四年级数学下册知识点

时间:2023-11-23 16:59:22 数学 我要投稿

四年级数学下册知识点

  在我们上学期间,不管我们学什么,都需要掌握一些知识点,知识点有时候特指教科书上或考试的知识。哪些知识点能够真正帮助到我们呢?以下是小编精心整理的四年级数学下册知识点,欢迎阅读与收藏。

四年级数学下册知识点

四年级数学下册知识点1

  1、平均数是通过把多的部分移给少的部分,使各部分都相等而得到的数,所以平均数在最大数与最小数之间

  2、平均数=总数÷总分数

  3、平均数是统计中的一个重要概念,也是一个非常抽象的概念,在具体情境中体会为什么要学平均数,在统计的背景中理解平均数的含义,在比较、观察中把握平均数的特征,进而运用平均数解决问题,了解它的价值。

  1、复式条形统计图:用两种以上的长方形直条表示不同数量的条形统计图。

  2、复式条形统计图要画两种以上的直条,为了区别可以用不同的颜色或者线条来表示。

  3、与复式统计表相比,复式条形统计图更便于比较几组数据的大小,提供的信息更多,使用起来更加方便。

  4、复式条形统计图优点:可以直观的看出不同项目数据是多少,能形象的比较不同的数据。

  5、复式条形统计图缺点:需要自己计算总数,不大方便。

  6、复式条形统计图的制作步骤:

  ①根据统计资料整理数据

  ②画出纵轴和横轴(纵轴高度的确定:要确定一个长度来表示一定的数量。横轴长度的确定:要根据纸的大小、字数的多少来确定)

  ③画直条或条形的宽度要一致,条形之间的间隔要相等。

  ④不同的`直条做不同的标记(如颜色不同或在其中一组画上条纹)

  ⑤写上总标题、数量单位和制图日期

  小学数学梯形的面积怎么求

  梯形面积与周长

  梯形的面积公式:(上底+下底)×高÷2、

  用字母表示:(a+b)×h÷2

  梯形的面积公式2:中位线×高

  用字母表示:l·h (l表示中位线长度)

  另外对角线互相垂直的梯形:对角线×对角线÷2

  梯形的周长公式:上底+下底+腰+腰,用字母表示:L=a+b+c+d

  等腰梯形的周长公式:上底+下底+2腰,用字母表示:a+c+2b。

  数学学习方法分享

  数学学习技巧

  在学习过程中,要准确地掌握抽象概念的本质含义,了解从实际模型中抽象为理论的演变过程。对所学理论知识,要在更大范围内寻求它的具体实例,使之具体化,尽量将所学的理论知识和思维方法应用于实践。

  学数学指导

  1、上课认真听讲是打好数学基础的重要环节,也是牢固掌握基础知识的根本途径。

  2、在解决问题时,我们可以试着用不同的方法,如假设法,特殊值法,整体法。

  3、深刻理解知识点,仔细阅读课本,认真听讲,理解联系实际。

  3怎样学好数学

  主要是指养成思考的习惯,学会思考的方法。独立思考是学习数学必须具备的能力。

  同学们在学习时,要边听(课)边想,边看(书)边想,边做(题)边想,通过自己积极思考,深刻理解数学知识,归纳总结数学规律,灵活解决数学问题,这样才能把老师讲的、课本上写的变成自己的知识。

四年级数学下册知识点2

  1、在进行测量和计算时,往往不能正好得到整数的结果,这时常用(小数)来表示。

  分母是10、100、1000……的分数可以用(小数)来表示;

  分母是10的分数可以写成(一位)小数,

  分母是100的分数可以写成(两位)小数,

  分母是1000的分数可以写成(三位)小数……

  所以,一位小数表示(十分)之几,

  两位小数表示(百分)之几,

  三位小数表示(千分)之几……

  如:

  0.5表示(十分之五),

  0.05表示(百分之五),

  0.25表示(百分之二十五),

  0.005表示(千分之五),

  0.025表示千分之二十五)。

  2、小数点前面的数叫小数的(整数)部分,小数点后面的数叫小数的(小数)部分,

  3、小数点后面第一位是(十)分位,十分位的计数单位是十分之一,又可以写作0.1;

  小数点后面第二位是(百)分位,百分位的计数单位是百分之一,又可以写作0.01;

  小数点后面第三位是(千)分位,千分位的计数单位是千分之一,又可以写作0.001……

  如:20.375,十分位上的3,表示3个(十分之一);百分位上的7,表示7个(百分之一);千分位上的5,表示5个(千分之一)。

  4、小数每相邻两个计数单位间的进率都是10,(10个千分之一是1个百分之一,10个百分之一是1个十分之一,10个十分之一是整数1,或10个0.001是1个0.01 ,10个0.01是1个0.1, 10个0.1是整数1……

  5、读小数时,整数部分按照整数的读法去读,小数点读作“点”,小数部分要依次读出每一个数字。

  如:31.031读作:三十一点零三一

  6、写小数时,整数部分按照整数的写法来写,小数点写在个位的右下角,小数部分要依次写出每一个数位上的数字。

  如:一百二十点零零九八

  写作:120.0098

  7、在小数的末尾添上“0”或去掉“0”,小数的'大小不变,这叫小数的性质。

  如:

  0.2= 0.20 = 0.200 =0.20xx =……

  1.05=1.050 =0.0500 =0.0500=……

  1.080=1.08

  10.0800=10.08

  100.080000= 100.08

  8、小数大小的比较:

  先比较整数部分,整数部分大,那个小数就大;整数部分相同,就比较小数部分,十分位相同,就比较百分位,百分位也相同,就比较千分位……

  9、小数点的移动:

  (1)小数点向右:移动一位,相当于把原数乘10,小数就扩大到原数的10倍;移动两位,相当于把原数乘100,小数就扩大到原数的100倍;移动三位,相当于把原数乘1000,小数就扩大到原数的1000倍……

  (2)小数点向左:移动一位,相当于把原数除以10,小数就缩小到原来的1/10;移动两位,相当于把原数除以100,小数就缩小到原来的1/100;移动三位,相当于把原数除以1000,小数就缩小到原来的1/1000……

  10、不同数量单位的数据之间的改写:

  低级单位数÷进率=高级单位数

  ×

  当进率是10、100、1000……时,可以直接利用小数点的移动来换算。

  11、求近似数时:?保留整数,就是精确到个位,看十分位上的数来四舍五入;

  保留一位小数,就是精确到十分位,看百分位上的数来四舍五入;

  保留两位小数,就是精确到百分位,看千分位上的数来四舍五入。

  (表示近似数时小数末尾的0不能去掉)

  12、为了读写方便,常常把非整万或整亿的数改写成用“万”或“亿”作单位的数:改写时,只要在万位或亿位的右边,点上小数点,在数的后面加上“万”字或“亿”字

四年级数学下册知识点3

  第一单元四则运算

  1.在没有括号的算式里,如果只有加、减法,那么从左往右按顺序计算。2.在没有括号的算式里,如果只有乘、除法,那么从左往右按顺序计算。

  3.在没有括号的算式里,既有加、减法,又有乘、除法,那么先算乘、除法,再算加、减法。4.在有括号的算式里,先算括号里的算式,再算括号外面的算式。5.有关0的计算:

  (1)零加上任何数得原数。[0+5=5,8+0=8](2)被减数等于减数,差为0。[5-5=0,7-7=0](3)0与任何数相乘得0。[0×5=0,0×24=0]

  (4)0除于任何非0的数得0。[0÷18=0,0÷29=0](5)0不能做除数。第二单元位置与方向

  1.地图的三要素:图例、方向、比例尺。2.确定方向时:A、先确定观测点

  (1)从那里出发,那里就是观测点。例如:从渡口出发,到钟山。(渡口就是观测点)(2)“在”字后面的为观测点。例如:渡口在钟山的方向上。(钟山就是观测点)B站在观测点来看方向。(A偏B,A就是(“偏”字前面的)标角度的角靠近的方向{东、南、西、北}。

  例如:①东偏南25°(标25°的那个角就靠近东)②西偏北35°(标35°的那个角就靠近西)

  3.描述路线和绘路线图时:只有一条线,所作的线是首尾相连的。4.常用的八个方位:东、南、西、北、东南、东北、西南、西北。

  观测点与被观测点对调,那么方向是原方向的相对方向,如:东与西相对,南与北相对。5.小红家在学校的东偏南20°方向,距离120米处学校在小红家的西偏北20°方向,距离120米处第三单元运算定律与简便计算一、运算定律

  1.加法交换律:交换加数的位置和不变。[a+b=b+a](如:23+34=57与34+23=57)

  2.加法结合律:(a+b)+c=a+(b+c)先把前两个数相加,或者先把后两个数相加,和不变。3.乘法交换律:a×b=b×a交换因数的位置积不变。

  4.乘法结合律:(a×b)×c=a×(b×c)先把前两个数相乘,或者先把后两个数相乘,积不变。

  5.乘法分配律:(a+b)×c=a×c+b×c两个数的和与一个数相乘,可以把他们与这个数相乘,再相加。二、简便计算

  1.连加的简便计算:

  ①使用加法结合律(把和是整十、整百、整千的数结合在一起)②个位:1与9,2与8,3与7,4与6,5与5,结合。③十位:0与9,1与8,2与7,3与6,4与5,结合。2.连减的简便计算:

  ①连续减去几个数就等于减去这几个数的和。如:106-26-74=106-(26+74)②减去几个数的和就等于连续减去这几个数。如:106-(26+74)=106-26-743.加减混合的简便计算:

  第一个数的位置不变,其余的加数、减数可以交换位置(可以先加,也可以先减)例如:123+38-23=123-23+38146-78+54=146+54-784.连乘的简便计算:

  使用乘法结合律:把常见的数结合在一起25与4;125与8;125与80等看见25就去找4,看见125就去找8;5.连除的简便计算:

  ①连续除以几个数就等于除以这几个数的积。②除以几个数的积就等于连续除以这几个数。6.乘、除混合的简便计算:

  第一个数的位置不变,其余的因数、除数可以交换位置。(可以先乘,也可以先除)例如:27×13÷9=27÷9×137.乘法分配律的应用:

  ①类型一:(a+b)×c(a-b)×c

  =a×c+b×c=a×c-b×c

  ②类型二:a×c+b×ca×c-b×c=(a+b)×c=(a-b)×c③类型三:a×99+aa×b-a=a×(99+1)=a×(b-1)④类型四:a×99a×102=a×(100-1)=a×(100+2)=a×100-a×1=a×100+a×2第四单元小数的意义和性质

  1.小数的产生:在进行测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。2.分母是10、100、1000的分数可以用(小数)表示。

  3.小数的计数单位是十分之一、百分之一、千分之一分别写作0.1、0.01、0.0014.每相邻两个计数单位间的进率是(十)。5.数位顺序表整数部分小数点小数部分数位千位百位十位个位十分百分千分万分位位位位计数个.十分百分千分万分单位千百十(一)之一之一之一之一例如(1)6.378的计数单位是0.001。

  (最低位的计数单位是整个数的'计数单位)

  (2)6.378中有6个一,3个十分之一(0.1),7个百分之一(0.01),

  和8个千分之一(0.001)。

  (3)6.378中有(6378)个千分之一(0.001)。

  (4)9.426中的4表示4个十分之一(0.1)[4在十分位]

  6.小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。7.小数的大小比较:

  (1)统一单位。(统一成一样的单位)

  (2)把要比较的数写成一列(小数点必须对齐)

  (3)先比较整数部分;整数部分相同,就比较十分位;十分位相同,比较百分位;百分位相同,就比较千分位8.小数点的移动:

  小数点向右移动小数就扩大到原数的乘一位10倍×10两位100倍×100

  三位1000倍×1000

  小数点向左移动小数就缩小到原数的除以

  一位1÷10

  10两位1÷100

  100三位1÷1000

  10009.单位换算:

  (1)高级单位转化成低级单位===乘进率,小数点向右移动。(2)低级单位转化成高级单位===除以进率,小数点向左移动。10.求小数的近似数

  方法:“四舍五入”法

  (1)①保留整数,表示精确到个位,看十分位;

  ②保留一位小数,表示精确到十分位,看百分位;③保留两位小数,表示精确到百分位,看千分位;

  (2)改写成“万”作为单位的数:在万位的右下角,点上小数点,

  在数的后面加上“万”字。(先划数级线)

  (3)改写成“亿”作为单位的数:在亿位的右下角,点上小数点,

  在数的后面加上“亿”字。(先划数级线)(4)在表示近似数时,小数末尾的“0”不能去掉。

  11.进率:1米=10分米1分米=10厘米1厘米=10毫米1米=100厘米=1000毫米

  1千克=1000克1吨=1000千克

  1平方米=100平方分米1平方分米=100平方厘米1平方千米=100公顷1平方米=10000平方厘米1公顷=10000平方米1平方千米=1000000平方米

  第五单元三角形

  1.由三条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。2.三角形有3个角、3条边、3个顶点。

  3.从三角形的一个顶点到它的对边做一条垂线,顶点和垂足之间的线段叫做三角形的高,这条边叫做三角形的底。

  4.为了表达方便,用字母A、B、C分别表示三角形的三个顶点,三角形可表示成三角形ABC。5.三角形具有稳定性。

  6.三角形的任意两边的和大于第三边。

  7.三角形按角分成:(1)锐角三角形(三个内角都是锐角的三角形)(2)直角三角形(有一个角是直角的三角形)(3)钝角三角形(有一个角是钝角的三角形)

  8.三角形按边分成:(1)等腰三角形(有两条边相等,相等的两条边叫做三角形的腰;

  有两个角相等,相等的两个角叫做底角。)

  (2)等边三角形(三边相等,三个内角相等都是60°)(3)一般三角形

  9.三角形中只能有一个直角;三角形中只能有一个钝角;

  三角形中至少有两个锐角,最多有三个锐角。10.三角形的内角和是180°。

  11.最少用2个相同直角三角形可以拼一个平行四边形。

  最少用3个相同等边三角形可以拼一个梯形。

  最少用2个相同等边三角形可以拼一个平行四边形。最少用2个相同等腰直角三角形可以拼一个正方形。最少用2个相同直角三角形可以拼一个长方形。

  12.无论是什么形状的图形,没有重叠,没有空隙地铺在平面上,就是密铺。第六单元小数的加法和减法

  1.小数加法、减法:(1)把数位(小数点)对齐。(2)加减和整数的加减一样。2.小数加法、减法的简便计算:

  (1)可使用加法交换律,加法结合律进行简便计算。(2)连续减去两个数等于减去这两个数的和。

  (3)加法、减法混合在一起时,可以先加,也可以先减,看先干什么更简单.例如:(1)5.6+2.7+4.4(2)9.14+1.43+4.57=(5.6+4.4)+2.7=9.14+(1.43+4.57)(3)51.27-8.66-1.34(4)4.02-3.5+0.98=51.27-(8.66+1.34)=4.02+0.98-3.5第七单元折线统计图

  1.折线统计图的特点:(1)可以看出数量的多少.(2)可以看出变化趋势.2.常用增加(上升)与减少(降低)来描述变化趋势.第八单元数学广角(植树问题)

  一、1.两头(两端)要栽:棵数=间隔数+1

  2.一头(一端)要栽:棵数=间隔数3.两头(两端)不栽:棵数=间隔数-1

  二、棋盘棋子数目:

  1.棋盘最外层棋子数:每边棋子数×边数-边数2.棋盘总的棋子数:每行棋子数×每列棋子数3.方阵最外层人数:每边人数×4-4

  4.多边形上摆花盆:每边摆的花盆数×边数-边数

四年级数学下册知识点4

  第一单元知识点(四则运算)

  1. 在没有括号的算式里,如果只有加、减法或者只有乘除法,都要从左往右按顺序计算。(这是同级运算)

  2. 在没有括号的算式里,有乘、除法和加减法,要先算乘除法,在算加减法。(这是两级运算)

  3. 算式里有括号,先算括号里面的,在算括号外面的。

  4. 加法、减法、乘法和除法统称四则运算。

  5. 一个数加上0还得原数,一个数减去0也得原数。

  6. 被减数等于减数,差是0。

  7. 一个数和零相乘,仍得0。

  8. 0除以一个非0的数,还得0。

  9. 0不能作除数。

  10. 在解决问题时,如果列综合算式,必须用脱式计算。

  11. 任何数除以0都得0。(×)因为0不能做除数。

  第二单元知识点(观察物体)

  1. 如何确定物体所在的位置?

  (1)明确方向。

  (2)明确距离。

  2.根据方向和距离来确定物体的位置。

  3.在生活中一般先说物体所在方向离的近(夹角较小)的`方位。

  4.平面图形的一般画法:

  (1)先确定某建筑物的方向。

  (2)再确定角度。(测量角度时,哪个方位在前,0刻度线就对准谁。)

  (3)最后确定距离。

  5.两个城市的位置具有相对性,方向相对,角度和距离不发生改变。例如:甲地在乙地的南偏东30度500米处,则乙地在甲地的北偏西30度500米处。

  第三单元知识点(运算定律)

  1.两个数相加,两个加数交换位置,和不变。这叫做加法交换律。

  用字母表示为:a+b=b+a

  2.三个数相加,先把前两个数相加,再加第三个数,或者先把后两个数相加,再加第一个数,和不变。这叫做加法结合律。用字母表示为:(a+b)+c=a+(b+c)

  3.两个数相乘,交换两个因数的位置,积不变。这叫做乘法交换律。

  用字母表示为:a×b=b×a

  4.三个数相乘,先让前两个数相乘,再乘第三个数,或者先让后两个数相乘,再乘第一个数,积不变。这叫做乘法结合律。

  用字母表示为:(a×b) ×c=a×(b×c)

  5.两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律。用字母表示为:(a+b)×c=a×c+b×c

  6. 类似于乘法分配律的简便公式;

  (a-b)×c=a×c-b×c

  (a+b)÷c=a÷c+b÷c

  (a-b)÷c=a÷c-b÷c

  7.从一个数里连续减去两个数,等于从这个数里减去另两个数的和。这叫做减法的运算性质。用字母表示为:a-b-c=a-(b+c)

  8.在一个带有括号的算式中,括号前面是“+”,去掉括号后,括号里面的运算符号不发生改变。用字母表示为:a+(b+c)=a+b+c a+(b-c)=a+b-c

  括号前面是“-”,去掉括号后,括号里面的运算符号发生了变化,“+”变“-”, “-”变“+”。 用字母表示为:a-(b+c)=a-b-c a-(b-c)=a-b+c

  9.一个数连续除以两个数,等于这个数除以另两个数的积。这时除法的运算性质。用字母表示为:a÷b÷c=a÷(b×c)

  10. 在一个带有括号的算式中,括号前面是“×”,去掉括号后,括号里面的运算符号不发生改变。用字母表示为:

  a×(b×c)=a×b×c a×(b÷c)=a×b÷c

  括号前面是“÷”,去掉括号后,括号里面的运算符号发生了改变。用字母表示为:a÷(b×c)=a÷b÷c a÷(b÷c)=a÷b×c

  12. 另两种简便方法:

  (1) 把一个因数改写成两个一位数相乘的形式。

  (2) 把一个因数改写成两个数相除的形式,然后变成乘除混和运算。

四年级数学下册知识点5

  1.由三条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。

  2.三角形有3个角、3条边、3个顶点。

  3.从三角形的一个顶点到它的对边做一条垂线,顶点和垂足之间的线段叫做三角形的高,这条边叫做三角形的底。

  4.为了表达方便,用字母A、B、C分别表示三角形的三个顶点,三角形可表示成三角形ABC。

  5.三角形具有稳定性。

  6.三角形的`任意两边的和大于第三边。

  7.三角形按角分成:

  (1)锐角三角形(三个内角都是锐角的三角形)

  (2)直角三角形(有一个角是直角的三角形)

  (3)钝角三角形(有一个角是钝角的三角形)

  8.三角形按边分成:

  (1)等腰三角形(有两条边相等,相等的两条边叫做三角形的腰;有两个角相等,相等的两个角叫做底角。)

  (2)等边三角形(三边相等,三个内角相等都是60°)

  (3)一般三角形

  9.三角形中只能有一个直角;三角形中只能有一个钝角;

  三角形中至少有两个锐角,最多有三个锐角。

  10.三角形的内角和是180°。

  11.最少用2个相同直角三角形可以拼一个平行四边形。最少用3个相同等边三角形可以拼一个梯形。最少用2个相同等边三角形可以拼一个平行四边形。最少用2个相同等腰直角三角形可以拼一个正方形。最少用2个相同直角三角形可以拼一个长方形。

  12.无论是什么形状的图形,没有重叠,没有空隙地铺在平面上,就是密铺。

  数学万级数的读法法则

  1、先读万级,再读个级;

  2、万级的数要按个级的读法来读,再在后面加上一个“万”字;

  3、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。

  小学数学必背公式

  关系表达式

  1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数

  2、 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度

  4、单价×数量=总价总价÷单价=数量总价÷数量=单价

  5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率

  6、加数+加数=和和-一个加数=另一个加数

  7、被减数-减数=差被减数-差=减数差+减数=被减数

  8、因数×因数=积积÷一个因数=另一个因数

  9、被除数÷除数=商被除数÷商=除数商×除数=被除数

  单位间进率

  1公里=1千米1千米=1000米

  1米=10分米1分米=10厘米1厘米=10毫米

  1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米

  1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米

  1吨=1000千克1千克= 1000克= 1公斤= 1市斤

  1公顷=10000平方米1亩=666.666平方米

  1升=1立方分米=1000毫升1毫升=1立方厘米

四年级数学下册知识点6

  运算定律及简便运算

  一、加法运算定律:

  1、加法交换律:两个数相加,交换加数的位置,和不变。a+b=b+a

  2、加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。(a+b)+c=a+(b+c)

  加法的这两个定律往往结合起来一起使用。

  如:165+93+35=93+(165+35)依据是什么?

  3、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和。a-b-c=a-(b+c)

  二、乘法运算定律:

  1、乘法交换律:两个数相乘,交换因数的位置,积不变。a×b=b×a

  2、乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以第一个数,积不变。(a×b)×c=a×(b×c)

  乘法的这两个定律往往结合起来一起使用。如:125×78×8的简算

  3、乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这个数相乘,再把积相加。

  (a+b)×c=a×c+b×c (a-b)×c=a×c-b×c

  数学概念知识点

  整数部分:

  十进制计数法;一(个)、十、百、千、万……都叫做计数单位.其中“一”是计数的基本单位.10个1是10,10个10是100……每相邻两个计数单位之间的进率都是十.这种计数方法叫做十进制计数法

  整数的读法:从高位一级一级读,读出级名(亿、万),每级末尾0都不读.其他数位一个或连续几个0都只读一个“零”.

  整数的写法:从高位一级一级写,哪一位一个单位也没有就写0.

  四舍五入法:求近似数,看尾数最高位上的数是几,比5小就舍去,是5或大于5舍去尾数向前一位进1.这种求近似数的方法就叫做四舍五入法.

  整数大小的比较:位数多的数较大,数位相同最高位上数大的就大,最高位相同比看第二位较大就大,以此类推.

  小数部分:

  把整数1平均分成10份、100份、1000份……这样的一份或几份是十分之几、百分之几、千分之几……这些分数可以用小数表示.如1/10记作0.1,7/100记作0.07.

  小数点右边第一位叫十分位,计数单位是十分之一(0.1);第二位叫百分位,计数单位是百分之一(0.01)……小数部分最大的计数单位是十分之一,没有最小的计数单位.小数部分有几个数位,就叫做几位小数.如0.36是两位小数,3.066是三位小数

  小数的读法:整数部分整数读,小数点读点,小数部分顺序读.

  小数的写法:小数点写在个位右下角.

  小数的性质:小数末尾添0去0大小不变.化简

  小数点位置移动引起大小变化:右移扩大左缩小,1十2百3千倍.

  小数大小比较:整数部分大就大;整数相同看十分位大就大;以此类推.

  小学数学几何公式汇总

  1、长方形的'周长=(长+宽)×2:C=(a+b)×2。

  2、正方形的周长=边长×4:C=4a。

  3、长方形的面积=长×宽:S=ab。

  4、正方形的面积=边长×边长:S=a.a=a。

  5、三角形的面积=底×高÷2:S=ah÷2。

  6、平行四边形的面积=底×高:S=ah。

  7、梯形的面积=(上底+下底)×高÷2:S=(a+b)h÷2。

  8、直径=半径×2:d=2r;半径=直径÷2:r=d÷2。

  9、圆的周长=圆周率×直径=圆周率×半径×2:c=πd=2πr。

  10、圆的面积=圆周率×半径×半径:s=πr2。

四年级数学下册知识点7

  1、统计图中1格表示不同单位量,要结合具体的情况来判断1个表示几个单位。数据大,每1格所表示的单位就多,数据小,每1格所表示的单位就小。

  2、理解条形统计图上的数据所表示的意义。

  3、明确条形统计图的特点:直观、方便、便于察看。

  4、制作条形统计图的方法:确定水平方向,标出项目;确定垂直方向代表的数量(一格代表的数量);根据数据的大小画出长度不同的直条;写出标题。

  5、初步了解复式条形统计图,能够从中获得信息,并能回答相应的问题。

  折线统计图

  1、折线统计图的特点:能获取数据变化情况的`信息,并进行简单的预测。

  2、折线统计图的方法:在方格纸中,根据所给出的数据把点标出来,再用线将点连接起来,要顺次连接。

  3、能够看出折线统计图所提供的信息,并回答相关的问题。

  补充

  1、条形统计图与折线统计图的不同:条形统计图用直条表示数量的多少,折线统计图用折线表示数量的增减变化情况。

  2、初步了解复式折线统计图,能够从中获得相应的信息,回答提出的问题

  小学数学循环节是什么

  1、循环节简介

  无限小数的小数点后,从某一位起向右进行到某一位止的一节数字循环出现,首尾衔接,称这种小数为循环小数,这一节数字称为循环节。

  13÷99=0.1313…,这个商就是一个循环小数,它的循环节是13,方法二,可以用看余数的方法,来确定循环小数的循环节,例如,11÷9=1.……2,我们通过竖式计算可看出,数2重复出现,商就重复出现,那么循环节就是从,第一次出现余数2,所得的商2,所以我们可以用,看余数的方法,来确定循环节。

  2、循环节的判断

  判断一个小数是否循环小数,其关键是首先判断这个小数是否无限小数,其次看这个小数的小数部分是否有重复出现的数字,但是如何正确判断小数部分重复出现的数字,可根据以下几点进行判断

  方法一:按照循环小数的意义来确定。即根据“一个无限小数,如果它的小数部分从某一位起,都是由一个或者几个数字依次不断地重复出现,这样的小数叫做循环小数。”这一意义来确定循环小数的循环节。

  方法二:可以用看余数的方法来确定循环小数的循环节。例如:11÷9=1.……2。我们通过竖式计算可看出:余数“2”重复出现,商就重复出现,那么循环节就是从第一次出现余数“2”所得的商“2 ”。

  小学数学面积知识点

  (一)面积和面积单位:

  1、要弄清长度单位与面积单位的联系与区别;

  2、要认真审题,弄清题目要求后再做。

  (二)长方形、正方形面积的计算:

  1、正方形:(A)周长=边长×4--使用长度单位

  (B)面积=边长×边长--使用面积单位

  2、长方形:(A)周长=(长+宽)×2--使用长度单位

  (B)面积=长×宽--使用面积单位

  (三)面积单位间的进率

  1、长度单位:米、分米、厘米--进率是10;1米=10分米=100厘米=1000毫米

  2、面积单位:平方厘米、平方分米、平方米--进率是100;

  1平方米=100平方分米,1平方分米=100平方厘米,1平方米=10000平方厘;

  3、“公顷”(测量菜地面积、果园面积)和“平方千米”(测量城市土地面积)是用来测量土地的更大的面积单位;

  4、质量单位:克(g)、千克(kg,也叫公斤)、吨(t)。1000克=1千克,1000千克=1吨。

  5、计量路程或测量铁路、河流等比较长的物体时,一般用千米(km)作单位,又叫公里。

  (四)各图形的特点:长方形的特点:对边相等,四个角都是直角;正方形的特点:四条边相等,四个角都是直角;平行四边形的特点:两组对边平行且相等。

四年级数学下册知识点8

  (一)加法运算定律:

  1、两个加数交换位置,和不变,这叫做加法交换律。

  字母公式:a+b=b+a

  2、先把前两个数相加,或者先把后两个数相加,和不变,这叫做加法结合律。

  字母公式:(a+b)+c=a+(b+c)

  (二)乘法运算定律:

  1、交换两个因数的位置,积不变,这叫做乘法交换律。

  字母公式:a×b=b×a

  2、先乘前两个数,或者先乘后两个数,积不变,这叫做乘法结合律。

  字母公式:(a×b)×c=a×(b×c)

  3、两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加,这叫做乘法分配律。

  用字母公式:(a+b)×c=a×c+b×c或a×(b+c)=a×b+a×c

  拓展:(a-b)×c=a×c-b×c或a×(b-c)=a×b-a×c

  (三)减法简便运算:

  1、一个数连续减去两个数,可以用这个数减去这两个数的.和。

  用字母表示:a-b-c=a-(b+c)

  2、一个数连续减去两个数,可以用这个数先减去后一个数再减去前一个数。

  用字母表示:a-b-c=a—c-b

  (四)除法简便运算:

  1、一个数连续除以两个数,可以用这个数除以这两个数的积。

  用字母表示:a÷b÷c=a÷(b×c)

  2、一个数连续除以两个数,可以用这个数先除以后一个数再除以前一个数。

  用字母表示:a÷b÷c=a÷c÷b

四年级数学下册知识点9

  (一)、乘除法各部分之间的关系:

  (1)乘法各部分之间的关系:

  因数×因数=积一个因数=积÷另一个因数

  (2)除法各部分之间的关系:

  已知两个因数的积与其中的一个因数,求另一个因数,用除法。

  没有余数的除法:有余数的除法:

  被除数=商×除数被除数=商×除数+余数

  除数=被除数÷商除数=(被除数—余数)÷商

  商=被除数÷除数商=(被除数—余数)÷除数

  (3)乘、除法之间的关系:

  除法是乘法的逆运算注意:0不能作除数。

  (4))整除:一个整数除以另一个不为零的整数,商是整数,没有余数,我们就说一个数能被另一个数整除。如6÷2=3,就是6能被2整除,或者说2能整除6。

  注:判断一个数能否被另一个数整除,首先看被除数、除数(除数不为0)、商是否是整数,再看是否有余数,任意一个为小数或分数都不是整除。如60÷2=30我们说60能被2整除或者说2能整除60。用字母表示为a÷b(b≠0)=c则a能被b整除,b能整除a。

  (二)、乘法运算律

  1,交换两个因数的位置,积不变,这叫做乘法交换律。

  字母公式:a×b=b×a

  2,先乘前两个数,或者先乘后两个数,积不变,这叫做乘法结合律。

  字母公式:(a×b)×c=a×(b×c)

  3,两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加,这叫做乘法分配律。

  用字母公式:(a+b)×c=a×c+b×c或a×(b+c)=a×b+a×c

  乘法分配律的拓展:

  两个数的差与一个数相乘,可以用这个数分别去乘相减的两个数,再把积相减。用字母表示为:

  (a—b)×c=a×c—b×c a×c—b×c=(a—b)×c

  (三)、减法简便运算:

  1、一个数连续减去两个数,可以用这个数减去这两个数的和。

  用字母表示:a—b—c=a—(b+c)

  2、一个数连续减去两个数,可以用这个数先减去后一个数再减去前一个数。

  用字母表示:a—b—c=a—c—b

  (四)、除法简便运算:

  1、一个数连续除以两个数,可以用这个数除以这两个数的积。

  用字母表示:a÷b÷c=a÷(b×c)

  2、一个数连续除以两个数,可以用这个数先除以后一个数再除以前一个数。

  用字母表示:a÷b÷c=a÷c÷b

  (五)、积的变化规律

  ①一个因数缩小(扩大)几倍,另一个因数扩大(缩小)相同的倍数,积不变。

  ②一个因数缩小(或扩大几倍),另一个因数不变,积也随着缩小(或扩大)几倍。

  ③一个因数扩大m倍,另一个因数扩大n,积扩大m×n倍;

  一个因数缩小m倍,另一个因数缩小n,积缩小m×n倍;

  一个因数扩大(缩小)m倍,另一个因数缩小(扩大)n倍,积扩大或缩小m÷n倍。

  (六)、商的变化规律

  被除数缩小(扩大)几倍,除数扩大(缩小)相同的倍数,商不变。

  被除数缩小(扩大)几倍另一个因数不变,商也随着缩小(或扩大)几倍。

  被除数不变,除数缩小(扩大)几倍,商也随着扩大(或缩小)几倍。

  (七)、解决问题:

  1、相遇问题

  相遇路程=速度和×相遇时间

  相遇时间=相遇路程÷速度和

  速度和=相遇路程÷相遇时间

  2、相距问题(同向而行)

  相距距离=速度差×相距时间

  相距时间=相距距离÷速度差

  速度差=相距距离÷相距时间

  3、工程问题

  工作效率×工作时间=工作总量

  工作总量÷工作效率=工作时间

  工作总量÷工作时间=工作效率

  4、最多、最少问题

  人数最少要尽量多买贵的,人数最少要尽量多买便宜的。

  数学圆的周长知识点

  环绕有限面积的区域边缘的长度积分,叫做周长,也就是图形一周的长度。多边形的周长的长度也相等于图形所有边的和,圆的周长=πd=2πr(d为直径,r为半径,π),扇形的周长=2R+nπR÷180?(n=圆心角角度)=2R+kR(k=弧度)。

  推导圆周长最简洁的办法是用积分。在平面直角坐标下圆的方程是这可以写成参数方程:于是圆周长就是结果自然就是(注:三角函数一般的定义是依赖于圆的周长或面积的,为了避免逻辑上的循环论证,可以把三角函数按收敛的幂级数或积分来定义而不依赖于几何,此时圆周率就不是由圆定义的常数,而是由三角函数周期性得到的常数)。如果不需要更多的`理论讨论,上面的做法就足够了。

  数学表内乘法知识点

  1、求几个相同加数的和,用乘法表示更加简便。求几个相同加数的和的简便运算叫做乘法。

  2、加法和乘法的改写,如:5+5+5+5写成乘法算式:5×4或4×5;反之,乘法也可改写成加法。如:8×4=8+8+8+8(在忘记乘法口诀或口诀记不准时,可把乘法算式改写成加法算式来计算。)加法写成乘法时,加法的和与乘法的积相同。

  3、2×7=14读作:2乘7等于14;3乘4等于12写作:3×4=12。

  4、乘法算式中,两个乘数(因数)交换位置,积不变。如:8×4=4×8

  5、看图,写乘加、乘减算式时:

  乘加:先把相同的部分用乘法表示,再加上不相同的部分。先算相同再加不同。乘减:先把每一份数都当作相同的数来算,写成乘法,再把多算进去的数减去。如:加法:5+5+5+5+3=23乘加:5×4+3=23乘减:5×5—3=23

四年级数学下册知识点10

  1、加法运算定律:

  ①加法交换律:两个数相加,交换加数的位置,和不变。

  a+b=b+a

  ②加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。

  (a+b)+c=a+(b+c)

  ③加法的这两个定律往往结合起来一起使用。

  如:165+93+35=93+(165+35)

  2、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和。

  a—b—c=a—(b+c)

  3、乘法运算定律:

  ①乘法交换律:两个数相乘,交换因数的位置,积不变。

  a×b=b×a

  ②乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以第一个数,积不变。

  (a×b) ×c=a×(b×c)

  乘法的这两个定律往往结合起来一起使用。

  如:125×78×8的简算。

  ③乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这两个数相乘,再把积相加。

  (a+b) ×c=a×c+b×c

  4、连除的'性质:一个数连续除以两个数,等于除以这两个数的积。

  a÷b÷c=a÷(b×c)

  5、有关简算的拓展:

  102×38—38×2

  125×25×32

  37×96+37×3+37

  125×88

  3.25+1。98

  10.32—1。98

  易错的情况:

  0.6+0.4—0.6+0.4

  38×99+99

  小学数学四大领域主要内容

  数与代数:的认识,数的表示,数的大小,数的运算,数量的估计;

  图形与几何:空间与平面的基本图形,图形的性质和分类;图形的平移、旋转、轴对称;

  统计与概率:收集、整理和描述数据,处理数据;

  实践与综合应用:以一类问题为载体,学生主动参与的学习活动,是帮助学生积累数学活动经验的重要途径。

  数学整除的特征

  1、能被2整除的数的特征:个位上是0、2、4、6、8。

  2、能被5整除的数的特征:个位上是0或5。

  3、能被3整除的数的特征:一个数的各个数位上的数之和能被3整除,这个数就能被3整除。

四年级数学下册知识点11

  一、加法运算定律:

  1、加法交换律:两个数相加,交换加数的位置,和不变。a+b=b+a

  2、加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。(a+b)+c=a+(b+c)

  加法的这两个定律往往结合起来一起使用。

  如:165+93+35=93+(165+35)依据是什么?

  3、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和。a-b-c=a-(b+c)

  二、乘法运算定律:

  1、乘法交换律:两个数相乘,交换因数的位置,积不变。a×b=b×a

  2、乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以第一个数,积不变。(a×b)×c=a×(b×c)

  乘法的.这两个定律往往结合起来一起使用。如:125×78×8的简算

  3、乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这个数相乘,再把积相加。

  (a+b)×c=a×c+b×c (a-b)×c=a×c-b×c

  小学生数学法则知识归类

  (一)笔算两位数加法,要记三条

  1、相同数位对齐;

  2、从个位加起;

  3、个位满10向十位进1。

  (二)笔算两位数减法,要记三条

  1、相同数位对齐;

  2、从个位减起;

  3、个位不够减从十位退1,在个位加10再减。

  (三)混合运算计算法则

  1、在没有括号的算式里,只有加减法或只有乘除法的,都要从左往右按顺序运算;

  2、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;

  3、算式里有括号的要先算括号里面的。

  小学数学0的性质

  1、0既不是正数也不是负数,而是介于-1和+1之间的整数。

  2、0的相反数是0,即-0=0。

  3、0的绝对值是其本身。

  4、0乘任何实数都等于0,除以任何非零实数都等于0,任何实数加上0等于其本身。

  5、0没有倒数和负倒数,一个非0的数除以0在实数范围内无意义。

  6、0的正数次方等于0,0的负数次方无意义,因为0没有倒数。

  7、除0外,任何数的的0次方等于1。

  8、0也不能做除数、分数的分母、比的后项。

  9、0的阶乘等于1。

四年级数学下册知识点12

  1、亿以内数的读数方法。

  含有个级、万级和亿级的数,必须先读亿级,再读万级,最后读个级。(即从高位读起)亿级或万级的数都按个级读数的方法,在后面要加上亿或万。在级末尾的零不读,在级中间的零必须读。中间不管连续有几个零,只读一个零。

  2、亿以内数的写数方法。

  从高位写起,按照数位的顺序写,中间或末尾哪一位上一个单位也没有,就在那一位上写0。

  3、比较数大小的`方法。

  多位数比较大小,如果位数不同,那么位数多的这个数就大,位数少的这个数就小。如果位数相同,从左起第一位开始比起,哪个数字大,哪个数就大。如果左起第一位上的数相同,就开始比第二位……直到比出大小为止。

四年级数学下册知识点13

  运算定律及简便运算

  一、加法运算定律:

  1、加法交换律:两个数相加,交换加数的位置,和不变。a+b=b+a

  2、加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。(a+b)+c=a+b+c

  加法的这两个定律往往结合起来一起使用。

  如:165+93+35=93+(165+35)依据是什么?

  3、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和。a-b-c=a-b+c

  二、乘法运算定律:

  1、乘法交换律:两个数相乘,交换因数的位置,积不变。a×b=b×a

  2、乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以第一个数,积不变。(a×b)×c=a×b×c

  乘法的这两个定律往往结合起来一起使用。如:125×78×8的简算

  3、乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这个数相乘,再把积相加。

  (a+b)×c=a×c+b×c a-b×c=a×c-b×c

  鸡兔问题公式

  (1)已知总头数和总脚数,求鸡、兔各多少:

  (总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;

  总头数-兔数=鸡数。

  或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;

  总头数-鸡数=兔数。

  例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”

  解一(100-2×36)÷(4-2)=14(只)………兔;

  36-14=22(只)……………………………鸡。

  解二(4×36-100)÷(4-2)=22(只)………鸡;

  36-22=14(只)…………………………兔。

  (答略)

  (2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式

  (每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;

  总头数-兔数=鸡数

  或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;

  总头数-鸡数=兔数。(例略)

  (3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。

  (每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;

  总头数-兔数=鸡数。

  或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;

  总头数-鸡数=兔数。(例略)

  (4)得失问题(鸡兔问题的推广题)的解法,可以用下面的.公式:

  (1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

  例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?”

  解一(4×1000-3525)÷(4+15)

  =475÷19=25(个)

  解二1000-(15×1000+3525)÷(4+15)

  =1000-18525÷19

  =1000-975=25(个)(答略)

  (“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费××元,破损者不仅不给运费,还需要赔成本××元……。它的解法显然可套用上述公式。)

  (5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:

  〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;

  〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数。

  例如,“有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。鸡兔各是多少只?”

  解〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2

  =20÷2=10(只)……………………………鸡

  〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2

  =12÷2=6(只)…………………………兔(答略)

  鸡兔同笼

  1、鸡兔同笼属于假设问题,假设的和最后结果相反。

  2、“鸡兔同笼”问题的解题方法

  假设法:

  ①假如都是兔

  ②假如都是鸡

  ③古人“抬脚法”:

  解答思路:

  假如每只鸡、每只兔各抬起一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”。这样,鸡和兔的脚的总数就少了一半。这种思维方法叫化归法。

  3、公式:

  鸡兔总脚数÷2-鸡兔总数=兔的只数;

  鸡兔总数-兔的只数=鸡的只数。

  四则运算

  1、加法、减法、乘法和除法统称四则运算。

  2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。

  3、在没有括号的算式里,有乘、除法和加、减法、要先算乘除法,再算加减法。

  4、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。

  5、先乘除,后加减,有括号,提前算

  关于“0”的运算

  1、“0”不能做除数; 字母表示:a÷0错误

  2、一个数加上0还得原数; 字母表示:a+0=a

  3、一个数减去0还得原数; 字母表示:a-0=a

  4、被减数等于减数,差是0; 字母表示:a-a=0

  5、一个数和0相乘,仍得0; 字母表示:a×0=0

  6、0除以任何非0的数,还得0; 字母表示:0÷a(a≠0)=0

  7、0÷0得不到固定的商; 5÷0得不到商.(无意义)

四年级数学下册知识点14

  数学广角(植树问题)

  一、1.两头(两端)要栽:棵数=间隔数+1

  2.一头(一端)要栽:棵数=间隔数

  3.两头(两端)不栽:棵数=间隔数-1

  二、棋盘棋子数目:

  1.棋盘最外层棋子数:每边棋子数×边数-边数

  2.棋盘总的棋子数:每行棋子数×每列棋子数

  3.方阵最外层人数:每边人数×4-4

  4.多边形上摆花盆:每边摆的花盆数×边数-边数

  数学广角——鸽巢问题

  一、鸽巢问题

  1.把n+1(n是大于的自然数)个物体放进n个“鸽笼”中,总有一个“鸽笼”至少放进了2个物体。

  2.把多于kn(k、n都是大于的自然数)个物体放进n个“鸽笼”中,总有一个“鸽笼”至少放进(k+1)个物体。

  二、鸽巢问题的应用

  1.如果有n(n是大于的自然数)个“鸽笼”,要保证有一个“鸽笼”至少放进了2个物品,那么至少需要有n+1个物品。

  2.如果有n(n是大于的自然数)个“鸽笼”,要保证有一个“鸽笼”至少放进了(k+1)(k是大于的自然数)个物品,那么至少需要有(kn+1)个物品。

  3.(分放的物体总数-1)÷(其中一个鸽笼里至少有的物体个数-1)=a……b(b),a就是所求的鸽笼数。

  4.利用“鸽巢问题”解决问题的思路和方法:构造“鸽巢”,建立“数学模型”;把物体放入“鸽巢”,进行比较分析;说明理由,得出结论。

  例如:有4只鸽子飞进3个鸽笼,总有一个鸽笼至少飞进了2只鸽子。

  提示:解决“鸽巢问题”的关键是找准谁是“鸽笼”,谁是“鸽子”。

  小学数学四大领域主要内容

  数与代数:的认识,数的'表示,数的大小,数的运算,数量的估计;

  图形与几何:空间与平面的基本图形,图形的性质和分类;图形的平移、旋转、轴对称;

  统计与概率:收集、整理和描述数据,处理数据;

  实践与综合应用:以一类问题为载体,学生主动参与的学习活动,是帮助学生积累数学活动经验的重要途径。

  数学列方程解应用题的一般步骤

  1、弄清题意,找出未知数,并用X表示;

  2、找出应用题中数量之间的相等关系,列方程;

  3、解方程;

  4、检验、写出答案。

四年级数学下册知识点15

  一、单式折线统计图

  1、折线统计图的特点:既可以反映出数量的多少,又能表示出数量的增减变化。

  2、绘制折线统计图的方法:

  ①画出横轴和纵轴(补画统计图时此步骤已给出);

  ②确定一个单位长度表示数量多少(补画统计图时此步骤已给出);

  ③描点,描点时应注意先找准横轴上的点,再找准纵轴上相对应的点,过两点分别做横轴、纵轴的垂线,两条垂线的交点就是所要描的点,在交点处点上实心点;

  ④用线段顺次连接所有点,并标注数据;

  ⑤标注好日期和标题。(日期也可不标注)

  3、折线统计图的应用:可以根据折线统计图发现问题、解决问题,并进行合理地推测。

  (知识巧记)统计图,类型多,条形、折线一一说。

  条形数量好比较,折线增减更明了。

  绘制折线较简单,描点连线来解决。

  完成绘图细分析,解决问题更容易。

  二、复式折线统计图

  1、复式折线统计图:如果在统计过程中存在两组(或多组)数据,且需要在一幅统计图中表示这两组(或多组)数据,就要用两种(或多种)不同颜色(或不同形式)的折线来表示不同数量的变化情况,这种统计图就是复式折线统计图。

  2、复式折线统计图的特点:复式折线统计图不但能表示出各组数据的多少,数据的增减变化的.情况,而且可以比较各组数据的变化趋势。

  3、复式折线统计图的绘制方法:与单式折线统计图的绘制方法基本相同,只是用不同的折线表示表示不同的量,需标明图例。

  4、运用横向、纵向、综合、对比等不同的观察方法,可以读懂复式折线统计图,从中获取更多的信息,并能根据信息回答或提出相应的问题,同时进行简单地分析和合理地推测。

  小学数学新课标的基本理念

  1、义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生,实现:人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。

  2、数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据、进行计算、推理和证明,数学模型可以有效地描述自然现象和社会现象;数学为其他科学提供了语言、思想和方法,是一切重大技术发展的基础;数学在提高人的推理能力、抽象能力、想像力和创造力等方面有着独特的作用;数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。

  3、学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。内容的呈现应采用不同的表达方式,以满足多样化的学习需求。有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。由于学生所处的文化环境、家庭背景和自身思维方式的不同,学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。

  小数计算法则

  小数加减法计算法则

  计算小数加减法,先把小数点对齐(也就是把相同的数位上的数对齐),再按照整数加减法则进行计算,最后在得数里对齐横线上的小数点位置,点上小数点。

  小数乘法的计算法则

  计算小数乘法,先按照乘法的法则算出积,再看因数中一共几位小数,就从积的右边起数出几位,点上小数点。

【四年级数学下册知识点】相关文章:

高等数学下册知识点09-17

高一数学下册知识点01-27

初二数学下册必备的知识点12-04

初二数学下册知识点总结12-03

人教版四年级数学下册知识点04-02

苏教版四年级下册数学知识点07-11

小学数学四年级下册知识点汇总02-06

小学数学四年级下册知识点整理02-18

四年级下册数学知识点整理01-26

四年级下册数学知识点总结03-24