初一数学上册知识点

时间:2023-07-27 16:59:55 数学 我要投稿

初一数学上册知识点(优秀15篇)

  在我们的学习时代,很多人都经常追着老师们要知识点吧,知识点是指某个模块知识的重点、核心内容、关键部分。为了帮助大家掌握重要知识点,下面是小编精心整理的初一数学上册知识点,仅供参考,大家一起来看看吧。

初一数学上册知识点(优秀15篇)

初一数学上册知识点1

  七年级上册数学知识点总结之有理数及其运算板块:

  1、整数包含正整数和负整数,分数包含正分数和负分数。正整数和正分数通称为正数,负整数和负分数通称为负数。

  2、正整数、0、负整数、正分数、负分数这样的数称为有理数。

  3、绝对值:数轴上一个数所对应的点与原点的距离叫做该数的绝对值,用“||”表示。

  七年级上册数学知识点总结之整式板块:

  1、单项式:由数与字母的乘积组成的式子叫做单项式。

  2、单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的.次数。

  3、整式:单项式与多项式统称整式。

  4、同类项:字母相同,并且相同字母的指数也相同的项叫做同类项。

  七年级上册数学知识点总结之一元一次方程。

  1、含有未知数的等式叫做方程,使方程左右两边的值都相等的未知数的值叫做方程的解。

  2、移项:把等式一边的某项变号后移到另一边,叫做移项等。

  其实,七年级上册数学知识点总结还包括很多,但是我想,万变不离其宗。

  大家平时要注意整理与积累。配合多加练习。一些知识要点及时记录在笔记本上,一些错题也要及时整理、复习。一个个知识点去通过。我相信只要做个有心人,就可以在数学考试中取得高分。

初一数学上册知识点2

  1、数轴:规定了原点、正方向和单位长度的直线叫数轴。

  2、画数轴的步骤:

  ⑴画一条直线。

  ⑵选取原点、正方向。

  ⑶规定单位长度。

  ⑷数轴上用短竖标出刻度。

  ⑸数轴下用标出数值。

  3、数轴三要素:原点、正方向和单位长度

  4、数轴特点:一般地,设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的'点在原点的左边,与原点的距离是a个单位长度。

  5、数轴上点与有理数关系:每一个有理数都可以用数轴上的一个点来表示;但数轴上的点不都表示有理数。

初一数学上册知识点3

  整式加减由数到式,承前启后,既是有理数的概括与抽象,又是整式乘除和其他代数式运算的基础,也是学习方程、不等式和函数的基础。为了体现本章知识的特殊地位与作用,具有以下几个特点:

  1、充分体现由特殊到一般,由一般到特殊的`思维过程,经历探索数量关系和变化规律的过程,渗透辩证唯物主义思想。

  2、知识呈现过程尽量做到与学生已有生活经验密切联系,如皮球的弹跳高度,传数游戏等,发展学生应用数学的意识和能力。

  3、让知识的发生、发展过程得以充分暴露,重视基本知识和基本技能的学习。

  4、注意发挥例题和习题的教育功能。加强学科间的纵向联系并注意与其他学科的横向联系,扩充学生的知识面,注意适当插入一些开放题,培养发散思维,适时渗透美育和德育教育。

  知识要点1。整式的有关概念

  (1)单项式:表示数与字母的乘积的代数式,叫做单项式,单独的一个数或一个字母也是单项式,如、2πr、a,0……都是单项式。

  (2)多项式:几个单项式的和叫做多项式。

初一数学上册知识点4

  1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

  2.三角形的分类

  3.三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.

  快速判定方法:1)不等边三角形:最小两个边之和大于第三个边,就能组成三角形。2)等腰三角形:两腰之和大于底,就能组成三角形。3)等边三角形:肯定能组成。

  4.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

  5.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

  6.角平分线:三角形的一个内角的平分线与这个角的.对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

  7.高线、中线、角平分线的画法

  8.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

  9.三角形内角和定理:三角形三个内角的和等于180°

  推论1直角三角形的两个锐角互余;推论2三角形的一个外角等于和它不相邻的两个内角和;推论3三角形的一个外角大于任何一个和它不相邻的内角;三角形的内角和是外角和的一半。

  10.三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角(六选三原则)

  11.三角形外角的性质

  (1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;(2)三角形的一个外角等于与它不相邻的两个内角和;(3)三角形的一个外角大于与它不相邻的任一内角;(4)三角形的外角和是360°。

初一数学上册知识点5

  整式的乘法:

  ①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。

  ②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的'每一项,再把所得的积相加。

  ③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。

初一数学上册知识点6

  数轴的三要素:原点、正方向、单位长度(三者缺一不可)。

  任何一个有理数,都可以用数轴上的一个点来表示。(反过来,不能说数轴上所有的点都表示有理数)

  如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。(0的相反数是0)

  在数轴上,表示互为相反数的两个点,位于原点的侧,且到原点的距离相等。

  数轴上两点表示的数,右边的总比左边的大。正数在原点的右边,负数在原点的左边。

  绝对值的定义:一个数a的绝对值就是数轴上表示数a的点与原点的距离。数a的绝对值记作|a|。

  正数的绝对值是它本身;负数的绝对值是它的数;0的绝对值是0。

  

  绝对值的性质:除0外,绝对值为一正数的数有两个,它们互为相反数;

  互为相反数的两数(除0外)的绝对值相等;

  任何数的绝对值总是非负数,即|a|0

  比较两个负数的大小,绝对值大的反而小。比较两个负数的大小的步骤如下:

  ①先求出两个数负数的绝对值;

  ②比较两个绝对值的大小;

  ③根据两个负数,绝对值大的反而小做出正确的判断。

  绝对值的性质:

  ①对任何有理数a,都有|a|0

  ②若|a|=0,则|a|=0,反之亦然

  ③若|a|=b,则a=b

  ④对任何有理数a,都有|a|=|-a|

  有理数加法法则:

  ①同号两数相加,取相同符号,并把绝对值相加。

  ②异号两数相加,绝对值相等时和为0;绝对值不等时取绝对值较大的数的符号,并用较大数的绝对值减去较小数的绝对值。

  ③一个数同0相加,仍得这个数。

  加法的交换律、结合律在有理数运算中同样适用。

  灵活运用运算律,使用运算简化,通常有下列规律:

  ①互为相反的两个数,可以先相加;

  ②符号相同的数,可以先相加;

  ③分母相同的数,可以先相加;

  ④几个数相加能得到整数,可以先相加。

  有理数减法法则:

  减去一个数,等于加上这个数的相反数。

  有理数减法运算时注意两变:

  ①改变运算符号;

  ②改变减数的性质符号(变为相反数)

  有理数减法运算时注意一个不变:被减数与减数的位置不能变换,也就是说,减法没有交换律。

  有理数的加减法混合运算的步骤:

  ①写成省略加号的代数和。在一个算式中,若有减法,应由有理数的减法法则转化为加法,然后再省略加号和括号;

  ②利用加法则,加法交换律、结合律简化计算。

  (注意:减去一个数等于加上这个数的`相反数,当有减法统一成加法时,减数应变成它本身的相反数。)

  有理数乘法法则:①两数相乘,同号得正,异号得负,绝对值相乘。

  ②任何数与0相乘,积仍为0。

  如果两个数互为倒数,则它们的乘积为1。(如:-2与 、 等)

  乘法的交换律、结合律、分配律在有理数运算中同样适用。

  有理数乘法运算步骤:①先确定积的符号;

  ②求出各因数的绝对值的积。

  乘积为1的两个有理数互为倒数。注意:

  ①零没有倒数

  ②求分数的倒数,就是把分数的分子分母颠倒位置。一个带分数要先化成假分数。

  ③正数的倒数是正数,负数的倒数是负数。

  有理数除法法则:

  ①两个有理数相除,同号得正,异号得负,并把绝对值相除。

  ②0除以任何非0的数都得0。0不可作为除数,否则无意义。

  有理数的乘方

  注意:

  ①一个数可以看作是本身的一次方,如5=51;

  ②当底数是负数或分数时,要先用括号将底数括上,再在右上角写指数。

  乘方的运算性质:

  ①正数的任何次幂都是正数;

  ②负数的奇次幂是负数,负数的偶次幂是正数;

  ③任何数的偶数次幂都是非负数;

  ④1的任何次幂都得1,0的任何次幂都得0;

  ⑤-1的偶次幂得1;-1的奇次幂得-1;

  ⑥在运算过程中,首先要确定幂的符号,然后再计算幂的绝对值。

  有理数混合运算法则:①先算乘方,再算乘除,最后算加减。

  ②如果有括号,先算括号里面的。

初一数学上册知识点7

  有理数的乘方

  (1)求相同因数的积的.运算叫做乘方.乘方运算的结果叫幂.

  一般地,记作,读作:a的n次方,表示n个a相乘;其中,a是底数,n是指数,称为幂。

  (2)正数的任何次幂都是正数.

  负数的奇数次幂是负数,

  负数的偶数次幂是正数.

  (3)一个数的平方为它本身,这个数是0和1;

  一个数的立方为它本身,这个数是0、1和-1。

初一数学上册知识点8

  一.线段、射线、直线

  ※1.正确理解直线、射线、线段的概念以及它们的区别:

  名称图形表示方法端点长度

  直线直线AB(或BA)

  直线l无端点无法度量

  射线射线OM1个无法度量

  线段线段AB(或BA)

  线段l2个可度量长度

  ※2.直线公理:经过两点有且只有一条直线.

  二.比较线段的长短

  ※1.线段公理:两点间线段最短;两之间线段的`长度叫做这两点之间的距离.

  ※2.比较线段长短的两种方法:

  ①圆规截取比较法;

  ②刻度尺度量比较法.

  ※3.用刻度尺可以画出线段的中点,线段的和、差、倍、分;

  用圆规可以画出线段的和、差、倍.

  三.角的度量与表示

  ※1.角:有公共端点的两条射线组成的图形叫做角;

  这个公共端点叫做角的顶点;

  这两条射线叫做角的边.

  ※2.角的表示法:角的符号为“∠”

初一数学上册知识点9

  一、多姿多彩的图形

  1.从实物中抽象出的各种图形统称为几何图形。

  2.点、线、面、体

  A.点:线和线相交的地方。

  B.线:面和面相交的地方,线可分为直线、射线、线段

  C.体:正方体、长方体、圆柱、球等都是几何体,几何体简称体。

  D.面:包围着体的是面,面可分为平的面、曲的面。

  二、直线、射线、线段

  1.两点确定一条直线

  2.当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。

  3.两点之间,线段最短。

  4.连接两点间的线段的长度,叫做这两点的距离。

  三、角

  1.有且只有一个角

  2.把一个周角360等分,每一份就是一度的角,记做1°﹔把1度的角60等分,每一份叫做1分的角,记作1′﹔把1分的角60等分,每一份叫做1秒的角,记作1″。

  3.角的运算:1周角=360°,1平角=180°,1°=60′,1′=60″

  4.角的平分线:A.从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的`角平分线。

  B.角平分线上的一点到角的两边距离相等。

  四、线段、射线和直线的联系与区别

  联系:线段、射线、直线是部分与整体的关系.线段向一方无限延长形成了射线,向两个方向无限延长得到了直线.直线上的两点和它们之间的部分组成线段,直线上的一点及其一旁的部分是射线,射线反向延长得直线.

初一数学上册知识点10

  (1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;

  (2)有理数的分类:①整数②分数

  (3)注意:有理数中,1、0、-1是三个特殊的'数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

  (4)自然数0和正整数;a>0a是正数;a<0a是负数;

  a≥0a是正数或0a是非负数;a≤0?a是负数或0a是非正数.

  有理数比大小:

  (1)正数的绝对值越大,这个数越大;

  (2)正数永远比0大,负数永远比0小;

  (3)正数大于一切负数;

  (4)两个负数比大小,绝对值大的反而小;

  (5)数轴上的两个数,右边的数总比左边的数大;

  (6)大数-小数>0,小数-大数<0.

初一数学上册知识点11

  一个整数a和一个非零整数b的比是有理数(rationalnumber)正数与负数

  像3,2,1。2这样大于0的数叫做正数,根据需要,也可以在正数前面加上“+”(正)号;像—3,—2,—2。5这样在正数前面加上“—”(负)号的数叫做负数;0既不是正数,也不是负数。

  有理数加法

  1、有理数的加法法则(有理数加法运算律):

  (1)同号两数相加,取相同的符号,并把绝对值相加;

  (2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;

  (3)一个数同0相加,仍得这个数。

  2、方法与技巧:进行有理数的加法运算时,要先观察相加两数的符号,再确定和的符号,最后计算和的绝对值。

  数学轴

  可以用一条直线上的点表示数,这条直线叫做数轴(numberaxis)。

  原点(origin)、正方向(positivedirection)和单位长度(unitlength)称为数轴三要素,它们缺一不可。

  【数轴与实数】

  数轴上的点与实数一一对应。

  【数轴的性质】

  数轴上从左往右的点表示的数是从小往大的顺序,那么利用数轴可以比较数的大小。在数轴上表示的两个数右边的总比左边的.大;正数都大于零;负数都小于零;正数大于一切负数。另外由于数轴是一条直线,是可以向两端无限延伸的,因此没有最小的负数,也没有最大的正数。

  绝对值

  绝对值的代数定义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零。

  绝对值的几何定义:在数轴上表示一个数的点离开原点的距离,叫做这个数的绝对值。

  绝对值求法:一个正数a的绝对值是它本身a;一个负数a的绝对值是它的相反数—a;零的绝对值是零。

  绝对值表示法:a的绝对值用“|a|”表示。读作“a的绝对值。

初一数学上册知识点12

  1定义

  在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴,并且对称轴用点画线表示;这时,我们也说这个图形关于这条直线对称。比如说圆、正方形、等腰三角形、等边三角形、等腰梯形等。

  2举例

  例如等腰三角形、正方形、等边三角形、等腰梯形和圆和正多边形都是轴对 称图形.有的轴对称图形有不止一条对称轴,但轴对称图形最少有一条对称轴。圆有无数条对称轴,都是经过圆心的直线。

  要特别注意的是线段,它有两条对称轴,一条是这条线段所在的直线,另一条是这条线段的中垂线。

  3性质

  1.对称轴是一条直线。

  2.垂直并且平分一条线段的.直线称为这条线段的垂直平分线,或中垂线。线段垂直平分线上的点到线段两端的距离相等。

  3.在轴对称图形中,对称轴两侧的对应点到对称轴两侧的距离相等。

  4.在轴对称图形中,沿对称轴将它对折,左右两边完全重合。

  5.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线

  6.图形对称。

  定理

  定理1:关于某条直线对称的两个图形是全等形。

  定理2:如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线。

  定理3:两个图形关于某条直线对称,如果对称轴和某两条对称线段的延长线相交,那么交点在对称轴上。

  定理3的逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

  生活作用

  1、为了美观,比如天安门,对称就显的美观漂亮;

  2、保持平衡,比如飞机的两翼;

  3、特殊工作的需要,比如五角星,剪纸

初一数学上册知识点13

  (1)同号两数相加,取相同的符号,并把绝对值相加;

  (2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的'绝对值;

  (3)一个数与0相加,仍得这个数.

  2.有理数加法的运算律:

  (1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).

  3.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).

  4.有理数乘法法则:

  (1)两数相乘,同号为正,异号为负,并把绝对值相乘;

  (2)任何数同零相乘都得零;

  (3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.

  5.有理数乘法的运算律:

  (1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);

  (3)乘法的分配律:a(b+c)=ab+ac .

  6.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数, .

  7.有理数乘方的法则:

  (1)正数的任何次幂都是正数;

初一数学上册知识点14

  第一章 有理数

  1.正数和负数

  2.有理数

  3.有理数的加减

  4.有理数的乘除

  5.有理数的乘方

  重点:数轴、相反数、绝对值、有理数计算、科学计数法、有效数字

  难点:绝对值

  易错点:绝对值、有理数计算

  中考必考:科学计数法、相反数(选择题)

  第二章 整式的加减

  1.整式

  2.整式的加减

  重点:单项式与多项式的`概念及系数和次数的确定、同类项、整式加减

  难点:单项式与多项式的系数和次数的确定、合并同类项

  易错点:合并同类项、计算失误、整数次数的确定

  中考必考:同类项、整数系数次数的确定、整式加减

  第三章 一元一次方程

  1.从算式到方程

  2.解一元一次方程----合并同类项与移项

  3.解一元一次方程----去括号去分母

  4.实际问题与一元一次方程

  重点:一元一次方程(定义、解法、应用)

  难点:一元一次方程的解法(步骤)

  易错点:去分母时,不含有分母项易漏乘、解应用题时,不知道如何找等量关系

  第四章 图形认识实步

  1.多姿多彩的图形

  2.直线、射线、线段

  3.角

  4.课题实习----设计制作长方形形状的包装纸盒

  重点:直线、射线、线段、角的认识、中点和角平分线的相关计算、余角和补角,方位角等

  难点:中点和角平分线的相关计算、余角和补角的应用

  易错点:等量关系不会转化、审题不清

初一数学上册知识点15

  1、单项式对数字和若干个字母施行有限次乘法运算,所得的代数式叫做单项式.单独一个数或一个字母也是单项式.

  2、系数单项式中的数字因数叫做这个单项式的系数.

  3、降幂排列把一个多项式,按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列.

  4、升幂排列把一个多项式,按某一个字母的'指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列.

  5、整式单项式和多项式统称整式。

  6、同类项所含字母相同,并且相同字母的次数也相同的项,叫做同类项.常数项都是同类项.

  7、合并同类项把多项式中的同类项合并成一项,叫做合并同类项.合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.8、去括号法则括号前是"+"号,把括号和它前面的"+"号去掉,括号里各项都不变符号;括号前是"-"号,把括号和它前面的"-"号去掉,括号里各项都改变符号.例:a+(b-2c)-(e-2d)=a+b-2c-e+2d14、添括号法则添括号后,括号前面是"+"号,括到括号里的各项都不变符号;添括号后,括号前面是"-"号,括到括号里的各项都改变符号.例:m+2x-y+z-5=m+(2x-y)-(-z+5)

  9、整式的加减整式加减的一般步骤:1.如果遇到括号,按去括号法则先去括号;2.合并同类项.

  10、代数式的恒等变形一个代数式用另一个与它恒等的表达式去代换,叫做恒等变形.

【初一数学上册知识点】相关文章:

初一数学上册知识点07-14

初一数学知识点上册07-14

初一数学知识点上册07-16

初一数学上册知识点07-15

苏教版初一数学上册知识点07-21

初一数学上册知识点整理01-26

初一数学上册知识点归纳01-26

初一数学上册知识点总结11-23

初一数学上册知识点[优]07-21

苏教版初一数学上册知识点07-25