数学 百文网手机站

初三数学知识点

时间:2022-12-18 16:37:19 数学 我要投稿

初三数学人教版知识点5篇

  在我们上学期间,相信大家一定都接触过知识点吧!知识点也可以通俗的理解为重要的内容。相信很多人都在为知识点发愁,下面是小编精心整理的初三数学人教版知识点,仅供参考,大家一起来看看吧。

初三数学人教版知识点5篇

初三数学人教版知识点1

  一元一次方程:

  ①在一个方程中,只含有一个未知数,并且未知数的指数是

  1、这样的方程叫一元一次方程。

  ②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。

  解一元一次方程的步骤:

  去分母,移项,合并同类项,未知数系数化为1。

  二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。

  二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。

  解二元一次方程组的方法:代入消元法/加减消元法。

  2、不等式与不等式组

  不等式:

  ①用符号”=“号连接的式子叫不等式。

  ②不等式的两边都加上或减去同一个整式,不等号的方向不变。

  ③不等式的两边都乘以或者除以一个正数,不等号方向不变。

  ④不等式的两边都乘以或除以同一个负数,不等号方向相反。

  不等式的解集:

  ①能使不等式成立的未知数的值,叫做不等式的解。

  ②一个含有未知数的不等式的所有解,组成这个不等式的解集。

  ③求不等式解集的过程叫做解不等式。

  一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。

  一元一次不等式组:

  ①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

  ②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

  ③求不等式组解集的过程,叫做解不等式组。

  3、函数

  变量:因变量,自变量。在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。

  一次函数:

  ①若两个变量X,Y间的关系式可以表示成Y=KX+B(B为常数,K不等于0)的形式,则称Y是X的一次函数。

  ②当B=0时,称Y是X的正比例函数。

  一次函数的图象:

  ①把一个函数的自变量X与对应的因变量Y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。

  ②正比例函数Y=KX的图象是经过原点的一条直线。

  ③在一次函数中,当K〈0,B〈O,则经234象限;当K〈0,B〉0时,则经124象限;当K〉0,B〈0时,则经134象限;当K〉0,B〉0时,则经123象限。

  ④当K〉0时,Y的值随X值的增大而增大,当X〈0时,Y的值随X值的增大而减少。

初三数学人教版知识点2

  一、 重要概念

  分类:

  1.代数式与有理式

  用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。

  整式和分式统称为有理式。

  2.整式和分式

  含有加、减、乘、除、乘方运算的代数式叫做有理式。

  没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。

  有除法运算并且除式中含有字母的有理式叫做分式。

  3.单项式与多项式

  没有加减运算的整式叫做单项式。(数字与字母的积-包括单独的一个数或字母)几个单项式的和,叫做多项式。

  说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从外形来看。如,=x, =│x│等。

  4.系数与指数

  区别与联系:①从位置上看;②从表示的意义上看5.同类项及其合并条件:①字母相同;②相同字母的指数相同

  合并依据:乘法分配律

  6.根式

  表示方根的代数式叫做根式。

  含有关于字母开方运算的代数式叫做无理式。

  注意:①从外形上判断;②区别: 、 是根式,但不是无理式(是无理数)。

  7.算术平方根

  ⑴正数a的正的平方根( [a≥0-与“平方根”的区别]);⑵算术平方根与绝对值① 联系:都是非负数, =│a│

  ②区别:│a│中,a为一切实数; 中,a为非负数。

  8.同类二次根式、最简二次根式、分母有理化

  化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。

  满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。

  把分母中的根号划去叫做分母有理化。

  9.指数

  ⑴ ( -幂,乘方运算)

  ① a>0时, >0;②a<0时,>0(n是偶数),<0(n是奇数)⑵零指数: =1(a≠0)负整指数: =1/ (a≠0,p是正整数)

  二、 运算定律、性质、法则

  1.分式的加、减、乘、除、乘方、开方法则

  2.分式的性质

  ⑴基本性质: = (m≠0)

  ⑵符号法则:

  ⑶繁分式:①定义;②化简方法(两种)

  3.整式运算法则(去括号、添括号法则)

  4.幂的运算性质:① · = ;② ÷ = ;③ = ;④ = ;⑤技巧:

  5.乘法法则:⑴单×单;⑵单×多;⑶多×多。

  6.乘法公式:(正、逆用)

  (a+b)(a-b)=

  (a±b) =

  7.除法法则:⑴单÷单;⑵多÷单。

  8.因式分解:⑴定义;⑵方法:A.提公因式法;B.公式法;C.十字相乘法;D.分组分解法;E.求根公式法。

  9.算术根的性质: = ; ; (a≥0,b≥0); (a≥0,b>0)(正用、逆用)10.根式运算法则:⑴加法法则(合并同类二次根式);⑵乘、除法法则;⑶分母有理化:A. ;B. ;C. .

初三数学人教版知识点3

  圆的面积s=π×r×r

  其中,π是周围率,约等于3.14

  r是圆的半径。

  圆的周长计算公式为:C=2πR.C代表圆的周长,r代表圆的半径。圆的面积公式为:S=πR2(R的平方).S代表圆的面积,r为圆的半径。

  椭圆周长计算公式

  椭圆周长公式:L=2πb+4(a-b)

  椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的'该椭圆长半轴长(a)与短半轴长(b)的差。

  椭圆面积计算公式

  椭圆面积公式:S=πab

  椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。

  以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。常数为体,公式为用。

初三数学人教版知识点4

  1、必然事件、不可能事件、随机事件的区别

  2、概率

  一般地,在大量重复试验中,如果事件A发生的频率

  会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率(probability), 记作P(A)=p.

  注意:(1)概率是随机事件发生的可能性的大小的数量反映。

  (2)概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同。

  3、求概率的方法

  (1)用列举法求概率(列表法、画树形图法)

  (2)用频率估计概率:一大面,可用大量重复试验中事件发生频率来估计事件发生的概率。另一方面,大量重复试验中事件发生的频率稳定在某个常数(事件发生的概率)附近,说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同.

初三数学人教版知识点5

  二元一次方程组

  1、定义:含有两个未知数,并且未知项的次数是1的整式方程叫做二元一次方程。

  2、二元一次方程组的解法

  (1)代入法

  由一个二次方程和一个一次方程所组成的方程组通常用代入法来解,这是基本的消元降次方法。

  (2)因式分解法

  在二元二次方程组中,至少有一个方程可以分解时,可采用因式分解法通过消元降次来解。

  (3)配方法

  将一个式子,或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和。

  (4)韦达定理法

  通过韦达定理的逆定理,可以利用两数的和积关系构造一元二次方程。

  (5)消常数项法

  当方程组的两个方程都缺一次项时,可用消去常数项的方法解。

  解一元二次方程

  解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。

  1、直接开平方法:

  用直接开平方法解形如(x-m)2=n(n≥0)的方程,其解为x=±m.

  直接开平方法就是平方的逆运算.通常用根号表示其运算结果.

  2、配方法

  通过配成完全平方式的方法,得到一元二次方程的根的方法。这种解一元二次方程的方法称为配方法,配方的依据是完全平方公式。

  (1)转化:将此一元二次方程化为ax^2+bx+c=0的形式(即一元二次方程的一般形式)

  (2)系数化1:将二次项系数化为1

  (3)移项:将常数项移到等号右侧

  (4)配方:等号左右两边同时加上一次项系数一半的平方

  (5)变形:将等号左边的代数式写成完全平方形式

  (6)开方:左右同时开平方

  (7)求解:整理即可得到原方程的根

  3、公式法

  公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a,b,c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。

  代数式

  1、代数式与有理式

  用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。

  整式和分式统称为有理式。

  2、整式和分式

  含有加、减、乘、除、乘方运算的代数式叫做有理式。

  没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。

  有除法运算并且除式中含有字母的有理式叫做分式。

  3、单项式与多项式

  没有加减运算的整式叫做单项式。(数字与字母的积-包括单独的一个数或字母)

  几个单项式的和,叫做多项式。

  说明:

  ①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。

  ②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。

  4、同类项及其合并

  条件:①字母相同;②相同字母的指数相同

  合并依据:乘法分配律。

【初三数学知识点】相关文章:

初三数学圆的知识点06-20

初三数学精选的重要知识点07-24

初三数学复习知识点07-20

初三数学圆知识点07-21

初三数学知识点08-01

初三数学的知识点归纳02-22

初三数学重要知识点10-20

初三数学重要的知识点总结12-04

初三数学重要的知识点归纳04-02

初三数学知识点归纳12-15