初三数学知识点

时间:2023-12-21 08:51:45 赛赛 数学 我要投稿

初三数学知识点

  在日复一日的学习中,看到知识点,都是先收藏再说吧!知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。哪些知识点能够真正帮助到我们呢?下面是小编为大家收集的初三数学知识点,希望对大家有所帮助。

初三数学知识点

  初三数学知识点1

  1、数轴

  (1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴。

  数轴的三要素:原点,单位长度,正方向。

  (2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数。(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数。)

  (3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大。

  重点知识:

  初中数学第一课,认识正数与负数!新初一的来~

  2、相反数

  (1)相反数的概念:只有符号不同的两个数叫做互为相反数。

  (2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。

  (3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。

  (4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。

  3、绝对值

  1)概念:数轴上某个数与原点的距离叫做这个数的绝对值。

  ①互为相反数的两个数绝对值相等;

  ②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数。

  ③有理数的绝对值都是非负数。

  2)如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:

  ①当a是正有理数时,a的绝对值是它本身a;

  ②当a是负有理数时,a的绝对值是它的相反数﹣a;

  ③当a是零时,a的绝对值是零。

  即|a|={a(a>0)0(a=0)﹣a(a<0)

  初三数学知识点2

  1、反比例函数的概念

  一般地,函数(k是常数,k0)叫做反比例函数。反比例函数的解析式也可以写成的形式。自变量x的取值范围是x0的一切实数,函数的取值范围也是一切非零实数。

  2、反比例函数的图像

  反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。由于反比例函数中自变量x0,函数y0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

  3、反比例函数的性质

  反比例函数k的符号k>0k<0图像yO xyO x性质①x的取值范围是x0,

  y的取值范围是y0;

  ②当k>0时,函数图像的两个分支分别

  在第一、三象限。在每个象限内,y

  随x 的增大而减小。

  ①x的取值范围是x0,

  y的取值范围是y0;

  ②当k<0时,函数图像的两个分支分别

  在第二、四象限。在每个象限内,y

  随x 的增大而增大。

  4、反比例函数解析式的确定

  确定及诶是的方法仍是待定系数法。由于在反比例函数中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k的值,从而确定其解析式。

  5、反比例函数的几何意义

  设是反比例函数图象上任一点,过点P作轴、轴的垂线,垂足为A,则

  (1)△OPA的面积.

  (2)矩形OAPB的面积。这就是系数的几何意义.并且无论P怎样移动,△OPA的面积和矩形OAPB的面积都保持不变。

  矩形PCEF面积=,平行四边形PDEA面积=

  初三数学知识点3

  二次函数的解析式有三种形式:

  (1)一般式:

  (2)顶点式:

  (3)当抛物线与x轴有交点时,即对应二次好方程有实根和存在时,根据二次三项式的分解因式,二次函数可转化为两根式。如果没有交点,则不能这样表示。

  注意:抛物线位置由决定.

  (1)决定抛物线的开口方向

  ①开口向上.

  ②开口向下.

  (2)决定抛物线与y轴交点的位置.

  ①图象与y轴交点在x轴上方.

  ②图象过原点.

  ③图象与y轴交点在x轴下方.

  (3)决定抛物线对称轴的位置(对称轴:)

  ①同号对称轴在y轴左侧.

  ②对称轴是y轴.

  ③异号对称轴在y轴右侧.

  (4)顶点坐标.

  (5)决定抛物线与x轴的交点情况.、

  ①△>0抛物线与x轴有两个不同交点.

  ②△=0抛物线与x轴有的公共点(相切).

  ③△<0抛物线与x轴无公共点.

  (6)二次函数是否具有、最小值由a判断.

  ①当a>0时,抛物线有最低点,函数有最小值.

  ②当a<0时,抛物线有点,函数有值.

  (7)的符号的判定:

  表达式,请代值,对应y值定正负;

  对称轴,用处多,三种式子相约;

  轴两侧判,左同右异中为0;

  1的两侧判,左同右异中为0;

  -1两侧判,左异右同中为0.

  (8)函数图象的平移:左右平移变x,左+右-;上下平移变常数项,上+下-;平移结果先知道,反向平移是诀窍;平移方式不知道,通过顶点来寻找。

  (9)对称:关于x轴对称的解析式为,关于y轴对称的解析式为,关于原点轴对称的解析式为,在顶点处翻折后的解析式为(a相反,定点坐标不变)。

  (10)结论:

  ①二次函数(与x轴只有一个交点二次函数的顶点在x轴上Δ=0;

  ②二次函数(的顶点在y轴上二次函数的图象关于y轴对称;

  ③二次函数(经过原点,则。

  (11)二次函数的解析式:

  ①一般式:(用于已知三点。

  ②顶点式:用于已知顶点坐标或最值或对称轴。

  (3)交点式:其中、是二次函数与x轴的两个交点的横坐标。若已知对称轴和在x轴上的截距,也可用此式。

  初三数学知识点4

  1、图形的相似

  相似多边形的对应边的比值相等,对应角相等;

  两个多边形的对应角相等,对应边的比值也相等,那么这两个多边形相似;

  相似比:相似多边形对应边的比值。

  2、相似三角形

  判定:

  平行于三角形一边的直线和其它两边相交,所构成的三角形和原三角形相似;

  如果两个三角形的三组对应边的比相等,那么这两个三角形相似;

  如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么两个三角形相似;

  如果一个三角形的两个角与另一个三角形的两个角对应相等,那么两个三角形相似。

  3相似三角形的周长和面积

  相似三角形(多边形)的周长的比等于相似比;

  相似三角形(多边形)的面积的比等于相似比的平方。

  4位似

  位似图形:两个多边形相似,而且对应顶点的连线相交于一点,对应边互相平行,这样的两个图形叫位似图形,相交的点叫位似中心。

  初三数学知识点5

  一、二次根式

  1、二次根式:一般地,式子叫做二次根式。

  注意:

  (1)若这个条件不成立,则不是二次根式。

  (2)是一个重要的非负数,即;≥0。

  2、积的算术平方根:积的算术平方根等于积中各因式的算术平方根的积。

  3、二次根式比较大小的方法:

  (1)利用近似值比大小。

  (2)把二次根式的系数移入二次根号内,然后比大小。

  (3)分别平方,然后比大小。

  4、商的算术平方根:商的算术平方根等于被除式的算术平方根除以除式的算术平方根。

  5、二次根式的除法法则:

  (1)分母有理化的方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式。

  6、最简二次根式:

  (1)满足下列两个条件的二次根式,叫做最简二次根式。

  ①被开方数的因数是整数,因式是整式。

  ②被开方数中不含能开的尽的因数或因式。

  (2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母。

  (3)化简二次根式时,往往需要把被开方数先分解因数或分解因式。

  (4)二次根式计算的最后结果必须化为最简二次根式。

  7、同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式。

  8、二次根式的混合运算:

  (1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用。

  (2)二次根式的运算一般要先把二次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等。

  二、一元二次方程

  1、一元二次方程的一般形式:a≠0时,ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a、 b、 c;其中a 、 b,、c可能是具体数,也可能是含待定字母或特定式子的代数式。

  2、一元二次方程的解法:一元二次方程的四种解法要求灵活运用,其中直接开平方法虽然简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法使用较少。

  3、一元二次方程根的判别式:当ax2+bx+c=0(a≠0)时,Δ=b2—4ac叫一元二次方程根的判别式。请注意以下等价命题:

  Δ>0 <=>有两个不等的实根;Δ=0 <=>有两个相等的实根;Δ<0 <=>无实根。

  4、平均增长率问题——应用题的类型题之一(设增长率为x):

  (1)第一年为a,第二年为a(1+x),第三年为a(1+x)2。

  (2)常利用以下相等关系列方程:第三年=第三年或第一年+第二年+第三年=总和。

  初三数学知识点6

  1、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。

  逆定理:平分弦不是直径的直径垂直于弦,并且平分弦所对的2条弧。

  2、有关圆周角和圆心角的性质和定理

  ①在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。

  ②一条弧所对的圆周角等于它所对的圆心角的一半。

  直径所对的圆周角是直角。90度的圆周角所对的弦是直径。

  圆心角计算公式:θ=L/2πr×360°=180°L/πr=L/r弧度

  即圆心角的度数等于它所对的弧的度数;圆周角的度数等于它所对的弧的度数的一半。

  ③如果一条弧的长是另一条弧的2倍,那么其所对的圆周角和圆心角是另一条弧的2倍。

  3、有关外接圆和内切圆的性质和定理

  ①一个三角形有唯一确定的外接圆和内?

  ②内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。

  ③R=2S△÷LR:内切圆半径,S:三角形面积,L:三角形周长

  ④两相切圆的连心线过切点连心线:两个圆心相连的直线

  ⑤圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。

  4、如果两圆相交,那么连接两圆圆心的线段直线也可垂直平分公共弦。

  5、弦切角的度数等于它所夹的弧的度数的一半。

  6、圆内角的度数等于这个角所对的弧的度数之和的一半。

  7、圆外角的度数等于这个角所截两段弧的度数之差的一半。

  8、周长相等,圆面积比长方形、正方形、三角形的面积大。

  圆的知识要领不仅常考公式,又是也会直接出一些关于定理的试题。

  初三数学知识点7

  一元一次方程:

  ①在一个方程中,只含有一个未知数,并且未知数的指数是

  1、这样的方程叫一元一次方程。

  ②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。

  解一元一次方程的步骤:

  去分母,移项,合并同类项,未知数系数化为1。

  二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。

  二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。

  解二元一次方程组的方法:代入消元法/加减消元法。

  2、不等式与不等式组

  不等式:

  ①用符号”=“号连接的式子叫不等式。

  ②不等式的两边都加上或减去同一个整式,不等号的方向不变。

  ③不等式的两边都乘以或者除以一个正数,不等号方向不变。

  ④不等式的两边都乘以或除以同一个负数,不等号方向相反。

  不等式的解集:

  ①能使不等式成立的未知数的值,叫做不等式的解。

  ②一个含有未知数的不等式的所有解,组成这个不等式的解集。

  ③求不等式解集的过程叫做解不等式。

  一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。

  一元一次不等式组:

  ①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

  ②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

  ③求不等式组解集的过程,叫做解不等式组。

  3、函数

  变量:因变量,自变量。在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。

  一次函数:

  ①若两个变量X,Y间的关系式可以表示成Y=KX+B(B为常数,K不等于0)的形式,则称Y是X的一次函数。

  ②当B=0时,称Y是X的正比例函数。

  一次函数的图象:

  ①把一个函数的自变量X与对应的因变量Y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。

  ②正比例函数Y=KX的图象是经过原点的一条直线。

  ③在一次函数中,当K〈0,B〈O,则经234象限;当K〈0,B〉0时,则经124象限;当K〉0,B〈0时,则经134象限;当K〉0,B〉0时,则经123象限。

  ④当K〉0时,Y的值随X值的增大而增大,当X〈0时,Y的值随X值的增大而减少。

  空间与图形

  图形的认识:

  1、点,线,面

  点,线,面:

  ①图形是由点,线,面构成的。

  ②面与面相交得线,线与线相交得点。

  ③点动成线,线动成面,面动成体。

  展开与折叠:

  ①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。

  ②N棱柱就是底面图形有N条边的棱柱。

  截一个几何体:用一个平面去截一个图形,截出的面叫做截面。

  视图:主视图,左视图,俯视图。

  多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。

  弧,扇形:

  ①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。

  ②圆可以分割成若干个扇形。

  角

  线:

  ①线段有两个端点。

  ②将线段向一个方向无限延长就形成了射线。射线只有一个端点。

  ③将线段的两端无限延长就形成了直线。直线没有端点。

  ④经过两点有且只有一条直线。

  比较长短:

  ①两点之间的所有连线中,线段最短。

  ②两点之间线段的长度,叫做这两点之间的距离。

  角的度量与表示:

  ①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。

  ②一度的1/60是一分,一分的1/60是一秒。

  角的比较:

  ①角也可以看成是由一条射线绕着他的端点旋转而成的。

  ②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。

  ③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

  平行:

  ①同一平面内,不相交的两条直线叫做平行线。

  ②经过直线外一点,有且只有一条直线与这条直线平行。

  ③如果两条直线都与第3条直线平行,那么这两条直线互相平行。

  垂直:

  ①如果两条直线相交成直角,那么这两条直线互相垂直。

  ②互相垂直的两条直线的交点叫做垂足。

  ③平面内,过一点有且只有一条直线与已知直线垂直。

  2、相交线与平行线

  角:

  ①如果两个角的和是直角,那么称和两个角互为余角;如果两个角的和是平角,那么称这两个角互为补角。

  ②同角或等角的余角/补角相等。

  ③对顶角相等。

  ④同位角相等/内错角相等/同旁内角互补,两直线平行,反之亦然。

  初三数学知识点8

  单项式与多项式

  仅含有一些数和字母的乘法包括乘方运算的式子叫做单项式单独的一个数或字母也是单项式。

  单项式中的数字因数叫做这个单项式或字母因数的数字系数,简称系数。

  当一个单项式的系数是1或—1时,“1”通常省略不写。

  一个单项式中,所有字母的指数的和叫做这个单项式的次数。

  如果在几个单项式中,不管它们的系数是不是相同,只要他们所含的字母相同,并且相同字母的指数也分别相同,那么,这几个单项式就叫做同类单项式,简称同类项所有的常数都是同类项。

  1、多项式

  有有限个单项式的代数和组成的式子,叫做多项式。

  多项式里每个单项式叫做多项式的项,不含字母的项,叫做常数项。

  单项式可以看作是多项式的特例

  把同类单项式的系数相加或相减,而单项式中的字母的乘方指数不变。

  在多项式中,所含的不同未知数的个数,称做这个多项式的元数经过合并同类项后,多项式所含单项式的个数,称为这个多项式的项数所含个单项式中次项的次数,就称为这个多项式的次数。

  2、多项式的值

  任何一个多项式,就是一个用加、减、乘、乘方运算把已知数和未知数连接起来的式子。

  3、多项式的恒等

  对于两个一元多项式fx、gx来说,当未知数x同取任一个数值a时,如果它们所得的值都是相等的,即fa=ga,那么,这两个多项式就称为是恒等的记为fx==gx,或简记为fx=gx。

  性质1如果fx==gx,那么,对于任一个数值a,都有fa=ga。

  性质2如果fx==gx,那么,这两个多项式的个同类项系数就一定对应相等。

  4、一元多项式的根

  一般地,能够使多项式fx的值等于0的未知数x的值,叫做多项式fx的根。

  多项式的加、减法,乘法

  1、多项式的加、减法

  2、多项式的乘法

  单项式相乘,用它们系数作为积的系数,对于相同的字母因式,则连同它的指数作为积的一个因式。

  3、多项式的乘法

  多项式与多项式相乘,先用一个多项式等每一项乘以另一个多项式的各项,再把所得的积相加。

  常用乘法公式

  公式I平方差公式

  a+ba—b=a^2—b^2

  两个数的和与这两个数的差的积等于这两个数的平方差。

  初三数学知识点9

  1.抛物线是轴对称图形。对称轴为直线x=-b/2a。

  对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

  2.抛物线有一个顶点P,坐标为:P(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,P在y轴上;当=b^2-4ac=0时,P在x轴上。

  3.二次项系数a决定抛物线的开口方向和大小。

  当a0时,抛物线向上开口;当a0时,抛物线向下开口。|a|越大,则抛物线的开口越小。

  4.一次项系数b和二次项系数a共同决定对称轴的位置。

  当a与b同号时(即ab0),对称轴在y轴左;

  当a与b异号时(即ab0),对称轴在y轴右。

  5.常数项c决定抛物线与y轴交点。

  抛物线与y轴交于(0,c)

  6.抛物线与x轴交点个数

  =b^2-4ac0时,抛物线与x轴有2个交点。

  =b^2-4ac=0时,抛物线与x轴有1个交点。

  =b^2-4ac0时,抛物线与x轴没有交点。X的取值是虚数(x=-bb^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)

  初三数学知识点10

  1、概念:

  把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.

  旋转三要素:旋转中心、旋转方面、旋转角

  2、旋转的性质:

  (1)旋转前后的两个图形是全等形;

  (2)两个对应点到旋转中心的距离相等

  (3)两个对应点与旋转中心的连线段的夹角等于旋转角

  3、中心对称:

  把一个图形绕着某一个点旋转180,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.

  这两个图形中的对应点叫做关于中心的对称点.

  4、中心对称的性质:

  (1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.

  (2)关于中心对称的两个图形是全等图形.

  5、中心对称图形:

  把一个图形绕着某一个点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.

  6、坐标系中的中心对称

  两个点关于原点对称时,它们的坐标符号相反,

  即点P(x,y)关于原点O的对称点P(-x,-y)。

  初三数学知识点11

  邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。

  对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。

  垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。

  平行线:在同一平面内,不相交的两条直线叫做平行线。

  同位角、内错角、同旁内角:

  同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。

  内错角:∠2与∠6像这样的一对角叫做内错角。

  同旁内角:∠2与∠5像这样的一对角叫做同旁内角。

  命题:判断一件事情的语句叫命题。

  平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。

  对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

  初三数学知识点12

  1、矩形的概念

  有一个角是直角的平行四边形叫做矩形。

  2、矩形的性质

  (1)具有平行四边形的一切性质

  (2)矩形的四个角都是直角

  (3)矩形的对角线相等

  (4)矩形是轴对称图形

  3、矩形的判定

  (1)定义:有一个角是直角的平行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形

  (3)定理2:对角线相等的平行四边形是矩形

  4、矩形的面积:S矩形=长×宽=ab

  初三数学重点知识点(四)

  1、正方形的概念

  有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。

  2、正方形的性质

  (1)具有平行四边形、矩形、菱形的一切性质;

  (2)正方形的四个角都是直角,四条边都相等;

  (3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角;

  (4)正方形是轴对称图形,有4条对称轴;

  (5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形;

  (6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。

  3、正方形的判定

  (1)判定一个四边形是正方形的主要依据是定义,途径有两种:

  先证它是矩形,再证有一组邻边相等。

  先证它是菱形,再证有一个角是直角。

  (2)判定一个四边形为正方形的一般顺序如下:

  先证明它是平行四边形;

  再证明它是菱形(或矩形);

  最后证明它是矩形(或菱形)。

  初三数学知识点13

  1.轴对称:

  把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做对称点,对应线段叫做对称线段。

  2.轴对称图形:

  如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。

  注意:对称轴是直线而不是线段

  3.轴对称的性质:

  (1)关于某条直线对称的两个图形是全等形;

  (2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线;

  (3)两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上;

  (4)如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

  4.线段垂直平分线:

  (1)定义:垂直平分一条线段的直线是这条线的垂直平分线。

  (2)性质:

  ①线段垂直平分线上的点到这条线段两个端点的距离相等;

  ②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

  注意:根据线段垂直平分线的这一特性可以推出:三角形三边的垂直平分线交于一点,并且这一点到三个顶点的距离相等。

  5.角的平分线:

  (1)定义:把一个角分成两个相等的角的射线叫做角的平分线.

  (2)性质:

  ①在角的平分线上的点到这个角的两边的距离相等.

  ②到一个角的两边距离相等的点,在这个角的平分线上.

  注意:根据角平分线的性质,三角形的三个内角的平分线交于一点,并且这一点到三条边的距离相等.

  6.等腰三角形的性质与判定:

  性质:

  (1)对称性:等腰三角形是轴对称图形,等腰三角形底边上的中线所在的直线是它的对称轴,或底边上的高所在的直线是它的对称轴,或顶角的平分线所在的直线是它的对称轴;

  (2)三线合一:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合;

  (3)等边对等角:等腰三角形的两个底角相等。

  说明:等腰三角形的性质除三线合一外,三角形中的主要线段之间也存在着特殊的性质,如:

  ①等腰三角形两底角的平分线相等;

  ②等腰三角形两腰上的中线相等;

  ③等腰三角形两腰上的高相等;

  ④等腰三角形底边上的中点到两腰的距离相等。

  判定定理:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。

  7.等边三角形的性质与判定:

  性质:

  (1)等边三角形的三个角都相等,并且每个角都等于60

  (2)等边三角形具有等腰三角形的所有性质,并且在每条边上都有三线合一。因此等边三角形是轴对称图形,它有三条对称轴,而等腰三角形(非等边三角形)只有一条对称轴。

  判定定理:有一个角是60的等腰三角形是等边三角形。

  说明:等边三角形是一种特殊的三角形,容易知道等边三角形的三条高(或三条中线、三条角平分线)都相等。

  初三数学知识点14

  一、重要概念

  1.数的分类及概念数系表:

  说明:分类的原则:

  1)相称(不重、不漏)

  2)有标准

  2.非负数:正实数与零的统称。(表为:x0)

  性质:若干个非负数的和为0,则每个非负数均为0。

  3.倒数:

  ①定义及表示法

  ②性质:

  A.a1/a(a1);

  B.1/a中,aa1时,1/a

  4.相反数:

  ①定义及表示法

  ②性质:

  A.a0时,a

  B.a与-a在数轴上的位置;

  C.和为0,商为-1。

  5.数轴:

  ①定义(三要素)

  ②作用:

  A.直观地比较实数的大小;

  B.明确体现绝对值意义;

  C.建立点与实数的一一对应关系。

  6.奇数、偶数、质数、合数(正整数-自然数)

  定义及表示:

  奇数:2n-1

  偶数:2n(n为自然数)

  7.绝对值:

  ①定义(两种):

  代数定义:

  几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。

  ②│a│0,符号││是非负数的标志;

  ③数a的绝对值只有一个;

  ④处理任何类型的题目,只要其中有││出现,其关键一步是去掉││符号。

  二、实数的运算

  1.运算法则(加、减、乘、除、乘方、开方)

  2.运算定律(五个-加法[乘法]交换律、结合律;[乘法对加法的]

  分配律)

  3.运算顺序:

  A.高级运算到低级运算;

  B.(同级运算)从左到右

  C.(有括号时)由小到中到大。

  初三数学知识点15

  在直角三角形中

  sin@代表对边比斜边

  cos@代表邻边比斜边

  tan@代表对边比邻边

  cot@代表邻边比对边

  同角三角函数的基本关系式

  倒数关系: 商的关系: 平方关系:

  tan cot=1

  sin csc=1

  cos sec=1 sin/cos=tan=sec/csc

  cos/sin=cot=csc/sec sin2+cos2=1

  1+tan2=sec2

  1+cot2=csc2

  诱导公式

  sin(-)=-sin

  cos(-)=cos tan(-)=-tan

  cot(-)=-cot

  sin(/2-)=cos

  cos(/2-)=sin

  tan(/2-)=cot

  cot(/2-)=tan

  sin(/2+)=cos

  cos(/2+)=-sin

  tan(/2+)=-cot

  cot(/2+)=-tan

  sin()=sin

  cos()=-cos

  tan()=-tan

  cot()=-cot

  sin()=-sin

  cos()=-cos

  tan()=tan

  cot()=cot

  sin(3/2-)=-cos

  cos(3/2-)=-sin

  tan(3/2-)=cot

  cot(3/2-)=tan

  sin(3/2+)=-cos

  cos(3/2+)=sin

  tan(3/2+)=-cot

  cot(3/2+)=-tan

  sin(2)=-sin

  cos(2)=cos

  tan(2)=-tan

  cot(2)=-cot

  sin(2k)=sin

  cos(2k)=cos

  tan(2k)=tan

  cot(2k)=cot

  (其中kZ)

  初三数学知识点16

  一、求复杂事件的概率:

  1.有些随机事件不可能用树状图和列表法求其发生的概率,只能用试验、统计的方法估计其发生的概率。

  2.对于作何一个随机事件都有一个固定的概率客观存在。

  3.对随机事件做大量试验时,根据重复试验的特征,我们确定概率时应当注意几点:

  (1)尽量经历反复实验的过程,不能想当然的作出判断;

  (2)做实验时应当在相同条件下进行;

  (3)实验的次数要足够多,不能太少;

  (4)把每一次实验的结果准确,实时的做好记录;

  (5)分阶段分别从第一次起计算,事件发生的频率,并把这些频率用折线统计图直观的表示出来;

  (6)观察分析统计图,找出频率变化的逐渐稳定值,并用这个稳定值 估计事件发生的概率,这种估计概率的方法的优点是直观,缺点是估计值必须在实验后才能得到,无法事件预测。

  二、判断游戏公平:

  游戏对双方公平是指双方获胜的可能性相同。

  三、概率综合运用:

  概率可以和很多知识综合命题,主要涉及平面图形、统计图、平均数、中位数、众数、函数等。

【初三数学知识点】相关文章:

初三数学的知识点归纳02-22

初三数学知识点12-23

初三数学的知识点归纳09-25

初三数学的知识点归纳04-20

初三数学必考的知识点总结04-23

初三数学知识点总结06-08

初三数学上册知识点07-25

初三数学重要的知识点归纳04-02

初三数学知识点归纳12-15

初三数学中考知识点整理02-17