法判断:

  (1)设直线l:AxByC0,圆C:xa2yb2r2,圆心Ca,b到l的距离为

  dAaBbCAB222,则有drl与C相离;drl与C相切;drl与C相交

  22(2)设直线l:AxByC0,圆C:xaybr2,先将方程联立消元,得到一个一元二次方程之后,令其中的判别式为,则有

  0l与C相离;0l与C相切;0l与C相交

  2注:如果圆心的位置在原点,可使用公式xx0yy0r去解直线与圆相切的问题,其中x0,y0表示切点坐标,r表示半径。

  (3)过圆上一点的切线方程:

  22

  ①圆x2+y2=r,圆上一点为(x0,y0),则过此点的切线方程为xx0yy0r(课本命题).

  2222

  ②圆(x-a)+(y-b)=r,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r(课本命题的推广).

  4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。设圆C1:xa12yb12r2,C2:xa22yb22R2两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。当dRr时两圆外离,此时有公切线四条;

  当dRr时两圆外切,连心线过切点,有外公切线两条,内公切线一条;当RrdRr时两圆相交,连心线垂直平分公共弦,有两条外公切线;当dRr时,两圆内切,连心线经过切点,只有一条公切线;当dRr时,两圆内含;当d0时,为同心圆。

  三、立体几何初步

  1、柱、锥、台、球的结构特征

  (1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共

  边都互相平行,由这些面所围成的几何体。

  分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

  表示:用各顶点字母,如五棱柱ABCDEA"B"C"D"E"或用对角线的端点字母,如五棱柱

  "AD

  几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且

  相等;平行于底面的截面是与底面全等的多边形。

  (2)棱锥

  定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体

  分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

  表示:用各顶点字母,如五棱锥PABCDE

  几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到

  截面距离与高的比的平方。

  (3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

  """""表示:用各顶点字母,如五棱台PABCDE

  几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体

  几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图

  是一个矩形。

  (5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何

  体

  几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。2、空间几何体的三视图

  定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)

  注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;

  侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。

  3、空间几何体的直观图斜二测画法

  斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;

  ②原来与y轴平行的线段仍然与y平行,长度为原来的一半。

  4、柱体、锥体、台体的表面积与体积

  (1)几何体的表面积为几何体各个面的面积的和。

  (2)特殊几何体表面积公式(c为底面周长,h为高,h为斜高,l为母线)

  S直棱柱侧面积S正棱台侧面积12chS圆柱侧2rhS正棱锥侧面积(c1c2)h"S圆台侧面积(rR)l

  12ch"S圆锥侧面积rl

  S圆柱表2rrlS圆锥表rrlS圆台表r2rlRlR2

  (3)柱体、锥体、台体的体积公式V柱ShV圆柱ShV台13(S""21rhV锥ShV圆锥1r2h

  33SSS)hV圆台13(S"SSS)h"13(rrRR)h

  22

  (4)球体的表面积和体积公式:V球4、空间点、直线、平面的位置关系

  球面=4R2

  (1)平面

  ①平面的概念:A.描述性说明;B.平面是无限伸展的;

  ②平面的表示:通常用希腊字母α、β、γ表示,如平面α(通常写在一个锐角内);

  也可以用两个相对顶点的字母来表示,如平面BC。

  ③点与平面的关系:点A在平面内,记作A;点A不在平面内,记作A点与直线的关系:点A的直线l上,记作:A∈l;点A在直线l外,记作Al;

  直线与平面的关系:直线l在平面α内,记作lα;直线l不在平面α内,记作lα。(2)公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。

  (即直线在平面内,或者平面经过直线)

  应用:检验桌面是否平;判断直线是否在平面内

  用符号语言表示公理1:Al,Bl,A,Bl(3)公理2:经过不在同一条直线上的三点,有且只有一个平面。

  推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面。

  公理2及其推论作用:①它是空间内确定平面的依据②它是证明平面重合的依据(4)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线

  符号:平面α和β相交,交线是a,记作α∩β=a。

  符号语言:PABABl,Pl公理3的作用:

  ①它是判定两个平面相交的方法。

  ②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点。③它可以判断点在直线上,即证若干个点共线的重要依据。(5)公理4:平行于同一条直线的两条直线互相平行(6)空间直线与直线之间的位置关系

  ①异面直线定义:不同在任何一个平面内的两条直线②异面直线性质:既不平行,又不相交。

  ③异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线④异面直线所成角:直线a、b是异面直线,经过空间任意一点O,分别引直线a’∥a,b’∥b,则把直线a’和b’所成的锐角(或直角)叫做异面直线a和b所成的角。两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。说明:(1)判定空间直线是异面直线方法:①根据异面直线的定义;②异面直线的判定定理(2)在异面直线所成角定义中,空间一点O是任取的,而和点O的位置无关。②求异面直线所成角步骤:

  A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上。B、证明作出的角即为所求角C、利用三角形来求角

  (7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。(8)空间直线与平面之间的位置关系

  直线在平面内有无数个公共点.

  三种位置关系的符号表示:aαa∩α=Aa∥α

  (9)平面与平面之间的位置关系:平行没有公共点;α∥β

  相交有一条公共直线。α∩β=b

  5、空间中的平行问题

  (1)直线与平面平行的判定及其性质

  线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。

  线线平行线面平行

  线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,

  那么这条直线和交线平行。线面平行线线平行

  (1)平面与平面平行的判定及其性质两个平面平行的判定定理

  (2)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行

  (线面平行→面面平行),

  (2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。(线线平行→面面平行),

  (3)垂直于同一条直线的两个平面平行,两个平面平行的性质定理

  (1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行。(面面平行→线面平行)(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行。(面面平行→线线平行)7、空间中的垂直问题

  (1)线线、面面、线面垂直的定义①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。

  ③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。(2)垂直关系的判定和性质定理①线面垂直判定定理和性质定理判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。②面面垂直的判定定理和性质定理

  判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。

  9、空间角问题

  (1)直线与直线所成的角

  ①两平行直线所成的角:规定为0。

  ②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角。③两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线a,b,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角。

  (2)直线和平面所成的角

  ①平面的平行线与平面所成的角:规定为0。②平面的垂线与平面所成的角:规定为90。③平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角。

  求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”。

  第6页

  在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线,在解题时,注意挖掘题设中两个主要信息:(1)斜线上一点到面的垂线;(2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线。(3)二面角和二面角的平面角①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射.....线,这两条射线所成的角叫二面角的平面角。③直二面角:平面角是直角的二面角叫直二面角。

  两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角④求二面角的方法

  定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角7、空间直角坐标系

  (1)定义:如图,OBCDD,A,B,C,是单位正方体.以A为原点,分别以OD,OA,,OB的方向为正方向,建立三条数轴x轴.y轴.z轴。这时建立了一个空间直角坐标系Oxyz.

  1)O叫做坐标原点2)x轴,y轴,z轴叫做坐标轴.3)过每两个坐标轴的平面叫做坐标面。

  (2)右手表示法:令右手大拇指、食指和中指相互垂直时,可能形成的位置。大拇指指向为x轴正方向,食指指向为y轴正向,中指指向则为z轴正向,这样也可以决定三轴间的相位置。

  (3)任意点坐标表示:空间一点M的坐标可以用有序实数组(x,y,z)来表示,有序实数组(x,y,z)叫做点M在此空间直角坐标系中的坐标,记作M(x,y,z)(x叫做点M的横坐标,y叫做点M的纵坐标,z叫做点M的竖坐标)

  (4)空间两点距离坐标公式:d(x2x1)2(y2y1)2(z2z1)2

高一数学知识点总结11

  【基本初等函数】

  一、指数函数

  (一)指数与指数幂的运算

  1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈

  当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数。此时,的次方根用符号表示。式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand)。

  当是偶数时,正数的次方根有两个,这两个数互为相反数。此时,正数的正的次方根用符号表示,负的次方根用符号—表示。正的次方根与负的次方根可以合并成±(>0)。由此可得:负数没有偶次方根;0的任何次方根都是0,记作。

  注意:当是奇数时,当是偶数时,

  2、分数指数幂

  正数的'分数指数幂的意义,规定:

  0的正分数指数幂等于0,0的负分数指数幂没有意义

  指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂。

  3、实数指数幂的运算性质

  (二)指数函数及其性质

  1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R。

  注意:指数函数的底数的取值范围,底数不能是负数、零和1。

  2、指数函数的图象和性质

高一数学知识点总结12

  集合的有关概念

  1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素

  注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。

  ②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。

  ③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件

  2)集合的'表示方法:常用的有列举法、描述法和图文法

  3)集合的分类:有限集,无限集,空集。

  4)常用数集:N,Z,Q,R,N

  子集、交集、并集、补集、空集、全集等概念

  1)子集:若对x∈A都有x∈B,则AB(或AB);

  2)真子集:AB且存在x0∈B但x0A;记为AB(或,且)

  3)交集:A∩B={x|x∈A且x∈B}

  4)并集:A∪B={x|x∈A或x∈B}

  5)补集:CUA={x|xA但x∈U}

  注意:A,若A≠?,则?A;

  若且,则A=B(等集)

  集合与元素

  掌握有关的术语和符号,特别要注意以下的符号:(1)与、?的区别;(2)与的区别;(3)与的区别。

  子集的几个等价关系

  ①A∩B=AAB;②A∪B=BAB;③ABCuACuB;

  ④A∩CuB=空集CuAB;⑤CuA∪B=IAB。

  交、并集运算的性质

  ①A∩A=A,A∩?=?,A∩B=B∩A;②A∪A=A,A∪?=A,A∪B=B∪A;

  ③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;

  有限子集的个数:

  设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。

  练习题:

  已知集合M={x|x=m+,m∈Z},N={x|x=,n∈Z},P={x|x=,p∈Z},则M,N,P满足关系()

  A)M=NPB)MN=PC)MNPD)NPM

  分析一:从判断元素的共性与区别入手。

  解答一:对于集合M:{x|x=,m∈Z};对于集合N:{x|x=,n∈Z}

  对于集合P:{x|x=,p∈Z},由于3(n-1)+1和3p+1都表示被3除余1的数,而6m+1表示被6除余1的数,所以MN=P,故选B。

高一数学知识点总结13

  归纳1

  1、“包含”关系—子集

  注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

  反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA

  2、“相等”关系(5≥5,且5≤5,则5=5)

  实例:设A={x|x2—1=0}B={—1,1}“元素相同”

  结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B

  ①任何一个集合是它本身的子集。AíA

  ②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)

  ③如果AíB,BíC,那么AíC

  ④如果AíB同时BíA那么A=B

  3、不含任何元素的集合叫做空集,记为Φ

  规定:空集是任何集合的子集,空集是任何非空集合的真子集。

  归纳2

  形如y=k/x(k为常数且k≠0)的函数,叫做反比例函数。

  自变量x的取值范围是不等于0的一切实数。

  反比例函数图像性质:

  反比例函数的图像为双曲线。

  由于反比例函数属于奇函数,有f(—x)=—f(x),图像关于原点对称。

  另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。

  上面给出了k分别为正和负(2和—2)时的函数图像。

  当K>0时,反比例函数图像经过一,三象限,是减函数

  当K<0时,反比例函数图像经过二,四象限,是增函数

  反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。

  知识点:

  1、过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。

  2、对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移)

  归纳3

  方程的根与函数的零点

  1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

  2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:方程有实数根,函数的图象与坐标轴有交点,函数有零点。

  3、函数零点的求法:

  (1)(代数法)求方程的实数根;

  (2)(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点。

  4、二次函数的零点:

  (1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点。

  (2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点。

  (3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点。

  归纳3

  形如y=k/x(k为常数且k≠0)的函数,叫做反比例函数。

  自变量x的取值范围是不等于0的一切实数。

  反比例函数图像性质:

  反比例函数的图像为双曲线。

  由于反比例函数属于奇函数,有f(—x)=—f(x),图像关于原点对称。

  另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。

  如图,上面给出了k分别为正和负(2和—2)时的函数图像。

  当K>0时,反比例函数图像经过一,三象限,是减函数

  当K<0时,反比例函数图像经过二,四象限,是增函数

  反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。

  知识点:

  1、过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。

  2、对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移)

  归纳4

  幂函数的'性质:

  对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:

  首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=—k,则x=1/(x^k),显然x≠0,函数的定义域是(—∞,0)∪(0,+∞)、因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:

  排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;

  排除了为0这种可能,即对于x<0x="">0的所有实数,q不能是偶数;

  排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。

  总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;

  如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。

  在x大于0时,函数的值域总是大于0的实数。

  在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。

  而只有a为正数,0才进入函数的值域。

  由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况、

  可以看到:

  (1)所有的图形都通过(1,1)这点。

  (2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。

  (3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。

  (4)当a小于0时,a越小,图形倾斜程度越大。

  (5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。

  (6)显然幂函数无界。

  解题方法:换元法

  解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这种方法叫换元法,换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。

  换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。

  它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。

高一数学知识点总结14

  函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域。(2)。应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础。

  函数图象知识归纳:

  (1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象。

  C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上。即记为C={P(x,y)|y=f(x),x∈A}

  图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成。

  (2)画法

  A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x,y),最后用平滑的曲线将这些点连接起来。

  B、图象变换法(请参考必修4三角函数)

  常用变换方法有三种,即平移变换、伸缩变换和对称变换

  (3)作用:

  1、直观的看出函数的性质;

  2、利用数形结合的方法分析解题的思路。提高解题的速度。

  3、发现解题中的错误。

  2、快去了解区间的概念

  (1)区间的分类:开区间、闭区间、半开半闭区间;

  (2)无穷区间;

  (3)区间的数轴表示。

  什么叫做映射

  一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射。记作“f:AB”

  给定一个集合A到B的映射,如果a∈A,b∈B。且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象

  说明:函数是一种特殊的映射,映射是一种特殊的对应:

  ①集合A、B及对应法则f是确定的;

  ②对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;

  ③对于映射f:A→B来说,则应满足:

  (Ⅰ)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;

  (Ⅱ)集合A中不同的元素,在集合B中对应的象可以是同一个;

  (Ⅲ)不要求集合B中的每一个元素在集合A中都有原象。

  常用的函数表示法及各自的优点:

  函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;2解析法:必须注明函数的定义域;3图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;4列表法:选取的自变量要有代表性,应能反映定义域的特征。

  注意啊:解析法:便于算出函数值。列表法:便于查出函数值。图象法:便于量出函数值

  补充一:分段函数(参见课本P24—25)

  在定义域的不同部分上有不同的解析表达式的函数。在不同的范围里求函数值时必须把自变量代入相应的表达式。分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况。

  (1)分段函数是一个函数,不要把它误认为是几个函数;

  (2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集。

  补充二:复合函数

  如果y=f(u),(u∈M),u=g(x),(x∈A),则y=f[g(x)]=F(x),(x∈A)称为f、g的复合函数。

  例如:y=2sinXy=2cos(X2+1)

  函数单调性

  (1)增函数

  设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1

  如果对于区间D上的任意两个自变量的值x1,x2,当x1

  注意:

  1、函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;

  2、必须是对于区间D内的任意两个自变量x1,x2;当x1

  (2)图象的特点

  如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的',减函数的图象从左到右是下降的

  (3)。函数单调区间与单调性的判定方法

  (A)定义法:

  任取x1,x2∈D,且x1

  (B)图象法(从图象上看升降)

  (C)复合函数的单调性

  复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律如下:

  函数

  单调性

  u=g(x)

  增

  增

  减

  减

  y=f(u)

  增

  减

  增

  减

  y=f[g(x)]

  增

  减

  减

  增

  注意:

  1、函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集。

  2、还记得我们在选修里学习简单易行的导数法判定单调性吗?

  函数的奇偶性

  (1)偶函数

  一般地,对于函数f(x)的定义域内的任意一个x,都有f(—x)=f(x),那么f(x)就叫做偶函数。

  (2)奇函数

  一般地,对于函数f(x)的定义域内的任意一个x,都有f(—x)=—f(x),那么f(x)就叫做奇函数。

  注意:

  1、函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;函数可能没有奇偶性,也可能既是奇函数又是偶函数。

  2、由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则—x也一定是定义域内的一个自变量(即定义域关于原点对称)。

  (3)具有奇偶性的函数的图象的特征

  偶函数的图象关于y轴对称;奇函数的图象关于原点对称。

  总结:利用定义判断函数奇偶性的格式步骤:

  1、首先确定函数的定义域,并判断其定义域是否关于原点对称;

  2、确定f(—x)与f(x)的关系;

  3、作出相应结论:若f(—x)=f(x)或f(—x)—f(x)=0,则f(x)是偶函数;若f(—x)=—f(x)或f(—x)+f(x)=0,则f(x)是奇函数。

高一数学知识点总结15

  立体几何初步

  柱、锥、台、球的结构特征

  棱柱

  定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

  分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

  表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱。

  几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

  棱锥

  定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。

  分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

  表示:用各顶点字母,如五棱锥

  几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

  棱台

  定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。

  分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

  表示:用各顶点字母,如五棱台

  几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

  圆柱

  定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。

  几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

  圆锥

  定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。

  几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

  圆台

  定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分

  几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

  球体

  定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

  几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

  NO.2空间几何体的三视图

  定义三视图

  定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)

  注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;

  俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;

  侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。

  NO.3空间几何体的直观图——斜二测画法

  斜二测画法

  斜二测画法特点

  ①原来与x轴平行的线段仍然与x平行且长度不变;

  ②原来与y轴平行的线段仍然与y平行,长度为原来的一半。

  直线与方程

  直线的倾斜角

  定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°

  直线的斜率

  定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。

  过两点的直线的斜率公式:

  (注意下面四点)

  (1)当时,公式右边无意义,直线的.斜率不存在,倾斜角为90°;

  (2)k与P1、P2的顺序无关;

  (3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

  (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

  幂函数

  定义

  形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。

  定义域和值域

  当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域

  性质

  对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:

  首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:

  排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;

  排除了为0这种可能,即对于x<0和x>0的所有实数,q不能是偶数;

  排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。

【高一数学知识点总结】相关文章:

高一数学高考知识点总结07-31

高一数学知识点总结07-07

高一数学知识点总结12-06

高一数学必修一知识点总结03-24

高一数学必修1知识点总结03-23

高一数学知识点03-28

高一数学集合知识点07-25

高一数学知识点集合07-12

高一数学知识点公式07-03

高一数学集合知识点整理07-20