初二数学知识点

时间:2023-06-28 10:36:05 炜玲 数学 我要投稿

初二数学知识点

  上学的时候,大家对知识点应该都不陌生吧?知识点就是一些常考的内容,或者考试经常出题的地方。想要一份整理好的知识点吗?下面是小编为大家整理的初二数学知识点,欢迎大家借鉴与参考,希望对大家有所帮助。

初二数学知识点

  初二数学知识点1

  能够完全重合的两个三角形称为全等三角形。(注:全等三角形是相似三角形中相似比为1:1的特殊情况)

  当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。

  由此,可以得出:全等三角形的对应边相等,对应角相等。

  (1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;

  (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;

  (3)有公共边的,公共边一定是对应边;

  (4)有公共角的,角一定是对应角;

  (5)有对顶角的,对顶角一定是对应角;

  表示:全等用“≌”表示,读作“全等于”。

  初二数学知识点2

  一、轴对称与轴对称图形的区别和联系

  区别:轴对称是指两个图形沿某直线对折能够完全重合,是两个图形之间的一种关系,而轴对称图形是两部分能完全重合的一个图形。

  联系:两者都有完全重合的特征,都有对称轴,都有对称点。

  二、轴对称的性质

  1、定义垂直并且平分一条线段的直线,叫做这条线段的垂直平分线。

  2、 把一个图形沿着一条直线折叠,如果它能够与另一个图形重合,那么称这两个图形关于这条直线对称,也称这两个图形成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点。

  3、 把一个图形沿着一条某直线折叠,如果直线两旁的部分能够互相重合,那么称这个图形是轴对称图形,这条直线就是对称轴。

  4、 成轴对称的两个图形全等。如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。

  三、线段、角的轴对称性

  1、 线段是轴对称图形,线段的垂直平分线是它的对称轴。

  线段的垂直平分线上的点到线段两端的距离相等;

  2、 到线段两端距离相等的点,在这条线段的垂直平分线上;

  线段的垂直平分线是到线段两端距离相等的点的集合。

  3、 角是轴对称图形,角平分线所在直线是它的对称轴。

  角平分线上的点到角的两边距离相等;

  角的内部到角的两边距离相等的点,在这个角的平分线上。

  四、等腰三角形的轴对称性

  1、等腰三角形是轴对称图形,顶角平分线所在直线是它的对称轴。

  2、等腰三角形的两个底角相等(简称等边对等角)。

  等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。

  3、如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称等角对等边)。

  4、直角三角形斜边上的中线等于斜边的一半。

  5、直角三角形中30角所对的直角边是斜边的一半。

  6、三边相等的三角形叫做等边三角形或正三角形。

  等边三角形是轴对称图形,并且有3条对称轴。

  等边三角形的每个角都等于60。

  7、三条边都相等的三角形是等边三角形。

  有两个角是60的三角形是等边三角形。

  有一个角是60的等腰三角形是等边三角形。

  五、等腰梯形的轴对称性

  1、定义梯形中,平行的一组对边称为底,不平行的一组对边称为腰。两腰相等的梯形叫做等腰梯形。

  2、等腰梯形是轴对称图形,过两底中点的直线是它的对称轴。等腰梯形在同一底上的两个

  相等。

  3、等腰梯形的对角线相等;对角线相等的梯形是等腰梯形。

  4、在同一底上的两个角相等的梯形是等腰梯形。

  初二数学知识点3

  在这一章节的四边形知识学习中,我们会遇到平行四边形、菱形、矩形、正方形以及梯形。

  四边形的性质探索

  1平行四边形的性质

  ⑴两组对边分别平行的四边形叫平行四边形。

  ⑵平行四边形的性质:

  平行四边形对边相等、对角相等、对角线互相平分

  ⑶平行线之间的距离(平行线之间的垂线段处处相等)

  2平行四边形的判别

  两条对角线互相平分的四边形(定义)

  一组对边平行且相等的四边形

  两组对边分别相等的四边形

  两组对边分别平行的四边形

  3菱形

  ⑴性质:四条边都相等、两条对角线互相垂直平分、每条对角线平分一组对角

  ⑵判定:

  一组邻边相等的平行四边形(定义)

  对角线相互垂直的四边形

  四条边都相等的四边形

  4矩形、正方形

  ⑴矩形的性质:对角线相等、四个角都是直角

  ⑵判定:

  有一个角是直角的平行四边形(定义)

  对角线相等的平行四边形

  ⑶正方形的定义:一组邻边相等的矩形叫正方形

  ⑷正方形的性质:

  正方形具有平行四边形、菱形、矩形的一切性质

  5梯形

  ⑴梯形:一组对边平行而另一组对边不平行的四边形叫梯形(底、腰、高)

  ⑵等腰梯形:两腰相等的梯形

  等腰梯形同一底上的两个内角相等,对角线相等

  同一底上两个内角相等的梯形是等腰梯形

  ⑶直角梯形:一腰和底垂直的梯形

  6探索多边形的内角与外角和

  ⑴n边形的内角和等于(n—2)x180

  ⑵在平面内,内角都相等、边也都相等的多边形叫正多边形

  ⑶外角:多边形的外角和都等于360

  7中心对称图形

  ⑴在平面内,一个图形绕某个点旋转180,如果旋转前后的图形相互重合,那么这个图形叫做中心对称图形

  ⑵中心对称图形上的每一对对应点所连成的线段都被对称中心平分

  初二数学知识点4

  像我们常见的等腰三角形,等边三角形,等腰梯形等都是轴对称图形。

  轴对称

  性质

  1.对称轴是一条直线。

  2.垂直并且平分一条线段的直线称为这条线段的垂直平分线,或中垂线。线段垂直平分线上的点到线段两端的距离相等。

  3.在轴对称图形中,对称轴两侧的对应点到对称轴两侧的距离相等。

  4.在轴对称图形中,沿对称轴将它对折,左右两边完全重合。

  5.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线

  6.图形对称。

  定理及其逆定理

  定理1: 关于某条直线对称的两个图形是全等形。(全等形不一定关于某条直线对称)

  定理2:如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线。

  定理3:两个图形关于某条直线对称,如果对称轴和某两条对称线段的延长线相交,那么交点在对称轴上。

  定理3的逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

  生活作用

  1、为了美观,比如天安门,对称就显的美观漂亮;

  2、保持平衡,比如飞机的两翼;

  3、特殊工作的需要,比如五角星,剪纸。

  例如圆和正多边形也都是轴对称图形。

  初二数学知识点5

  平方根

  如果一个数的平方等于a,那么这个数叫做a的平方根。0的平方根是0。负数在实数范围内不能开平方,只有在正数范围内,才可以开平方根。例如:-1的平方根为i,-9的平方根为3i。

  平方根包含了算术平方根,算术平方根是平方根中的一种。

  平方根和算术平方根都只有非负数才有。

  被开方数是乘方运算里的幂。

  求平方根可通过逆运算平方来求。

  开平方:求一个非负数a的平方根的运算叫做开平方,其中a叫做被开方数。

  若x的平方等于a,那么x就叫做a的平方根,即√a=x

  立方根

  知识点:

  1、立方根的概念:如果一个数x的立方等于a,即x3=a,则这个数x叫做a的立方根.如(-13111)=-,所以-是-的立方根。

  2、立方根的的表达形式:一个数a的立方根记作“a”,读作“三次根号a”,a是被开方数,3是根指数。如512551255=()3,则的立方根是,记作=。273273273

  3、立方根的性质:任何数都有且只有一个立方根,正数的立方根是正数,负数的立方根是负数,0的立方根是0.

  初二数学知识点6

  1、不在同一直线上的三点确定一个圆。

  2、垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧

  推论1

  ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

  ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

  ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

  推论2 圆的两条平行弦所夹的弧相等

  3、圆是以圆心为对称中心的中心对称图形

  4、圆是定点的距离等于定长的点的集合

  5、圆的内部可以看作是圆心的距离小于半径的点的集合

  6、圆的外部可以看作是圆心的距离大于半径的点的集合

  7、同圆或等圆的半径相等

  8、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

  9、定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等

  10、推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

  11、定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角

  12①直线L和⊙O相交 d<r

  ②直线L和⊙O相切 d=r

  ③直线L和⊙O相离 d>r

  13、切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线

  14、切线的性质定理 圆的切线垂直于经过切点的半径

  15、推论1 经过圆心且垂直于切线的直线必经过切点

  16、推论2 经过切点且垂直于切线的直线必经过圆心

  希望上面对圆的知识点汇总一的讲解学习,同学们对上面的知识都能很好的掌握,相信同学们会从中学习的很好哦。

  初二数学知识点7

  1.性质:

  ①不等式的两边都加上或减去同一个整式,不等号方向不变。

  ②不等式的两边都乘以或者除以一个正数,不等号方向不变。

  ③不等式的两边都乘以或除以同一个负数,不等号方向相反。

  2.分类:

  ①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。

  ②一元一次不等式组:

  a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

  b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

  初二数学知识点8

  如果一个数的平方等于a,那么这个数叫做a的平方根。0的平方根是0。负数在实数范围内不能开平方,只有在正数范围内,才可以开平方根。例如:-1的平方根为i,-9的平方根为3i。

  平方根包含了算术平方根,算术平方根是平方根中的一种。

  平方根和算术平方根都只有非负数才有。

  被开方数是乘方运算里的幂。

  求平方根可通过逆运算平方来求。

  开平方:求一个非负数a的平方根的运算叫做开平方,其中a叫做被开方数。

  若x的平方等于a,那么x就叫做a的平方根,即√a=x

  重点与难点分析

  本节重点是平方根和算术平方根的概念.平方根是开方运算的基础,是引入无理数的准备知识.平方根概念的正确理解有助于符号表示的理解,是正确求平方根运算的前提,并且直接影响到二次根式的学习. 算术根的教学不但是本章教学的重点,也是今后数学学习的重点.在后面学习的根式运算中,归根结底是算术根的运算,非算术根也要转化为算术根。

  本节难点是平方根与算术平方根的区别于联系.首先这两个概念容易混淆,而且各自的符号表示意义学生不是很容易区分,教学中要抓住算术平方根式平方根中正的那个,讲清各自符号的意义,区分两种表示的不同.对于平方根运算不仅数

  3.本节主要内容是平方根和算术平方根,注意数字要简单,关键让学生理解概念.另外在文字叙述时注意语言的严谨规范,.

  知识归纳:如果一个正数的平方等于a,那么这个正数x叫做a的算术平方根,a叫做被开方数。

  初二数学知识点9

  初二数学角的平分线知识点

  一条射线把这个角分成两个相等的角,称这条射线为这个角的平分线。

  角的平分线

  静态:一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线(angular bisector)。

  动态:从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线(angul-ar bisector)。

  三角形顶点到其内角的角平分线交对边的点连的一条线段,叫三角形的角平分线。

  三角形的三条角平分线相交于一点,此点称为三角形的内心,三角形的内心到三条边的距离相等,是三角形内切圆的圆心。

  三角形内角平分线分对边所得的两条线段和这个角的两边对应成比例。

  三角形的角平分线上的点到角两边的距离(垂线)相等。

  其实初中我们学过的角的平分线知识要领很简单,只需掌握基础性质就好。

  初二数学知识点10

  1、全等三角形的对应边、对应角相等

  2、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等

  3、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等

  4、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等

  5、边边边公理(SSS)有三边对应相等的两个三角形全等

  6、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等

  7、定理1在角的平分线上的点到这个角的两边的距离相等

  8、定理2到一个角的两边的距离相同的点,在这个角的平分线上

  9、角的平分线是到角的两边距离相等的所有点的集合

  10、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)

  11、推论1等腰三角形顶角的平分线平分底边并且垂直于底边

  12、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

  13、推论3等边三角形的各角都相等,并且每一个角都等于60°

  14、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

  15、推论1三个角都相等的三角形是等边三角形

  16、推论2有一个角等于60°的等腰三角形是等边三角形

  17、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

  18、直角三角形斜边上的中线等于斜边上的一半

  19、定理线段垂直平分线上的点和这条线段两个端点的距离相等

  20、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

  21、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

  22、定理1关于某条直线对称的两个图形是全等形

  23、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

  24、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

  25、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

  26、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

  27、勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形

  28、定理四边形的内角和等于360°

  29、四边形的外角和等于360°

  30、多边形内角和定理n边形的内角的和等于(n-2)×180°

  31、推论任意多边的外角和等于360°

  32、平行四边形性质定理1平行四边形的对角相等

  33、平行四边形性质定理2平行四边形的对边相等

  34、推论夹在两条平行线间的平行线段相等

  35、平行四边形性质定理3平行四边形的对角线互相平分

  36、平行四边形判定定理1两组对角分别相等的四边形是平行四边形

  37、平行四边形判定定理2两组对边分别相等的四边形是平行四边形

  38、平行四边形判定定理3对角线互相平分的四边形是平行四边形

  39、平行四边形判定定理4一组对边平行相等的四边形是平行四边形

  40、矩形性质定理1矩形的四个角都是直角

  41、矩形性质定理2矩形的对角线相等

  42、矩形判定定理1有三个角是直角的四边形是矩形

  43、矩形判定定理2对角线相等的平行四边形是矩形

  44、菱形性质定理1菱形的四条边都相等

  45、菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角

  46、菱形面积=对角线乘积的一半,即S=(a×b)÷2

  47、菱形判定定理1四边都相等的四边形是菱形

  48、菱形判定定理2对角线互相垂直的平行四边形是菱形

  49、正方形性质定理1正方形的四个角都是直角,四条边都相等

  50、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

  51、定理1关于中心对称的两个图形是全等的

  52、定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

  53、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

  54、等腰梯形性质定理等腰梯形在同一底上的两个角相等

  55、等腰梯形的两条对角线相等

  56、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形

  57、对角线相等的梯形是等腰梯形

  58、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等

  59、推论1经过梯形一腰的中点与底平行的直线,必平分另一腰

  60、推论2经过三角形一边的中点与另一边平行的直线,必平分第三边

  61、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半

  62、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h

  初二数学知识点11

  知识点:

  一、多边形

  1、多边形:由一些线段首尾顺次连结组成的图形,叫做多边形。

  2、多边形的边:组成多边形的各条线段叫做多边形的边。

  3、多边形的顶点:多边形每相邻两边的公共端点叫做多边形的顶点。

  4、多边形的对角线:连结多边形不相邻的两个顶点的线段叫做多边形的对角线。

  5、多边形的周长:多边形各边的长度和叫做多边形的周长。

  6、凸多边形:把多边形的任何一条边向两方延长,如果多边形的其他各边都在延长线所得直线的问旁,这样的多边形叫凸多边形。

  说明:一个多边形至少要有三条边,有三条边的叫做三角形;有四条边的叫做四边形;有几条边的叫做几边形。今后所说的多边形,如果不特别声明,都是指凸多边形。

  7、多边形的角:多边形相邻两边所组成的角叫做多边形的内角,简称多边形的角。

  8、多边形的外角:多边形的角的一边与另一边的反向延长线所组成的角叫做多边形的外角。

  注意:多边形的外角也就是与它有公共顶点的内角的邻补角。

  9、n边形的对角线共有条。

  说明:利用上述公式,可以由一个多边形的边数计算出它的对角线的条数,也可以由一个多边形的对角线的条数求出它的边数。

  10、多边形内角和定理:n边形内角和等于(n-2)180°。

  11、多边形内角和定理的推论:n边形的外角和等于360°。

  说明:多边形的外角和是一个常数(与边数无关),利用它解决有关计算题比利用多边形内角和公式及对角线求法公式简单。无论用哪个公式解决有关计算,都要与解方程联系起来,掌握计算方法。

  1、四边形

  在同一平面内,由不在同一直线上的四条线段首尾顺次相接的图形叫做四边形。

  2、凸四边形

  把四边形的任一边向两方延长,如果其他个边都在延长所得直线的同一旁,这样的四边形叫做凸四边形。

  3、对角线

  在四边形中,连接不相邻两个顶点的线段叫做四边形的对角线。

  4、四边形的不稳定性

  三角形的三边如果确定后,它的形状、大小就确定了,这是三角形的稳定性。但是四边形的四边确定后,它的形状不能确定,这就是四边形所具有的不稳定性,它在生产、生活方面有着广泛的应用。

  5、四边形的内角和定理及外角和定理

  四边形的内角和定理:四边形的内角和等于360°。

  四边形的外角和定理:四边形的外角和等于360°。

  推论:多边形的内角和定理:n边形的内角和等于180°;

  多边形的外角和定理:任意多边形的外角和等于360°。

  6、多边形的对角线条数的计算公式

  设多边形的边数为n,则多边形的对角线条数为。

  初二数学知识点12

  1.分式及其基本性质:分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的值不变。

  2.分式的运算:

  (1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

  (2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减。

  初二数学知识点13

  (初二)预计讲解时间:10天

  第十一章全等三角形复习

  一、全等三角形

  1.定义:能够完全重合的两个三角形叫做全等三角形。

  理解:

  ①全等三角形形状与大小完全相等,与位置无关;

  ②一个三角形经过平移、翻折、旋转可以得到它的全等形;

  ③三角形全等不因位置发生变化而改变。

  2、全等三角形有哪些性质

  (1)全等三角形的对应边相等、对应角相等。

  理解:

  ①长边对长边,短边对短边;最大角对最大角,最小角对最小角;

  ②对应角的对边为对应边,对应边对的角为对应角。

  (2)全等三角形的周长相等、面积相等。

  (3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。

  3、全等三角形的判定

  边边边:三边对应相等的两个三角形全等(可简写成“SSS”)

  1、性质:角的平分线上的点到角的两边的距离相等.

  2、判定:角的内部到角的两边的距离相等的点在角的平分线上。

  二、学习全等三角形应注意以下几个问题:

  (1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;

  (2表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;

  (3)“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;

  (4)时刻注意图形中的隐含条件,如“公共角” 、“公共边”、“对顶角”

  (5)截长补短法证三角形全等。

  初二数学知识点14

  一次函数

  (1)正比例函数:一般地,形如y=kx(k是常数,k?0)的函数,叫做正比例函数,其中k叫做比例系数;

  (2)正比例函数图像特征:一些过原点的直线;

  (3)图像性质:

  ①当k>0时,函数y=kx的图像经过第一、三象限,从左向右上升,即随着x的增大y也增大;②当k<0时,函数y=kx的图像经过第二、四象限,从左向右下降,即随着x的增大y反而减小;

  (4)求正比例函数的解析式:已知一个非原点即可;

  (5)画正比例函数图像:经过原点和点(1,k);(或另外一个非原点)

  (6)一次函数:一般地,形如y=kx+b(k、b是常数,k?0)的函数,叫做一次函数;

  (7)正比例函数是一种特殊的一次函数;(因为当b=0时,y=kx+b即为y=kx)

  (8)一次函数图像特征:一些直线;

  (9)性质:

  ①y=kx与y=kx+b的倾斜程度一样,y=kx+b可看成由y=kx平移|b|个单位长度而得;(当b>0,向上平移;当b<0,向下平移)

  ②当k>0时,直线y=kx+b由左至右上升,即y随着x的增大而增大;

  ③当k<0时,直线y=kx+b由左至右下降,即y随着x的增大而减小;

  ④当b>0时,直线y=kx+b与y轴正半轴有交点为(0,b);

  ⑤当b<0时,直线y=kx+b与y轴负半轴有交点为(0,b);

  (10)求一次函数的解析式:即要求k与b的值;

  (11)画一次函数的图像:已知两点;

  用函数观点看方程(组)与不等式

  (1)解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值;从图像上看,这相当于已知直线y=kx+b,确定它与x轴交点的横坐标的值;

  (2)解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围;

  (3)每个二元一次方程都对应一个一元一次函数,于是也对应一条直线;

  (4)一般地,每个二元一次方程组都对应两个一次函数,于是也对应两条直线。从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值;从“形”的角度看,解方程组相当于确定两条直线交点的坐标;

  初二数学知识点15

  圆的面积 s = π × r × r

  其中,π 是周围率,等于3.14

  r 是圆的半径。

  圆的周长计算公式为:C=2πR 。C代表圆的周长,r代表圆的半径。圆的面积公式为:S=πR2(R的平方) 。S代表圆的面积,r为圆的半径。

  椭圆周长计算公式

  椭圆周长公式:L=2πb+4(a-b)

  椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。

  椭圆面积计算公式

  椭圆面积公式: S=πab

  椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。

  初二数学知识点16

  定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。

  步骤:把分式分子分母因式分解,然后约去分子与分母的公因。

  注意:

  ①分式的分子与分母为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约去分子分母相同因式的最低次幂。

  ②分子分母若为多项式,约分时先对分子分母进行因式分解,再约分。

  通过上面对数学中分式的约分知识的讲解学习,希望同学们对上面的内容知识都能很好的掌握,相信同学们会学习的很好。

  初二数学知识点17

  第一章三角形的证明

  1、等腰三角形

  (1)三角形全等的性质及判定

  全等三角形的对应边相等,对应角也相等判定:SSS、SAS、ASA、AAS、

  (2)等腰三角形的判定、性质及推论

  性质:等腰三角形的两个底角相等(等边对等角)

  判定:有两个角相等的三角形是等腰三角形(等角对等边)

  推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”)

  (3)等边三角形的性质及判定定理

  性质定理:等边三角形的三个角都相等,并且每个角都等于60度;等边三角形的三条边都满足“三线合一”的性质;等边三角形是轴对称图形,有3条对称轴。

  判定定理:有一个角是60度的等腰三角形是等边三角形。或者三个角都相等的三角形是等边三角形。

  (4)含30度的直角三角形的边的性质

  定理:在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半。

  2、直角三角形

  (1)勾股定理及其逆定理

  定理:直角三角形的两条直角边的平方和等于斜边的平方。

  逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。

  (2)直角三角形两个锐角之间的关系

  定理:直角三角形两个锐角互余。

  逆定理:有两个锐角互余的三角形是直角三角形。

  (3)含30度的直角三角形的边的定理

  定理:在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半。

  逆定理:在直角三角形中,一条直角边是斜边的一半,那么这条直角边所对的锐角是30度。

【初二数学知识点】相关文章:

初二数学的知识点07-05

初二数学知识点07-05

初二数学实数知识点07-05

初二数学《分式》知识点07-07

人教版数学初二知识点07-05

初二数学知识点12-08

初二数学必备的知识点02-01

初二数学整式的乘法知识点07-11

初二数学《轴对称》知识点07-11

初二数学实数知识点总结10-31