初一数学知识点上册

时间:2023-07-29 17:22:12 数学 我要投稿

初一数学知识点上册15篇【优秀】

  在平时的学习中,看到知识点,都是先收藏再说吧!知识点是指某个模块知识的重点、核心内容、关键部分。掌握知识点有助于大家更好的学习。以下是小编收集整理的初一数学知识点上册,欢迎大家分享。

初一数学知识点上册15篇【优秀】

初一数学知识点上册1

  ①大于0的数叫正数。

  ②在正数前面加上“-”号的数,叫做负数。

  ③0既不是正数也不是负数。0是正数和负数的分界,是唯一的中性数。

  ④搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等。

  ⑤正整数、0、负整数统称整数(结合数轴和一元一次方程出题),正分数和负分数统称分数。整数和分数统称有理数。

  ⑥非负数就是正数和零;非负整数就是正整数和0。

  ⑦“基准”题:有固定的基准数,和的求法:基准数×个数+与基准数相比较的数的代数和;平均数的求法:基准数+与基准数相比较的.数的代数和÷个数(写出原数,也可用小学知识解答);“非基准”题:无固定的基准数,如明天和今天比,后天和明天比。

初一数学知识点上册2

  (1)同号两数相加,取相同的符号,并把绝对值相加;

  (2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;

  (3)一个数与0相加,仍得这个数.

  2.有理数加法的运算律:

  (1)加法的'交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).

  3.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).

  4.有理数乘法法则:

  (1)两数相乘,同号为正,异号为负,并把绝对值相乘;

  (2)任何数同零相乘都得零;

  (3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.

  5.有理数乘法的运算律:

  (1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);

  (3)乘法的分配律:a(b+c)=ab+ac .

  6.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数, .

  7.有理数乘方的法则:

  (1)正数的任何次幂都是正数;

初一数学知识点上册3

  一.线段、射线、直线

  ※1.正确理解直线、射线、线段的概念以及它们的区别:

  名称图形表示方法端点长度

  直线直线AB(或BA)

  直线l无端点无法度量

  射线射线OM1个无法度量

  线段线段AB(或BA)

  线段l2个可度量长度

  ※2.直线公理:经过两点有且只有一条直线.

  二.比较线段的长短

  ※1.线段公理:两点间线段最短;两之间线段的长度叫做这两点之间的距离.

  ※2.比较线段长短的两种方法:

  ①圆规截取比较法;

  ②刻度尺度量比较法.

  ※3.用刻度尺可以画出线段的'中点,线段的和、差、倍、分;

  用圆规可以画出线段的和、差、倍.

  三.角的度量与表示

  ※1.角:有公共端点的两条射线组成的图形叫做角;

  这个公共端点叫做角的顶点;

  这两条射线叫做角的边.

  ※2.角的表示法:角的符号为“∠”

初一数学知识点上册4

  平面图形及其位置关系

  1、线段:绷紧的琴弦,人行横道线都可以近似的看做线段。线段有两个端点。

  2、射线:将线段向一个方向无限延长就形成了射线。射线有一个端点。

  3、直线:将线段向两个方向无限延长就形成了直线。直线没有端点。

  4、点、直线、射线和线段的表示

  在几何里,我们常用字母表示图形。

  一个点可以用一个大写字母表示。

  一条直线可以用一个小写字母表示或用直线上两个点的大写字母表示。

  一条射线可以用一个小写字母表示或用端点和射线上另一点来表示(端点字母写在前面)。

  一条线段可以用一个小写字母表示或用它的端点的两个大写字母来表示。

  5、点和直线的位置关系有两种:

  ①点在直线上,或者说直线经过这个点。

  ②点在直线外,或者说直线不经过这个点。

  6、直线的性质

  (1)直线公理:经过两个点有且只有一条直线。

  (2)过一点的直线有无数条。

  (3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。

  (4)直线上有无穷多个点。

  (5)两条不同的直线至多有一个公共点。

  7、线段的'性质

  (1)线段公理:两点之间的所有连线中,线段最短。

  (2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。

  (3)线段的中点到两端点的距离相等。

  (4)线段的大小关系和它们的长度的大小关系是一致的。

初一数学知识点上册5

  一、方程的有关概念

  1.方程:含有未知数的等式就叫做方程.

  2. 一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程.例如: 1700+50x=1800, 2(x+1.5x)=5等都是一元一次方程.

  3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.

  注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. ⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.

  二、等式的性质

  等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.

  等式的'性质(1)用式子形式表示为:如果a=b,那么a±c=b±c

  等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,等式的性质(2)用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c≠0),那么ca=cb

  三、移项法则:把等式一边的某项变号后移到另一边,叫做移项.

  四、去括号法则

  1. 括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.

  2. 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.

  五、解方程的一般步骤

  1. 去分母(方程两边同乘各分母的最小公倍数)

  2. 去括号(按去括号法则和分配律)

  3. 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)

  4. 合并(把方程化成ax = b (a≠0)形式)

  5. 系数化为1(在方程两边都除以未知数的系数a,得到方程的解x=a(b).

  六、用方程思想解决实际问题的一般步骤

  1. 审:审题,分析题中已知什么,求什么,明确各数量之间的关系.

  2. 设:设未知数(可分直接设法,间接设法)

  3. 列:根据题意列方程.

  4. 解:解出所列方程.

  5. 检:检验所求的解是否符合题意.

  6. 答:写出答案(有单位要注明答案)

初一数学知识点上册6

  一个整数a和一个非零整数b的比是有理数(rationalnumber)正数与负数

  像3,2,1。2这样大于0的数叫做正数,根据需要,也可以在正数前面加上“+”(正)号;像—3,—2,—2。5这样在正数前面加上“—”(负)号的数叫做负数;0既不是正数,也不是负数。

  有理数加法

  1、有理数的加法法则(有理数加法运算律):

  (1)同号两数相加,取相同的符号,并把绝对值相加;

  (2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;

  (3)一个数同0相加,仍得这个数。

  2、方法与技巧:进行有理数的`加法运算时,要先观察相加两数的符号,再确定和的符号,最后计算和的绝对值。

  数学轴

  可以用一条直线上的点表示数,这条直线叫做数轴(numberaxis)。

  原点(origin)、正方向(positivedirection)和单位长度(unitlength)称为数轴三要素,它们缺一不可。

  【数轴与实数】

  数轴上的点与实数一一对应。

  【数轴的性质】

  数轴上从左往右的点表示的数是从小往大的顺序,那么利用数轴可以比较数的大小。在数轴上表示的两个数右边的总比左边的大;正数都大于零;负数都小于零;正数大于一切负数。另外由于数轴是一条直线,是可以向两端无限延伸的,因此没有最小的负数,也没有最大的正数。

  绝对值

  绝对值的代数定义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零。

  绝对值的几何定义:在数轴上表示一个数的点离开原点的距离,叫做这个数的绝对值。

  绝对值求法:一个正数a的绝对值是它本身a;一个负数a的绝对值是它的相反数—a;零的绝对值是零。

  绝对值表示法:a的绝对值用“|a|”表示。读作“a的绝对值。

初一数学知识点上册7

  有理数的乘方

  (1)求相同因数的.积的运算叫做乘方.乘方运算的结果叫幂.

  一般地,记作,读作:a的n次方,表示n个a相乘;其中,a是底数,n是指数,称为幂。

  (2)正数的任何次幂都是正数.

  负数的奇数次幂是负数,

  负数的偶数次幂是正数.

  (3)一个数的平方为它本身,这个数是0和1;

  一个数的立方为它本身,这个数是0、1和-1。

初一数学知识点上册8

  【知识点】:

  认识直线、线段与射线,会用字母正确读出直线、线段和射线。

  直线:可以向两端无限延伸;没有端点。读作 :直线AB或直线BA。

  线段:不能向两端无限延伸;有两个端点。读作:线段AB或线段BA。

  射线:可以向一端无限延伸;有一个端点。读作:射线AB(只有一种读法,从端点读起。)

  补充【知识点】:

  画直线。

  过一点可画无数条直线;过两个能画一条直线;过三点,如果三点在一条线上,经过三点只能画一条直线,如果这三点不在一条线上,那么经过三点不能画出直线。

  明确两点之间的.距离,线段比曲线、折线要短。

  直线、射线可以无限延长。因为直线没有端点,射线只有一个端点,所以不可以测量,没有具体的长度。如:直线长4厘米。是错误的。只有线段才能有具体的长度。

初一数学知识点上册9

  1.有理数:

  (1)凡能写成 形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;

  (2)有理数的分类: ① ②

  2.数轴:

  数轴是规定了原点、正方向、单位长度的一条直线.

  3.相反数:

  (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

  (2)相反数的和为0 ? a+b=0 ? a、b互为相反数.

  4.绝对值:

  (1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

  (2) 绝对值可表示为: 或 ;绝对值的问题经常分类讨论;

  5.有理数比大小:

  (1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.

  6.互为倒数:

  乘积为1的两个数互为倒数;注意:0没有倒数;若 a≠0,那么 的倒数是 ;若ab=1? a、b互为倒数;若ab=-1? a、b互为负倒数.

  7. 有理数加法法则:

  (1)同号两数相加,取相同的符号,并把绝对值相加;

  (2)异号两数相加,取绝对值较大的符号,并用较大的`绝对值减去较小的绝对值;

  (3)一个数与0相加,仍得这个数.

  8.有理数加法的运算律:

  (1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).

  9.有理数减法法则:

  减去一个数,等于加上这个数的相反数;即a-b=a+(-b).

  10 有理数乘法法则:

  (1)两数相乘,同号为正,异号为负,并把绝对值相乘;

  (2)任何数同零相乘都得零;

  (3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.

  11 有理数乘法的运算律:

  (1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);

  (3)乘法的分配律:a(b+c)=ab+ac .

  12.有理数除法法则:

  除以一个数等于乘以这个数的倒数;注意:零不能做除数, .

  13.有理数乘方的法则:

  (1)正数的任何次幂都是正数;

  (2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n .

  14.乘方的定义:

  (1)求相同因式积的运算,叫做乘方;

  (2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;

  15.科学记数法:

  把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.

  16.近似数的精确位:

  一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.

  17.有效数字:

  从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.

  18.混合运算法则:

  先乘方,后乘除,最后加减.

初一数学知识点上册10

  直线:一条拉紧的细线向两方无限延伸就是直线。

  直线表示法①两大写字母法如直线AB或直线BA(字母无顺序性)

  ②小写字母法如直线a

  直线特征:

  ①直线向两方无限延伸

  ②直线没有粗细不能度量长短。

  ③两点确定一条直线

  ④两直线相交只有一个交点。

  ⑤直线无端点但有无数个点

  点与直线的位置关系:①点在直线上(也可说直线经过点)

  ②点在直线外(也可说直线不经过点)

  直线公理:过两点有一条直线,并且只有一条直线。(两点确定一条直线)

初一数学知识点上册11

  七年级上册数学知识点总结之有理数及其运算板块:

  1、整数包含正整数和负整数,分数包含正分数和负分数。正整数和正分数通称为正数,负整数和负分数通称为负数。

  2、正整数、0、负整数、正分数、负分数这样的数称为有理数。

  3、绝对值:数轴上一个数所对应的点与原点的距离叫做该数的'绝对值,用“||”表示。

  七年级上册数学知识点总结之整式板块:

  1、单项式:由数与字母的乘积组成的式子叫做单项式。

  2、单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。

  3、整式:单项式与多项式统称整式。

  4、同类项:字母相同,并且相同字母的指数也相同的项叫做同类项。

  七年级上册数学知识点总结之一元一次方程。

  1、含有未知数的等式叫做方程,使方程左右两边的值都相等的未知数的值叫做方程的解。

  2、移项:把等式一边的某项变号后移到另一边,叫做移项等。

  其实,七年级上册数学知识点总结还包括很多,但是我想,万变不离其宗。

  大家平时要注意整理与积累。配合多加练习。一些知识要点及时记录在笔记本上,一些错题也要及时整理、复习。一个个知识点去通过。我相信只要做个有心人,就可以在数学考试中取得高分。

初一数学知识点上册12

  ①审题:弄清题目和题目中的数量关系,分清已知和未知,适当设出未知数x;

  ②找出能够表示应用问题全部含义的一个相等关系,从而列出方程;③解所列的方程并检验后写出答案。

  列方程解应用题主要有三个困难:

  ①找不到相等关系;

  ②找到相等关系后不会列方程;

  ③习惯于用小学的算术解法,对于代数解法(列方程解应用题)分析应用题不适应,不知道要抓相等关系。解决这些困难就要养成分析问题的习惯,通过列表格,画直线图等方法找到相等关系。并且对于题目中的条件要充分利用,不要漏掉,且题目中的.条件每个只能用一次,不能重复利用。否则,列出的就是一个恒等式,而不是一个方程。

初一数学知识点上册13

  数轴的三要素:原点、正方向、单位长度(三者缺一不可)。

  任何一个有理数,都可以用数轴上的一个点来表示。(反过来,不能说数轴上所有的点都表示有理数)

  如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。(0的相反数是0)

  在数轴上,表示互为相反数的两个点,位于原点的侧,且到原点的距离相等。

  数轴上两点表示的数,右边的总比左边的大。正数在原点的右边,负数在原点的左边。

  绝对值的定义:一个数a的绝对值就是数轴上表示数a的点与原点的距离。数a的绝对值记作|a|。

  正数的绝对值是它本身;负数的'绝对值是它的数;0的绝对值是0。

  

  绝对值的性质:除0外,绝对值为一正数的数有两个,它们互为相反数;

  互为相反数的两数(除0外)的绝对值相等;

  任何数的绝对值总是非负数,即|a|0

  比较两个负数的大小,绝对值大的反而小。比较两个负数的大小的步骤如下:

  ①先求出两个数负数的绝对值;

  ②比较两个绝对值的大小;

  ③根据两个负数,绝对值大的反而小做出正确的判断。

  绝对值的性质:

  ①对任何有理数a,都有|a|0

  ②若|a|=0,则|a|=0,反之亦然

  ③若|a|=b,则a=b

  ④对任何有理数a,都有|a|=|-a|

  有理数加法法则:

  ①同号两数相加,取相同符号,并把绝对值相加。

  ②异号两数相加,绝对值相等时和为0;绝对值不等时取绝对值较大的数的符号,并用较大数的绝对值减去较小数的绝对值。

  ③一个数同0相加,仍得这个数。

  加法的交换律、结合律在有理数运算中同样适用。

  灵活运用运算律,使用运算简化,通常有下列规律:

  ①互为相反的两个数,可以先相加;

  ②符号相同的数,可以先相加;

  ③分母相同的数,可以先相加;

  ④几个数相加能得到整数,可以先相加。

  有理数减法法则:

  减去一个数,等于加上这个数的相反数。

  有理数减法运算时注意两变:

  ①改变运算符号;

  ②改变减数的性质符号(变为相反数)

  有理数减法运算时注意一个不变:被减数与减数的位置不能变换,也就是说,减法没有交换律。

  有理数的加减法混合运算的步骤:

  ①写成省略加号的代数和。在一个算式中,若有减法,应由有理数的减法法则转化为加法,然后再省略加号和括号;

  ②利用加法则,加法交换律、结合律简化计算。

  (注意:减去一个数等于加上这个数的相反数,当有减法统一成加法时,减数应变成它本身的相反数。)

  有理数乘法法则:①两数相乘,同号得正,异号得负,绝对值相乘。

  ②任何数与0相乘,积仍为0。

  如果两个数互为倒数,则它们的乘积为1。(如:-2与 、 等)

  乘法的交换律、结合律、分配律在有理数运算中同样适用。

  有理数乘法运算步骤:①先确定积的符号;

  ②求出各因数的绝对值的积。

  乘积为1的两个有理数互为倒数。注意:

  ①零没有倒数

  ②求分数的倒数,就是把分数的分子分母颠倒位置。一个带分数要先化成假分数。

  ③正数的倒数是正数,负数的倒数是负数。

  有理数除法法则:

  ①两个有理数相除,同号得正,异号得负,并把绝对值相除。

  ②0除以任何非0的数都得0。0不可作为除数,否则无意义。

  有理数的乘方

  注意:

  ①一个数可以看作是本身的一次方,如5=51;

  ②当底数是负数或分数时,要先用括号将底数括上,再在右上角写指数。

  乘方的运算性质:

  ①正数的任何次幂都是正数;

  ②负数的奇次幂是负数,负数的偶次幂是正数;

  ③任何数的偶数次幂都是非负数;

  ④1的任何次幂都得1,0的任何次幂都得0;

  ⑤-1的偶次幂得1;-1的奇次幂得-1;

  ⑥在运算过程中,首先要确定幂的符号,然后再计算幂的绝对值。

  有理数混合运算法则:①先算乘方,再算乘除,最后算加减。

  ②如果有括号,先算括号里面的。

初一数学知识点上册14

  1、单项式对数字和若干个字母施行有限次乘法运算,所得的代数式叫做单项式.单独一个数或一个字母也是单项式.

  2、系数单项式中的数字因数叫做这个单项式的系数.

  3、降幂排列把一个多项式,按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列.

  4、升幂排列把一个多项式,按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列.

  5、整式单项式和多项式统称整式。

  6、同类项所含字母相同,并且相同字母的次数也相同的项,叫做同类项.常数项都是同类项.

  7、合并同类项把多项式中的同类项合并成一项,叫做合并同类项.合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.8、去括号法则括号前是"+"号,把括号和它前面的"+"号去掉,括号里各项都不变符号;括号前是"-"号,把括号和它前面的"-"号去掉,括号里各项都改变符号.例:a+(b-2c)-(e-2d)=a+b-2c-e+2d14、添括号法则添括号后,括号前面是"+"号,括到括号里的各项都不变符号;添括号后,括号前面是"-"号,括到括号里的'各项都改变符号.例:m+2x-y+z-5=m+(2x-y)-(-z+5)

  9、整式的加减整式加减的一般步骤:1.如果遇到括号,按去括号法则先去括号;2.合并同类项.

  10、代数式的恒等变形一个代数式用另一个与它恒等的表达式去代换,叫做恒等变形.

初一数学知识点上册15

  (1)多项式:几个单项式的和叫做多项式。

  1、多项式中的每一个单项式叫做多项式的项。

  2、多项式中不含字母的项叫做常数项。

  3、一个多项式有几项,就叫做几项式。

  4、多项式的每一项都包括项前面的符号。

  5、多项式中次数最高的'项的次数,叫做这个多项式的次数。

  (2)多项式排列:

  ①把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母的降幂排列.

  ②把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母的升幂排列.

  (3)单项式与多项式统称整式。(分母含有字母的代数式不是整式)

【初一数学知识点上册】相关文章:

初一数学知识点上册07-16

初一数学上册知识点07-15

初一数学上册知识点07-14

初一数学知识点上册07-14

初一数学上册知识点[优]07-21

初一数学上册知识点总结11-23

苏教版初一数学上册知识点07-21

初一数学上册知识点整理01-26

初一数学上册知识点归纳01-26

苏教版初一数学上册知识点07-25