【经典】人教版八年级上册数学知识点
在日常的学习中,大家都没少背知识点吧?知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。相信很多人都在为知识点发愁,以下是小编帮大家整理的【经典】人教版八年级上册数学知识点,仅供参考,大家一起来看看吧。
八年级上册数学知识点1
1.基本定义:
⑴全等形:能够完全重合的两个图形叫做全等形.
⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.
⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.
⑷对应边:全等三角形中互相重合的边叫做对应边.
⑸对应角:全等三角形中互相重合的角叫做对应角.
2.基本性质:
⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.
⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.
3.全等三角形的判定定理:
⑴边边边(SSS):三边对应相等的两个三角形全等.
⑵边角边(SAS):两边和它们的夹角对应相等的两个三角形全等.
⑶角边角(ASA):两角和它们的夹边对应相等的两个三角形全等.
⑷角角边(AAS):两角和其中一个角的对边对应相等的两个三角形全等.
⑸斜边、直角边(HL):斜边和一条直角边对应相等的两个直角三角形全等.
4.角平分线:
⑴画法:
⑵性质定理:角平分线上的点到角的两边的距离相等.
⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.
5.证明的基本方法:
⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)
⑵根据题意,画出图形,并用数字符号表示已知和求证.
⑶经过分析,找出由已知推出求证的途径,写出证明过程.
八年级上册数学知识点2
1.基本概念:
⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.
⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.
⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.
⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.
⑸等边三角形:三条边都相等的三角形叫做等边三角形.
2.基本性质:
⑴对称的性质:
①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.
②对称的图形都全等.
⑵线段垂直平分线的性质:
①线段垂直平分线上的点与这条线段两个端点的距离相等.
②与一条线段两个端点距离相等的点在这条线段的垂直平分线上.
⑶关于坐标轴对称的点的坐标性质
①点P(x,y)关于x轴对称的点的坐标为P(x,y).
②点P(x,y)关于y轴对称的点的坐标为P"(x,y).
⑷等腰三角形的性质:
①等腰三角形两腰相等.
②等腰三角形两底角相等(等边对等角).
③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合.④等腰三角形是轴对称图形,对称轴是三线合一(1条).
⑸等边三角形的性质:
①等边三角形三边都相等.
②等边三角形三个内角都相等,都等于60°
③等边三角形每条边上都存在三线合一.
④等边三角形是轴对称图形,对称轴是三线合一(3条).
3.基本判定:
⑴等腰三角形的判定:
①有两条边相等的三角形是等腰三角形.
②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边).
⑵等边三角形的判定:
①三条边都相等的三角形是等边三角形.
②三个角都相等的三角形是等边三角形.
③有一个角是60°的等腰三角形是等边三角形.
4.基本方法:
⑴做已知直线的垂线:
⑵做已知线段的垂直平分线:
⑶作对称轴:连接两个对应点,作所连线段的垂直平分线.
⑷作已知图形关于某直线的对称图形:
⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短.
八年级上册数学知识点3
1.因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化.
2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”.
3.公因式的确定:系数的公约数?相同因式的最低次幂.
注意公式:a+b=b+a;a-b=-(b-a);(a-b)2=(b-a)2;(a-b)3=-(b-a)3
4.因式分解的公式:
(1)平方差公式:a2-b2=(a+b)(a-b);
(2)完全平方公式:a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2
5.因式分解的注意事项:
(1)选择因式分解方法的一般次序是:一提取、二公式、三分组、四十字;
(2)使用因式分解公式时要特别注意公式中的字母都具有整体性;
(3)因式分解的最后结果要求分解到每一个因式都不能分解为止;
(4)因式分解的最后结果要求每一个因式的首项符号为正;
(5)因式分解的最后结果要求加以整理;
(6)因式分解的最后结果要求相同因式写成乘方的形式.
6.因式分解的解题技巧:
(1)换位整理,加括号或去括号整理;
(2)提负号;
(3)全变号;
(4)换元;
(5)配方;
(6)把相同的式子看作整体;
(7)灵活分组;
(8)提取分数系数;
(9)展开部分括号或全部括号;
(10)拆项或补项.
7.完全平方式:能化为(m+n)2的多项式叫完全平方式;对于二次三项式x2+px+q,有“x2+px+q是完全平方式?”.
八年级上册数学知识点4
1、函数
一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。
2、自变量取值范围
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。
3、函数的三种表示法及其优缺点
关系式(解析)法
两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。
列表法
把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
图象法
用图象表示函数关系的方法叫做图象法。
4、由函数关系式画其图像的一般步骤
列表:列表给出自变量与函数的一些对应值。
描点:以表中每对对应值为坐标,在坐标平面内描出相应的点。
连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
5、正比例函数和一次函数
①正比例函数和一次函数的概念
一般地,若两个变量x,y间的关系可以表示成y=kx+b(k,b为常数,k不等于0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。
特别地,当一次函数y=kx+b中的b=0时(k为常数,k不等于0),称y是x的正比例函数。
②一次函数的图像:
所有一次函数的图像都是一条直线。
③一次函数、正比例函数图像的主要特征
一次函数y=kx+b的图像是经过点(0,b)的直线;
正比例函数y=kx的图像是经过原点(0,0)的直线。
④正比例函数的性质
一般地,正比例函数有下列性质:
当k>0时,图像经过第一、三象限,y随x的增大而增大;
当k<0时,图像经过第二、四象限,y随x的增大而减小。
⑤一次函数的性质
一般地,一次函数有下列性质:
当k>0时,y随x的增大而增大;
当k<0时,y随x的增大而减小。
⑥正比例函数和一次函数解析式的确定
确定一个正比例函数,就是要确定正比例函数定义式y=kx(k不等于0)中的常数k。
确定一个一次函数,需要确定一次函数定义式y=kx+b(k不等于0)中的常数k和b。解这类问题的一般方法是待定系数法.
⑦一次函数与一元一次方程的关系
任何一个一元一次方程都可转化为:kx+b=0(k、b为常数,k≠0)的形式。而一次函数解析式形式正是y=kx+b(k、b为常数,k≠0)。当函数值为0时,即kx+b=0就与一元一次方程完全相同。
结论:由于任何一元一次方程都可转化为kx+b=0(k、b为常数,k≠0)的形式。所以解一元一次方程可以转化为:当一次函数值为0时,求相应的自变量的值。
从图象上看,这相当于已知直线y=kx+b确定它与x轴交点的横坐标值。
八年级上册数学知识点5
1、平行四边形的定义
两组对边分别平行的四边形叫做平行四边形。
2、平行四边形的性质
(1)平行四边形的对边平行且相等。
(2)平行四边形相邻的角互补,对角相等
(3)平行四边形的对角线互相平分。
(4)平行四边形是中心对称图形,对称中心是对角线的交点。
常用点:
(1)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段的中点是对角线的交点,并且这条直线二等分此平行四边形的面积。
(2)推论:夹在两条平行线间的平行线段相等。
3、平行四边形的判定
(1)定义:两组对边分别平行的四边形是平行四边形
(2)定理1:两组对角分别相等的四边形是平行四边形
(3)定理2:两组对边分别相等的四边形是平行四边形
(4)定理3:对角线互相平分的四边形是平行四边形
(5)定理4:一组对边平行且相等的四边形是平行四边形
4、两条平行线的距离。两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。平行线间的距离处处相等。
5、平行四边形的面积
S平行四边形=底边长×高=ah
八年级上册数学知识点6
1、算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么正数x叫做a的算术平方根,记作。0的算术平方根为0;从定义可知,只有当a≥0时,a才有算术平方根。
2、平方根:一般地,如果一个数x的平方根等于a,即x2=a,那么数x就叫做a的平方根。
3、正数有两个平方根(一正一负)它们互为相反数;0只有一个平方根,就是它本身;负数没有平方根。
4、正数的立方根是正数;0的立方根是0;负数的立方根是负数。
5、数a的相反数是-a,一个正实数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0
实数部分主要要求学生了解无理数和实数的概念,知道实数和数轴上的点一一对应,能估算无理数的大小;了解实数的运算法则及运算律,会进行实数的运算。重点是实数的意义和实数的分类;实数的运算法则及运算律。
八年级上册数学知识点7
平行:
①同一平面内,不相交的两条直线叫做平行线。
②经过直线外一点,有且只有一条直线与这条直线平行。
③如果两条直线都与第3条直线平行,那么这两条直线互相平行。
垂直:
①如果两条直线相交成直角,那么这两条直线互相垂直。
②互相垂直的两条直线的交点叫做垂足。
③平面内,过一点有且只有一条直线与已知直线垂直。
垂直平分线:
垂直和平分一条线段的直线叫垂直平分线。
八年级上册数学知识点8
一、变量与函数
[变量和常量]
在一个变化过程中,数值发生变化的量,我们称之为变量,而数值始终保持不变的量,我们称之为常量。
[函数]
一般地,在一个变化过程中,如果有两个变量与,并且对于的每一个确定的值,都有唯一确定的值与其对应,那么我们就说是自变量,是的函数。如果当时,那么叫做当自变量的值为时的函数值。
[自变量取值范围的确定方法]
1、自变量的取值范围必须使解析式有意义。
当解析式为整式时,自变量的取值范围是全体实数;当解析式为分数形式时,自变量的取值范围是使分母不为0的所有实数;当解析式中含有二次根式时,自变量的取值范围是使被开方数大于等于0的所有实数。
2、自变量的取值范围必须使实际问题有意义。
[函数的图像]
一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.
[描点法画函数图形的一般步骤]
第一步:列表(表中给出一些自变量的值及其对应的函数值);
第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);
第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。
[函数的表示方法]
列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
图象法:形象直观,但只能近似地表达两个变量之间的函数关系。
[正比例函数]
一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数(proportionalfunction),其中k叫做比例系数.
[正比例函数图象和性质]
一般地,正比例函数y=kx(k是常数,k≠0)的图象是一条经过原点和(1,k)的直线.我们称它为直线y=kx.当k>0时,直线y=kx经过三、一象限,从左向右上升,即随x的增大y也增大;当k<0时,直线y=kx经过二、四象限,从左向右下降,即随x增大y反而减小.
(1)解析式:y=kx(k是常数,k≠0)
(2)必过点:(0,0)、(1,k)
(3)走向:k>0时,图像经过一、三象限;k<0时,图像经过二、四象限
(4)增减性:k>0,y随x的增大而增大;k<0,y随x增大而减小
(5)倾斜度:|k|越大,越接近y轴;|k|越小,越接近x轴
[正比例函数解析式的确定]——待定系数法
1.设出含有待定系数的函数解析式y=kx(k≠0)
2.把已知条件(一个点的坐标)代入解析式,得到关于k的一元一次方程
3.解方程,求出系数k
4.将k的值代回解析式
二、一次函数
[一次函数]
一般地,形如y=kx+b(k、b是常数,k0)函数,叫做一次函数.当b=0时,y=kx+b即y=kx,所以正比例函数是一种特殊的一次函数.
[一次函数的图象及性质]
一次函数y=kx+b的图象是经过(0,b)和(-,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)
(1)解析式:y=kx+b(k、b是常数,k0)
(2)必过点:(0,b)和(-,0)
(3)走向:k>0,图象经过第一、三象限;k<0,图象经过第二、四象限
b>0,图象经过第一、二象限;b<0,图象经过第三、四象限
直线经过第一、二、三象限
直线经过第一、三、四象限
直线经过第一、二、四象限
直线经过第二、三、四象限
(4)增减性:k>0,y随x的增大而增大;k<0,y随x增大而减小.
(5)倾斜度:|k|越大,图象越接近于y轴;|k|越小,图象越接近于x轴.
(6)图像的平移:当b>0时,将直线y=kx的图象向上平移b个单位;
当b<0时,将直线y=kx的图象向下平移b个单位.
[直线y=k1x+b1与y=k2x+b2的位置关系]
(1)两直线平行:k1=k2且b1b2
(2)两直线相交:k1k2
(3)两直线重合:k1=k2且b1=b2
[确定一次函数解析式的方法]
(1)根据已知条件写出含有待定系数的函数解析式;
(2)将x、y的几对值或图象上的几个点的坐标代入上述函数解析式中得到以待定系数为未知数的方程;
(3)解方程得出未知系数的值;
(4)将求出的待定系数代回所求的函数解析式中得出结果.
[一次函数建模]
函数建模的关键是将实际问题数学化,从而解决最佳方案、最佳策略等问题.建立一次函数模型解决实际问题,就是要从实际问题中抽象出两个变量,再寻求出两个变量之间的关系,构建函数模型,从而利用数学知识解决实际问题.
正比例函数的图象和一次函数的图象在赋予实际意义时,其图象大多为线段或射线.这是因为在实际问题中,自变量的取值范围是有一定的限制条件的,即自变量必须使实际问题有意义.
从图象中获取的信息一般是:(1)从函数图象的形状判定函数的类型;
(2)从横、纵轴的实际意义理解图象上点的坐标的实际意义.
解决含有多个变量的问题时,可以分析这些变量的关系,选取其中某个变量作为自变量,再根据问题的条件寻求可以反映实际问题的函数.
三、用函数观点看方程(组)与不等式
[一元一次方程与一次函数的关系]
任何一元一次方程到可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.
[一次函数与一元一次不等式的关系]
任何一个一元一次不等式都可以转化为ax+b>0或ax+b<0(a,b为常数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量的取值范围.
[一次函数与二元一次方程组]
(1)以二元一次方程ax+by=c的解为坐标的点组成的图象与一次函数y=的图象相同.
(2)二元一次方程组的解可以看作是两个一次函数y=和y=的图象交点.
八年级上册数学知识点9
一、勾股定理
勾股定理:直角三角形两直角边的平方和等于斜边的平方。
我国古代把直角三角形中,较短的直角边叫做“勾”,较长的直角边叫做“股”,斜边叫做“弦”。结论为:“勾三股四弦五”。
a2+b2=c2
2221、如果三角形的三边长a、b、c满足a+b=c,那么这个三角形是直角三角形。
2222、满足a+b=c的3个正整数a、b、c称为勾股数。(例如,3、4、5是一组勾股
数)。利用勾股数可以构造直角三角形。
二、平方根
1、定义——一般地,如果一个数的平方等于a,那么这个数叫做a的平方根,也称为二次方根。也就是说,如果x2=a,那么x就叫做a的平方根。
2、一个正数有2个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根。
3、求一个数a的平方根的运算,叫做开平方。
4、正数a有两个平方根,其中正的平方根,也叫做a的算术平方根。
例如:4的平方根是±2,其中2叫做4的算术平方根,记作=2;2的平方根是±其中2的算术平方根。
0只有一个平方根,0的平方根也叫做0的算术平方根,即
三、立方根
1、定义——一般地,如果一个数的立方等于a,那么这个数叫做a的立方根,也称为三次方根。也就是说,如果x=a,那么x就叫做a的立方根,数a的立方根记作“,读作“三次根号a”。
2、求一个数a的立方根的运算,叫做开立方。
3、正数的立方根是正数,负数的立方根是负数,0的立方根是0。
四、实数
1、无限不循环小数称为无理数。
2、有理数和无理数统称为实数。
3、每一个实数都可以用数轴上的一个点来表示,反之,数轴上的每一个点都表示一个实数,实数与数轴上的点是一一对应的。
五、近似数与有效数字
1、例如,本册数学课本约有100千字,这里100是一个近似似数。
2、对一个近似数,从左边第一个不是0的数字起,到末位数字止,所有的数字都称为这个近似数的有效数字。
八年级上册数学知识点10
1、平均数
平均数:一般地,对于n个数,我们把它们的和与n之商叫做这n个数的算术平均数,简称平均数。
加权平均数。
2、众数
一组数据中出现次数最多的那个数据叫做这组数据的众数。
3、中位数
一般地,将一组数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。
八年级上册数学知识点11
1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。
5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
8.多边形的内角:多边形相邻两边组成的角叫做它的内角。
9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。
12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做多边形覆盖平面(平面镶嵌)。镶嵌的条件:当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个时,就能拼成一个平面图形。
13.公式与性质:
⑴三角形的内角和:三角形的内角和为180°
⑵三角形外角的性质:
性质1:三角形的一个外角等于和它不相邻的两个内角的和。
性质2:三角形的一个外角大于任何一个和它不相邻的内角。
⑶多边形内角和公式:边形的内角和等于·180°
⑷多边形的外角和:多边形的外角和为360°。
⑸多边形对角线的条数:
①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形.
②边形共有条对角线。
八年级上册数学知识点12
1.基本概念:
⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。
⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称。
⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。
⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角。
⑸等边三角形:三条边都相等的三角形叫做等边三角形。
2.基本性质:
⑴对称的性质:
①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线。
②对称的图形都全等。
⑵线段垂直平分线的性质:
①线段垂直平分线上的点与这条线段两个端点的距离相等。
②与一条线段两个端点距离相等的点在这条线段的垂直平分线上。
⑶关于坐标轴对称的点的坐标性质。
⑷等腰三角形的性质:
①等腰三角形两腰相等。
②等腰三角形两底角相等(等边对等角)。
③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合。
④等腰三角形是轴对称图形,对称轴是三线合一(1条)。
⑸等边三角形的性质:
①等边三角形三边都相等。
②等边三角形三个内角都相等,都等于60°
③等边三角形每条边上都存在三线合一。
④等边三角形是轴对称图形,对称轴是三线合一(3条)。
3.基本判定:
⑴等腰三角形的判定:
①有两条边相等的三角形是等腰三角形。
②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)。
⑵等边三角形的判定:
①三条边都相等的三角形是等边三角形。
②三个角都相等的三角形是等边三角形。
③有一个角是60°的等腰三角形是等边三角形。
4.基本方法:
⑴做已知直线的垂线:
⑵做已知线段的垂直平分线:
⑶作对称轴:连接两个对应点,作所连线段的垂直平分线。
⑷作已知图形关于某直线的对称图形:
⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短。
(等边三角形)知识点回顾
1、等边三角形的性质:
等边三角形的三个角都相等,并且每一个角都等于600。
2、等边三角形的判定:
①三个角都相等的三角形是等边三角形。
②有一个角是600的等腰三角形是等边三角形。
3、在直角三角形中,如果一个锐角等于300,那么它所对的直角边等于斜边的一半。
1)等腰三角形的性质
(1)等腰三角形的性质定理及推论:
定理:等腰三角形的两个底角相等(简称:等边对等角)
推论1:等腰三角形顶角平分线平分底边并且垂直于底边。即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。
推论2:等边三角形的各个角都相等,并且每个角都等于60°。
(2)等腰三角形的其他性质:
①等腰直角三角形的两个底角相等且等于45°
②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。
③等腰三角形的三边关系:设腰长为a,底边长为b,则
④等腰三角形的三角关系:设顶角为顶角为∠A,底角为∠B、∠C,则∠A=180°—2∠B,∠B=∠C=
2)等腰三角形的判定
等腰三角形的判定定理及推论:
定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。这个判定定理常用于证明同一个三角形中的边相等。
推论1:三个角都相等的三角形是等边三角形。
推论2:有一个角是60°的等腰三角形是等边三角形。
推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
八年级上册数学知识点13
实数的概念
实数,是有理数和无理数的总称。数学上,实数定义为与数轴上的实数,是有理数和无理数的总称。数学上,实数定义为与数轴上的实数,点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。
实数可以分为有理数和无理数两类,或代数数和超越数两类。实数集通常用黑正体字母R表示。R表示n维实数空间。实数是不可数的。实数是实数理论的核心研究对象。
实数有什么范围
在实数范围内,是指对于全体实数都成立,实数包括有理数和无理数,也可以分为正实数,0和负实数,不只是大于等于0,还包括负实数。
整数和小数的集合也是实数,实数的定义是:有理数和无理数的集合。
而整数和分数统称有理数,小数分为有限小数,无限循环小数,无限不循环小数(即无理数),其中有限小数和无限循环小数均能化为分数。
所以小数即为分数和无理数的集合,加上整数,即为整数-分数-无理数,也就是有理数-无理数,即实数。
实数的性质
1.基本运算:
实数可实现的基本运算有加、减、乘、除、平方等,对非负数还可以进行开方运算。
实数加、减、乘、除(除数不为零)、平方后结果还是实数。
任何实数都可以开奇次方,结果仍是实数,只有非负实数,才能开偶次方其结果还是实数。
有理数范围内的运算律、运算法则在实数范围内仍适用:
交换律:a+b=b+a,ab=ba
结合律:(a+b)+c=a+(b+c)
分配律:a(b+c)=ab+ac
2.实数的相反数:
实数的相反数的意义和有理数的相反数的意义相同。
实数只有符号不同的两个数,它们的和为零,我们就说其中一个是另一个的相反数。
实数a的相反数是-a,a和-a在数轴上到原点0的距离相等。
3.实数的绝对值:
实数的绝对值的意义和有理数的绝对值的意义相同。一个正实数的绝对值等于它本身;
一个负实数的绝对值等于它的相反数,0的绝对值是0,实数a的绝对值是:|a|
①a为正数时|a|=a(不变)
②a为0时|a|=0
③a为负数时|a|=a(为a的相反数)
(任何数的绝对值都大于或等于0,因为距离没有负的。)
4.实数的倒数:
实数的倒数与有理数的倒数一样,如果a表示一个非零的实数,那么实数a的倒数是:1/a(a≠0)
八年级上册数学知识点14
乘法:
把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。
除法:
除以一个分式等于乘以这个分式的倒数。
加减法:
①同分母分式相加减,分母不变,把分子相加减。
②异分母的分式先通分,化为同分母的分式,再加减。
分式方程:
①分母中含有未知数的方程叫分式方程。
②使方程的分母为0的解称为原方程的增根。
一元一次方程根的情况
利用根的判别式去了解,根的判别式可在书面上可以写为“△”。
八年级上册数学知识点15
1.全等三角形:两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。
2.全等三角形的性质:全等三角形的对应角相等、对应边相等。
3.三角形全等的判定公理及推论有:
(1)“边角边”简称“SAS”
(2)“角边角”简称“ASA”
(3)“边边边”简称“SSS”
(4)“角角边”简称“AAS”
(5)斜边和直角边相等的两直角三角形(HL)。
4.角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。
5.证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题).
在学习三角形的全等时,教师应该从实际生活中的图形出发,引出全等图形进而引出全等三角形。通过直观的理解和比较发现全等三角形的奥妙之处。在经历三角形的角平分线、中线等探索中激发学生的集合思维,启发他们的灵感,使学生体会到集合的真正魅力。
八年级上册数学知识点16
1.对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
2.性质:(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
(2)角平分线上的点到角两边距离相等。
(3)线段垂直平分线上的任意一点到线段两个端点的距离相等。
(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
(5)轴对称图形上对应线段相等、对应角相等。
3.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)
4.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。
5.等腰三角形的判定:等角对等边。
6.等边三角形角的特点:三个内角相等,等于60°,
7.等边三角形的判定:三个角都相等的三角形是等腰三角形。
有一个角是60°的等腰三角形是等边三角形
有两个角是60°的三角形是等边三角形。
8.直角三角形中,30°角所对的直角边等于斜边的一半。
9.直角三角形斜边上的中线等于斜边的一半。
八年级上册数学知识点17
1.同底数幂的乘法法则:(m,n都是正数)
2.幂的乘方法则:(m,n都是正数)
3.整式的乘法
(1)单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。
(2)单项式与多项式相乘:单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
(3)多项式与多项式相乘
多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。
4.平方差公式:
5.完全平方公式:
6.同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即(a≠0,m、n都是正数,且m>n).
在应用时需要注意以下几点:
①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.
②任何不等于0的数的0次幂等于1,即,如,(-2.50=1),则00无意义.
③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即(a≠0,p是正整数),而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的;当a<0时,a-p的值可能是正也可能是负的,如,
④运算要注意运算顺序.
7.整式的除法
单项式除法单项式:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;
多项式除以单项式:多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加.
8.分解因式:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.
分解因式的一般方法:
1)提公共因式法
2)运用公式法
3)十字相乘法
分解因式的步骤:
(1)先看各项有没有公因式,若有,则先提取公因式;
(2)再看能否使用公式法;
(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;
(4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;
(5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止.
八年级上册数学知识点18
1、二元一次方程
①二元一次方程
含有两个未知数,并且所含未知数的项的次数都是1的整式方程叫做二元一次方程。
②二元一次方程的解
适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。
2、二元一次方程组
①含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。
②二元一次方程组的解
二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。
③二元一次方程组的解法
代入(消元)法
加减(消元)法
④一次函数与二元一次方程(组)的关系:
一次函数与二元一次方程的关系:
直线y=kx+b上任意一点的坐标都是它所对应的二元一次方程kx-y+b=0的解
一次函数与二元一次方程组的关系:
二元一次方程组的解可看作两个一次函数
和的图象的交点。
当函数图象有交点时,说明相应的二元一次方程组有解;
当函数图象(直线)平行即无交点时,说明相应的二元一次方程组无解。
八年级上册数学知识点19
无理数:
无限不循环小数叫无理数
平方根:
①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。
②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。
③一个正数有2个平方根/0的平方根为0/负数没有平方根。
④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根:
①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。
②正数的立方根是正数、0的立方根是0、负数的立方根是负数。
③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。
实数:
①实数分有理数和无理数。
②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。
③每一个实数都可以在数轴上的一个点来表示。
八年级上册数学知识点20
因式分解定义:
把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。
因式分解要素:
①结果必须是整式
②结果必须是积的形式
③结果是等式
④因式分解与整式乘法的关系:m(a+b+c)
公因式:
一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。
公因式确定方法:
①系数是整数时取各项最大公约数。
②相同字母取最低次幂
③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。
提取公因式步骤:
①确定公因式。
②确定商式
③公因式与商式写成积的形式。
分解因式注意;
①不准丢字母
②不准丢常数项注意查项数
③双重括号化成单括号
④结果按数单字母单项式多项式顺序排列
⑤相同因式写成幂的形式
⑥首项负号放括号外
⑦括号内同类项合并。
八年级上册数学知识点 21
中线
1、等腰三角形底边上的中线垂直底边,平分顶角;
2、等腰三角形两腰上的中线相等,并且它们的交点与底边两端点距离相等。
1、两边上中线相等的三角形是等腰三角形;
2、如果一个三角形的一边中线垂直这条边(平分这个边的对角),那么这个三角形是等腰三角形
角平分线
1、等腰三角形顶角平分线垂直平分底边;
2、等腰三角形两底角平分线相等,并且它们的交点到底边两端点的距离相等。
1、如果三角形的顶角平分线垂直于这个角的对边(平分对边),那么这个三角形是等腰三角形;
2、三角形中两个角的平分线相等,那么这个三角形是等腰三角形。
高线
1、等腰三角形底边上的高平分顶角、平分底边;
2、等腰三角形两腰上的高相等,并且它们的交点和底边两端点距离相等。
1、如果一个三角形一边上的高平分这条边(平分这条边的对角),那么这个三角形是等腰三角形;
2、有两条高相等的三角形是等腰三角形。
【八年级上册数学知识点】相关文章:
八年级上册数学知识点10-18
八年级上册数学知识点03-15
人教版八年级上册数学知识点11-30
八年级数学上册知识点总结09-01
(优)八年级上册数学知识点11-08
人教版八年级数学上册知识点10-08
八年级数学上册知识点归纳07-07
(合集)八年级上册数学知识点11-07
【精品】八年级上册数学知识点11-08