数学 百文网手机站

数学如何学习方法

时间:2022-11-25 16:36:20 数学 我要投稿

数学如何学习方法(14篇)

  在平凡的学习、工作、生活中,大家都在努力,勤奋的学习,不过,学习不是死读书,而要讲究方法的。想知道要如何正确的学习吗?下面是小编帮大家整理的数学如何学习方法,欢迎大家分享。

数学如何学习方法(14篇)

数学如何学习方法1

  数学并不难,其实就是按规律做题而已。如果我们去问老师问题的时候,老师看了几眼,也会说这道题应用某某方法去做,好像想都不用想,让人惊叹。其实道理很简单,因为出题的人就是按规律出题的。所以说,只要掌握了这些规律,就不用怕了,关键就在于找规律。

  首先是知识,规律的基础。用最少的东西去证明最多的东西,那些最少的东西是一切的基础。我们深刻掌握了那些最少的东西,一橦知识大厦便可以建造起来。基础知识都在课本里。因而,首先必须掌握好课本的知识点。有些东西就是前人定出来的,并被世界公认,既然我们无法改变这一切,便只好接受,并消化。所以,有些时候没办法,只好死记了。当运用多了,便灵活了。熟悉串通了知识,便夯实了找到规律的基础。

  真理可以从实践中获得。在各种各样的题中,找到规律。同一类型的题目,这次错了,下次就会做了。规律是总结出来的。比如说,证明一些平行,垂直的几何题,似乎每次找到了中点,连接,便迎刃而解,这就是一种规律。我们可以从练习册,课本的例题中熟悉总结。还有一些经典易错题,更是要重点留意。如果例题只是看一看,丝毫不重视的话,考试时速度方面便大打折扣了。一道题往往有好几个知识点堆在一起,只要循规蹈矩逐个击破,也就搞定了。规律越来越多,就像有更多的钥匙,面对各种各样的锁,也就不怕了。

  可方法规律一多,面对题就不知用什么方法了,这就说明还没有根本地掌握方法。这时就要把例题再拿出来,自己再做一遍,直到“哗”一声恍然大悟。有时适当地结合条件,也可以快速地找到方法。这样又可以总结出一条大规律,便是不要死钻牛角尖,这种规律一不行,就马上换下一种,让思路转得快一点。而坚持到底反而可能失败。

数学如何学习方法2

  正确掌握初三数学学习方法

  数学是初中阶段的三大主科之一,它在初中的学习科目中,占据了主要地位。

  成绩的分化

  1、被动学习。许多同学进初中入后,还像小学那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习主动权。表现在不定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”。

  2、学不得法。

  老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法。而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背。也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。

  3、不重视基础。

  一些“自我感觉良好”的同学,常轻视基本知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高鹜远,重“量”轻“质”,陷入题海。到正规作业或考试中不是演算出错就是中途“卡壳”。

  4、思维方式和学习方法不适应数学学习要求。

  一个重要原因是初中阶段数学课程对学生抽象逻辑思维能力要求有了明显提高。而初二学生正处于由直观形象思维为主向以抽象逻辑思维为主过渡的又一个关键期,没有形成比较成熟的抽象逻辑思维方式,而且学生个体差异也比较大,有的抽象逻辑思维能力发展快一些,有的则慢一些,因此表现出数学学习接受能力的差异。除了年龄特征因素以外,更重要的是教师没有很好地根据学生的实际和教学要求去组织教学活动,指导学生掌握有效的学习方法,促进学生抽象逻辑思维的发展,提高学习能力和学习适应性。

  以上的内容就是造成两极分化比较严重的原因,希望初中阶段学生数学学习成绩避免这一现象。

数学如何学习方法3

  一、编织知识网络

  我们学过不少知识点,做了不少题目,但是脑子里的印象却往往是模糊、孤立的,必须经过比较和整理,找出其中的联系和区别,把知识编织成网络,解题时就能胸有成竹,运用自如,形成解决问题的能力。

  例如,怎样的四边形可以判定它是平行四边形、矩形、菱形、正方形?分别有几条可以考虑的思路?它们的边、角、对角线各有什么性质?对称性怎样?不妨总结一下。

  二、挑战特色例题

  我们平时的作业往往紧跟当天所学的知识,并不难解;但是,看看近几年的中考和各区县模拟考,你就会发现:现在对同学思维能力的要求已经大大提高,因此要认真研究一下,其中哪些知识学过了?我会解吗?有什么诀窍?

  例如,已知关于x的方程x2+mx+2m-n=0根的判别式的值为零,且x=1是方程的根,求m、n的值。

  如果分别看两个条件,能列出关于m、n的方程组,但运算很烦。如果从整体上分析题意,就发现x1=x2=1。1+1=-m,且1×1=2m-n;∴m=-2,n=-5。

  三、补救解题失误

  我们不要笼统地埋怨自己解题时“粗心”,而应该把做错的题目研究一下,是不是因为注意力不集中,顾此失彼;或者审题马虎,误解题意;或者记错概念、公式、定理;或者是心急慌忙,随意跳步骤,造成运算错误等等。

  只要找到根源,就能做到不让同一错误出现第二次;只要把所有会做的题目都做对,就能取得优良成绩。

  四、精选参考资料

  为了提高解题能力,我们需要一二本适合自己情况的数学参考书,掌握以下要求,能帮助你进行选择:所选的题目具有典型性,不搞题海战术;内容富有启发性,解一道题就懂一点数学思想方法;难度适合本人接受能力,不要高不可攀;题目分层配置,由浅入深,循序渐进。

数学如何学习方法4

  首先,把握原则,早准备、早计划、早复习:

  所谓原则,就是要按照大纲复习,吃透大纲。考研数学试题极少出现过超纲现象,考生把全部基本的概念、原理搞懂了,就几乎相当于押中全部考题。因此,在复习过程中,一定要针对大纲和教材具体研究,将二者有机的结合起来。也不要完全迷信考纲,有时会出现考纲里没有考试中却出现的情况(如:20xx年数学四中的第八大题,特例,请区别对待)。结合本科教材和大纲,先吃透基本概念、基本方法和基本定理。数学是一门逻辑性极强的演绎科学,只有对基本概念深入理解,对基本定理和公式牢牢记住,才能找到解题的突破口和切入点。对基本概念、定理记不全、记不牢,理解不准确,基本解题方法掌握不好等因为忽略了基本而失分的现象在近年的考试中出现很多。

  把握原则,要同三早结合起来,数学需要一定量的消化理解时间,只有早做安排,才能圆满地完成打好基础、提高能力、查漏补缺、应对考试的整个复习过程。一般情况下数学在大三下学期就开始着手准备,此时主要工作是把课本中的定理等内容过一边,考研班可以选择此时上,或者也可以在暑期上。从暑期或秋季开始,就要买本全面的参考书来开始系统的复习。

  其次,选择好教材与辅导材料:

  基于工学、经济学、管理学门类各学科专业对硕士研究生入学所应具备的数学知识和能力的不同要求,数学统一考试试卷分为数学一、数学二、数学三和数学四。因此,考生首先要根据自己的专业选择好适合自己的教材,而后选择辅导材料。

  在选择辅导书时,一定要看这本书是否涵盖了考试大纲,是否系统整理出并点出了考试重点,设置了各个层次、各种类型的题目,对方法和技巧有专门的训练和讲解。有一些教材没有涵盖大纲要求的全部内容(如:函数平均值这个考点,在很多教材中都找不到,大纲中却出现了)。

  考研数学用书,首选陈文灯的〈数学复习指南〉,这本书讲解的方法、规律比较多,能掌握,同时该书针对不同的题型提供了不同的解题思路与方法,也应着重掌握。有人说,只要把〈指南〉做上3、4边,考研数学就没什么问题了,这有一定的道理。但是,在掌握书中的内容之后,应该换换口味,毕竟现在试题技巧性很强,命题人员也在极力躲避该书中出现的题目类型,所以,前期复习时用陈文灯的书,后面复习用别人的书是比较明智的选择。

  其三,重视基础,灵活运用,多练习数学的复习基本可以分为两个层次,一是基础性的训练,二是思维上的训练。

  基础性的训练,要从复习之初就加以重视。从20xx年阅卷情况来看,考生失分的主要原因是基本功不过关,大多数考生往往因为一个考点没掌握而影响了整道题的运算,最终导致失分。所以考生在复习过程当中一定要重视数学概念、原理的掌握和计算过程的训练,争取在考试过程中,只要是会的就不丢分。没有基本功而刻意追求方法和技巧,抠一些难题、偏题没有任何意义,绝大部分的方法和技巧是建立在有一定基本功基础之上的。因此,平时的训练中一定要有计算量的训练,在数学考试中,填空和选择占了全部分数的1/3左右,这部分题的计算量和难度相对来说较小,是最容易得分的部分。如果想过线或者取得高分,这部分就不能掉以轻心。由于这部分对计算准确性的要求很高,考生在日常训练中更要注重计算量和计算准确性的训练。

  思维上的训练,存在于整个复习过程中,在最后考试的时候得以充分检验。在平常的复习过程中,要有意识的培养逆向思维、抽象思维、和定向思维的能力。在训练中,要注意理解和总结一些技巧性的东西,有意识的提高自己思维的灵活性。要争取一题多种解法,即概念要相通,在自我训练过程中多思考,灵活运用概念原理。

  要进行综合性试题和应用题训练。数学考试会出现一些应用到多个知识点的综合性试题和应用型试题。这类试题一般比较灵活,难度也要大一些。在数学首轮复习期间,可以不将它们作为强化重点,但也应逐步进行一些训练,积累解题思路,同时这也有利于对所学知识的消化吸收,彻底弄清楚有关知识的纵向与横向联系,转化为自己真正掌握的东西。

  其四,充分利用历年试题。

  利用历年试题,有助于总结归纳解题思路、套路和经验。数学考试不需背诵,也不要自由发挥,全部任务就是解题,而基本概念、公式、结论等也只有在反复练习中才会真正理解与巩固。做题时特别要强调分析研究题目和解题思路。数学试题千变万化,其知识结构却基本相同,题型也相对固定,往往存在明显的解题套路,熟练掌握后既能提高正确率,又能提高解题速度。

  考数学一的同学,看看往年的其它类数学的真题,如经济类的概率、数二的线代等等,一方面这些题目有可能难于数一的,另一方面,这些考题有可能稍作变换后就出现在后些年的数一考试中。

数学如何学习方法5

  我们都知道高中数学的理论性、抽象性强,就需要在对知识的理解上下功夫,要多思考,多研究.

  一、指导提高听课的效率是关键

  1.课前预习能提高听课的针对性.

  预习中发现的难点,就是听课的重点;对预习中遇到的没有掌握好的有关的旧知识,可进行补缺,以减少听课过程中的困难;有助于提高思维能力,预习后把自己理解了的东西与老师的讲解进行比较、分析即可提高自己思维水平;预习还可以培养自己的自学能力.

  2.听课过程中的科学.

  首先应做好课前的物质准备和精神准备,以使得上课时不至于出现书、本等物丢三落四的现象;上课前也不应做过于激烈的体育运动或看小书、下棋、激烈争论等.以免上课后还喘嘘嘘,或不能平静下来.

  其次就是听课要全神贯注.

  全神贯注就是全身心地投入课堂学习,耳到、眼到、心到、口到、手到.

  耳到:就是专心听讲,听老师如何讲课,如何分析,如何归纳总结,另外,还要听同学们的答问,看是否对自己有所启发.

  眼到:就是在听讲的同时看课本和板书,看老师讲课的表情,手势等动作,生动而深刻的接受老师所要表达的思想.

  心到:就是用心思考,跟上老师的数学思路,分析老师是如何抓住重点,解决疑难的.

  口到:就是在老师的指导下,主动回答问题或参加讨论.

  手到:就是在听、看、想、说的基础上划出课文的重点,记下讲课的要点以及自己的感受或有创新思维的见解.

  若能做到上述“五到”,精力便会高度集中,课堂所学的一切重要内容便会在自己头脑中留下深刻的印象.

  3.特别注意讲课的开头和结尾.

  讲课开头,一般是概括前节课的要点指出本节课要讲的内容,是把旧知识和新知识联系起来的环节,结尾常常是对一节课所讲知识的归纳总结,具有高度的概括性,是在理解的基础上掌握本节知识方法的纲要.

  4.要认真把握好思维逻辑,分析问题的思路和解决问题的思想方法,坚持下去,就一定能举一反三,提高思维和解决问题的能力.

  此外还要特别注意老师讲课中的提示.

  老师讲课中常常对一些重点难点会作出某些语言、语气、甚至是某种动作的提示.

  最后一点就是作好笔记,笔记不是记录而是将上述听课中的要点,思维方法等作出简单扼要的记录,以便复习,消化,思考.

  二、指导做好复习和总结工作

  1.做好及时的复习.

  课完课的当天,必须做好当天的复习.

  复习的有效方法不是一遍遍地看书或笔记,而是采取回忆式的复习:先把书,笔记合起来回忆上课老师讲的内容,例题:分析问题的思路、方法等(也可边想边在草稿本上写一写)尽量想得完整些.然后打开笔记与书本,对照一下还有哪些没记清的,把它补起来,就使得当天上课内容巩固下来,同时也就检查了当天课堂听课的效果如何,也为改进听课方法及提高听课效果提出必要的改进措施.

  2.做好单元复习.

  学习一个单元后应进行阶段复习,复习方法也同及时复习一样,采取回忆式复习,而后与书、笔记相对照,使其内容完善,而后应做好单元小节.

  3.做好单元小结.

  单元小结内容应包括以下部分.

  (1)本单元(章)的知识网络;

  (2)本章的基本思想与方法(应以典型例题形式将其表达出来);

  (3)自我体会:对本章内,自己做错的典型问题应有记载,分析其原因及正确答案,应记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上.三、指导做一定量的练习题

  有不少同学把提高数学成绩的希望寄托在大量做题上.我认为这是不妥当的,我认为,“不要以做题多少论英雄”,重要的不在做题多,而在于做题的效益要高.做题的目的在于检查你学的知识,方法是否掌握得很好.如果你掌握得不准,甚至有偏差,那么多做题的结果,反而巩固了你的缺欠,因此,要在准确地把握住基本知识和方法的基础上做一定量的练习是必要的.而对于中档题,尢其要讲究做题的效益,即做题后有多大收获,这就需要在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过,把它们联系起来,你就会得到更多的经验和教训,更重要的是养成善于思考的好习惯,这将大大有利于你今后的学习.当然没有一定量(老师布置的作业量)的练习就不能形成技能,也是不行的.

  另外,就是无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,也是学好数学的重要问题.

数学如何学习方法6

  学生的学习方法指导主要有以下几个环节“预习方法”、“听课方法”、“复习巩固方法”与“作业方法”以及“总结方法”等分层次、分步骤指导。

  1.预习方法的指导

  初一学生不懂得什么叫预习,为什么要预习,以致于教师布置了预习,学生只是多看了一遍或几遍书而已,起不到什么效果。因此在指导学生预习时应要求学生做到:一粗读,先粗略浏览教材的有关内容,掌握本节知识的结构体系。二细读,对重要概念、公式、法则、定理反复阅读、体会、思考,注意知识的形成过程,对难以理解的概念作出记号,以便带着疑问去听课。先进行单元预习粗读过程,随后进行单课预习精读过程。预习前教师先布置预习提纲,使学生有的放矢。养成良好的预习习惯,是培养学生的自学能力的关键所在,它能使学生变被动学习为主动学习。

  2.听课方法的指导

  听课习惯直接影响听课效果,所以一定要养成学生良好的听课习惯,注意处理好以下环节:首先指导学生注意听学习要求、听知识引入以及知识形成过程,听重点、难点剖析,听例题解法的思路和数学思想方法的体现,听好课后小结。这就要求教师讲课要重点突出,层次分明,把握最佳讲授时间,使学生听之有效。其次要指导学生认真“思”。思维能力是学生学习的主体,所以要求多思、勤思,随听随思;深思、善思与反思。可以说“听”是“思”的基础关键,“思”是“听”的深化,会听才会思,会思才会学。最后要指导学生去“记”。初一学生一般不记笔记或者是不会合理记笔记,不会记表现在把教师板书的复制,往往是用“记”代替“听”和“思”,记得很全,却耽误了“听”和“思”。因此在指导学生作笔记时应要求学生记笔记服从听讲,适时“记”;记要点、记疑问、记解题思路和方法;记小结、记课后思考题,使学生明确“记”是为“听”和“思”服务的。指导学生只有合理处理好这三者关系,才能真正地走出小学数学的阴影。

  3 .复习巩固及完成作业方法的指导

  刚进入初中的初一学生课后以完成作业为目的,巩固、记忆、复习没有形成良好的习惯。因此在作业过程中死搬硬套做好作业完成任务,没有深化理解知识、及时巩固知识,达不到学习的效果。因此在这个环节的学法指导上教师要求学生每天先阅读教材,结合笔记记录的重点、难点,回顾课堂讲授的知识、方法,同时记忆公式、定理。然后独立完成作业,解题后再反思。教师通过示范解题指导学生的作业书写格式要规范、条理要清楚。指导时应教会学生如何将文字语言转化为符号语言,如何将推理思考过程用文字书写表达,正确地由条件画出图形。开始可有意让学生模仿、训练,逐步使学生养成良好的书写习惯。

  4 .小结或总结方法的指导

  小学生在进行单元小结或学期总结时,主要依赖教师,习惯教师带着复习与总结。初中生按大纲要求自学能力的培养是主要任务,所以教师从初一开始就应培养学生学会自己总结的方法。在具体指导时可给出复习总结的途径。要做到“三看、二列、三做”。“三看”是指:看书、看笔记、看习题,通过看,回忆、熟悉所学内容。“二列”是指:列出相关的知识点,标出重点、难点,列出各知识点之间的关系,这相当于写出总结要点。“三做”是指:在此基础上有目的、有重点、有选择地解一些各种层次、不同类型的习题,通过解题中学生反馈的信息,发现问题、解决问题。最后由学生归纳出体现所学知识的各种题型及解题方法。所以说学生学会了总结是学生数学学习的最高目标。只有当学生总结与教师总结有机地结合,教师最后的总结才显得更为突出,它是学生总结的精炼、提高,把学生知识水平推向更高层。

数学如何学习方法7

  近几年来,旨在教会学生会学习、提高学生自学能力的学法指导的研究和实践已是基础教育改革的一个热门课题。这一课题的提出和研究,不仅对当前提高基础教育质量、实施素质教育具有现实意义,而且对培养未来社会发展所需要的人才、促进科教兴国具有历史意义。随着社会、经济、科技的高速发展,数学的应用越来越广,地位越来越高,作用越来越大。不仅如此,数学教育的实践和历史还表明,数学作为一种文化,对人的全面素质的提高具有巨大的影响。因此,提高基础教育中的数学教学质量,就显得尤为重要。可目前由于受“应试教育”的影响,数学教学中违背教育规律的现象和做法时有发生,为此更新数学教学思想、完善数学教学方法就显得更加迫切。在数学教学中,开展学法指导,正是改革数学教学的一个突破口。

  一、对数学教学如何实施数学学习方法的指导,人们进行了许多有益的探索和实验。首先是通过观察、调查,归纳总结了中学生数学学习中存在的问题,如“学习懒散,不肯动脑;不订计划,惯性运转;忽视预习,坐等上课;不会听课,事倍功半;死记硬背,机械模仿;不懂不问,一知半解;不重基础,好高骛远;赶做作业,不会自学;不重总结,轻视复习”等等。针对这些问题,提出了相应的数学学法指导的途径和方法,如数学全程渗透式(将学法指导渗透于制订计划、课前预习、课堂学习、课后复习、独立作业、学习总结、课外学习等各个学习环节之中);建立数学学习常规(课堂常规———情境美,参与高,求卓越,求效率;课后常规———认真读书,整理笔记,深思熟虑,勇于质疑;作业常规———先复习,后作业,字迹清楚,表述规范,计算正确,填好《作业检测表》,重做错题)等等。诚然,这对于端正学习态度、养成学习习惯、提高学业成绩、优化学习品质,采劝对症下药”的策略,开展对学习常规的指导,无疑会收到较好的效果。但是,数学学习方法的指导,决不能忽视数学所特有的学习方法的指导。可以说,这才是数学学法指导之内核和要害。也就是说,数学学法指导应该着重指导学生学会理解数学知识、学会解决数学问题、学会数学地思维、学会数学交流、学会用数学解决实际问题等。有鉴于此,笔者主要从“数学”、“数学学习”出发,来阐释数学学习方法,论述数学学法指导。

  二、从数学的角度出发,就是要考察。关数学的特点于数学的特点,虽仍有争议,但传统或者说比较科学的提法仍是3条:高度的抽象性、逻辑的严谨性和应用的广泛性。

  1.数学研究的对象本来是现实的,但由于数学仅从空间形式与数量关系方面来反映客观现实,所以数学是逐级抽象的产物。比如三角形形状的实物模型随处可见,多种多样,名目繁多,但数学中的“三角形”却是一种抽象的思维形式(概念),撇开了人们常见的各种三角形形状实物的诸多性质(如天然属性、物理性质等)。因此,学习数学首当其冲的是要学习抽象。而抽象又离不开概括,也离不开比较和分类,可以说比较、分类、概括是抽象的基础和前提。比如,要从已经过抽象得出的物体运动速度v=v0+at、产品的成本m=m0+at、金属加热引起的长度变化l=l0+at中再次抽象出一次函数f(x)=ax+b,显然要经过比较(它们的异同)和概括(它们的共同特征)。根据数学高度抽象性的特点,数学学法指导要强调比较、分类、概括、抽象等思维方法的指导。

  2.数学结论的可靠性有其严格的要求,观察和实验不能作为论证的依据和方法,而是要经过逻辑推理(表现为证明或计算),方能得以承认。比如,“三角形内角和为180°”这个结论,通过测量的方法是不能确立的,唯有在欧氏几何体系中经过数学证明才能肯定其正确性(确定性)。在数学中,只有通过逻辑证明和符合逻辑的计算而得到的结论,才是可靠的。事实上,任何数学研究都离不开证明和计算,证明和计算是极其主要的数学活动,而通常所说的“数学思想方法往往是数学中证明和计算的方法。探求数学问题的解法也就是寻找相应的证明或计算的具体方法。从这一点上来说,证明或计算是任何一种数学思想方法的组成部分,又是任何一种数学思想方法的目标和表述形式”。又由于证明和计算主要依靠的是归纳与演绎、分析与综合,所以根据数学逻辑的严谨性特点,数学学法指导要重视归纳法、演绎法、分析法、综合法的指导。

  3.由于任何客观对象都有其空间形式和数量关系,因而从理论上说以空间形式与数量关系为研究对象的数学可以应用于客观世界的一切领域,即可谓宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁,无处不用数学。应用数学解决问题,不但首先要提出问题,并用明确的语言加以表述,而且要建立数学模型,还要对数学模型进行数学推导和论证,对数学结果进行检验和评价。也就是说,数学之应用,它不仅表现为一种工具,一种语言,而且是一种方法,是一种思维模式。根据数学应用的广泛性特点,数学学法指导还要指导学生建立和操作数学模型,以及进行检验和评价。

  三从数学学习的角度出发,就是要通过对数学学习过程的考察,引申出数学学法指导的内容和策略。关于数学学习的过程,比较新颖的观点是:“在原有行为结构与认知结构的基础上,或是将环境对象纳入其间(同化),或是因环境作用而引起原有结构的改变(顺应),于是形成新的行为结构与认知结构,如此不断往复,直到达成相对的适应性平衡”。通过对这一认识的分析和理解,就数学学法指导而言,可概括出以下3点:

  1.行为结构既是学习新知的目的和结果,又是学习新知的基础,因而在数学教学中亦需注重外部行为结构形成的指导。由于这种外部行为主要包括外部实物操作和外部符号(主要是语言)活动,所以在数学学法指导中,一要重视学具的操作(可要求学生尽可能多地制作学具,操作学具);二要重视学生的言语表达(给学生尽可能多地提供言语交流的机会,可以是教师与学生间的交流,也可以是学生与学生之间的交流)。

  2.认知结构同样既是学习新知的目的和结果,也是学习新知的基础,故而数学教学要加强数学认知结构形成的指导。所谓数学认知结构,是指学生头脑中的知识结构按自己的理解深度、广度,结合自己的感觉、知觉、记忆、思维等认知特点,组合成的一个具有内部规律的整体结构。因此,对于学生形成数学认知结构的指导,关键在于不断地提高所呈现的数学知识和经验的结构化程度。在数学学法指导中,须注意如下几点:①加强数学知识间联系的教学。无论是新知识的引入和理解,还是巩固和应用,尤其是知识的复习和整理,都要从知识间的联系出发。②重视数学思想的挖掘和渗透。由于数学思想是对数学的本质的认识,因而数学思想是数学知识结构建立的基础。常见的数学思想有:符号思想、对应思想、数形结合思想、归纳思想、公理化思想、模型化思想等等。③注重数学方法的明晰教学。数学方法作为解决问题的手段,是建立数学知识结构的桥梁。常见的数学方法有:化归法、构造法、参数法、变换法、换元法、配方法、反证法、数学归纳法等。

  3.在原有行为结构与认知结构的基础上,无论是通过同化,还是通过顺应来获得新知,必须是在一种学习机制的作用下方能实现。而这种学习机制主要就是对学习新知过程的监控和调节,即所谓的元学习。实质上,能否会学,关键就在于这种学习是否建立起来。于是,元学习的指导又成为数学方法指导的重要内容。为此,在数学学法指导中,需要注意:①要传授程序性知识和情境性知识。程序性知识即是对数学活动方式的概括,如遇到一个数学证明题该先干什么,后干什么,再干什么,就是所谓的程序性知识。情境性知识即是对具体数学理论或技能的应用背景和条件的概括,如掌握换元法的具体步骤,获得换元技能,懂得在什么条件下应用换元法更有效,就是一种情境性知识。②尽可能让学生了解影响数学学习(数学认知)的各种因素。比如,学习材料的呈现方式是文字的、字母的,还是图形的;学习任务是计算、证明,还是解决问题,等等。这些学习材料和学习任务方面的因素,都对数学学习产生影响。③要充分揭示数学思维的过程。比如,揭示知识的`形成过程、思路的产生过程、尝试探索过程和偏差纠正过程。④帮助学生进行自我诊断,明确其自身数学学习的特征。比如:有的学生擅长代数,而认知几何较差;有的学生记忆力较强而理解力较弱;还有的学生口头表达不如书面表达等。⑤指导学生对学习活动进行评价。如评价问题理解的正确性、学习计划的可行性、解题程序的简捷性、解题方法的有效性等诸多方面。⑥帮助学生形成自我监控的意识。如监控认知方向意识、认知过程意识和调节认知策略意识等等。

  四根据数学内容的性质,数学教学一般可分为概念教学、命题(主要有定理、公式、法则、性质)教学、例题教学、习题教学、总结与复习等5类。相应地,数学学法指导的实施亦需分别落实到这5类教学之中。这里仅就例题教学中如何实施数学学法指导谈谈自己的认识。

  1.根据学生的学情安排例题。如前所述,学习新知必须建立在已有的基础之上,从内容上讲,这个基础既包括知识基础,又包括认知水平和认知能力,还包括学习兴趣、认知意识,乃至学习态度等有关学习动力系统方面的准备。因此,无论是选配例题,还是安排例题,都要考虑到学生的学习情况,尤其是要考虑激发学生认知兴趣和认知需求的原则(称之为动机原则)。在例题选配和安排中,可采取增、删、调的策略,力求既突出重点,又符合学生的学情。所谓增,即根据学生的认知缺陷增补铺垫性例题,或者为突破某个难点增加过渡性例题。所谓删,即根据学生情况,删去比较简单的例题或要求过高的难题。所谓调,即根据学生的实际水平,将后面的例题调至前面先教,或者将前面的例题调到后面后教。

  2.根据学习目标和任务精选例题。例题的作用是多方面的,最基本的莫过于理解知识,应用知识,巩固知识;莫过于训练数学技能,培养数学能力,发展数学观念。为发挥例题的这些基本作用,就要根据学习目标和任务选配例题。具体的策略是:增、删、并。这里的增,即为突出某个知识点、某项数学技能、某种数学能力等重点内容而增补强化性例题,或者根据联系社会发展的需要,增加补充性例题。这里的删,即指删去那些作用不大或者过时的例题。所谓并,即为突出某项内容把单元内前后的几个例题合并为一个例题,或者为突出知识间的联系打破单元界限而把不同内容的例题综合在一起。

  3.根据解题的心理过程设计例题教学程序。按照波利亚的解题理论,一般把解题过程分为弄清问题、拟定计划、实现计划、回顾等4个阶段。这是针对解题过程本身而言的。但就解题教学来说,还应当增加一个步骤,也是首要环节,即要使学生“进入问题情境”,让学生产生一种认知的需要。对于“进入问题情境”环节,要求教师用简短的语言,在承上启下中,提出学习目标,明确学习任务,激起认知冲突。而对其余4个环节,教师的行为可按波利亚的“怎样解题表”中的要求去构思。一般教师和学生都能够注意做到做好前3个环节,却容易忽视“回顾”环节。严格说来,回顾环节对解题能力的提高,对例题教学目的的实现起着不可替代的作用。对回顾环节来讲,除波利亚提出的几条以外,更为主要的是对解题方法的概括和反思,并使其能迁移到其它问题的解决之中。

  4.根据数学方法指导的目的和内容适度调整例题。通常,人们根据问题的条件(A)、解决的过程(B)及问题的结论(C)的情况把数学题划分为标准题和非标准题两大类:如果条件和结论都明确,学生也熟知解题过程(即A、B、C三要素全已知),这种题为标准题(记为ABC);A、B、C三要素中缺少一个或两个要素的题则为非标准题。如果分别用X、Y、Z表示对应于A、B、C的未知成分,则非标准题的题型(计6种)可表示为:ABZ,AYC,XBC,AYZ,XBZ,XYC。数学教材中的例题大多数是ABC型和ABZ型,有部分的AYC型和极少数的AYZ型。由于数学学法指导的一项重要任务是教学生会抽象、概括、归纳、演绎,会数学地思考和交流,会分析问题和解决问题,因而例题教学要特别注重教材中缺少的几种类型题的教学。其中最为重要的是“开放性题”(ABZ型和AYZ型例题中,Z不唯一)和“数学问题解决”中所指出的“数学应用题”(AYC型及AYZ型中所涉及的主题是数学以外的内容)。对于“开放性题”,由于它的结论不唯一,对培养学生数学思维有着至关重要的作用。对于“数学应用题”,则由于它的解决要用数学模型法,因而对培养学生运用分析问题和解决问题的方法是十分重要的。从数学学法指导的角度来说,适度调整例题很有必要。调整的策略有二:一是改,即将已有的题型变换为别的题型;二是增,即增加与知识点有关的“开放性题”和“数学应用题”。

  5.注重对例题的全方位反思。例题的作用是多方面的,除上文提到的几点外,例题教学还具有传授新知识,积累数学经验,完善数学认知结构

数学如何学习方法8

  1、指导“听“。

  数学教学中指导学生听课,首先应从培养学生的数学兴趣入手来集中学生的注意力,激活他原有的认知结构,专心听讲;其次,要指导学生会听,主要应注意听老师每一节课开始所讲的教学内容、重点和学习要求,注意听教师在讲解例题时关键部分的提示和处理,注意听教师对概念要点的剖析和概念体系的串连,注意听教师每节课的小结和对某些较难习题的提示。

  2.指导“读”。

  这里所讲的读是指阅读数学课本,主要是指导学生从各个方面去深入理解课本内容。①读标题。要求学生细细体会标题,能提纲挈领地抓住教材的主要内容;②读例题。在预习时应要求学生带着问题读例题,并初步领会解题方法;③读插图。教师应指导学生认真阅读课本上的插图,使学生更具体、更形象、更准确地理解文字的内容;④读算式。应要求学生准确地读出算式,弄清算式的意义;⑤读结语。要求学生对教材的结语逐字逐句地理解分析,以便准确地把握。

  3.指导“写”。

  数学教学中,对学生的学法指导,教师一是要指导学生学会做学习笔记;二是要指导学生将数学语言转化为数学符号,数学符号是数学语言的重要表现形式,它不仅简洁美观,而且便于记忆和使用;三是熟练掌握数学中常用的书写格式;四是会作图,作图包括根据条件作图,解题时将文字语言转化为直观图形,学习方法《小学五年级数学学习方法》。教师应着力于以下四点:一是从学生思维的“最近发展区”入手引导学生积极主动地思考;二是善于变式思考。变式是数学的一大特点,对于某一个问题,改变结论,结论将如何,改变结论,条件又将如何,在变中求活,在变中找方法;三是比较归纳,将数学知识系统化;四是教师在教学过程中,要善于暴露思维过程,留下一定的思维时间和空间,让学生“思在知识的转折点,思在问题的疑难处,思在矛盾的解决上,思在真理的探求中。”这样,就能使学生学会并掌握基本的数学思想方法,达到启思悟理,融会贯通。

  再次数学学法指导应指导学生在“说、看、练、记”上着力,掌握数学学习的方法。

  1.启发“说”

  首先启发学生说思路,说思维过程。课堂上要让每个学生都有说自己想法的机会,可以让学生根据某一问题,独自小声说,同桌之间练习说,四人小组互相说,等等。通过说,训练思维方法;其次,引导学生用简明、准确、规范的数学用语,完整地回答问题,在引导学生观察、分析、推理、判断后,启发学生用自己的话总结、概括出定义、法则或公式,使感性认识上升为理性认识。

  2.指导“看”。

  帮助学生选准观察点,进行有目的地观察,在看中辨析、思考,增强观察力,激发求知欲。

  3.指导“练”。

  通过指导练习,强化“做”的过程。在练习中,应突出练习的目的性、启发性、针对性、多样性,促使学生系统地探索新知识,有效地解决新问题,以达到会、熟、活。

  4.指导“记”

  要想学好数学,对老师所讲的概念、定理、公式、法则、重要结论、解题规律都必须记住。因此,在数学教学中要结合教学内容向学生传授记忆的方法。①理解记忆法。很多数学知识,光靠死记硬背不容易记住。如果让学生在理解的基础上记忆,就不容易忘记了;②分类记忆法。许多数学知识之间往往有着密切的内在联系,如果我们对它们进行恰当的分类,就可以形成一个知识网,记住了一个就记住了一类;③比较记忆法。对于一些容易混淆的概念,通过比较弄清它们的联系与区别,把两个概念组成一对进行记忆,也不容易忘记。另外,数学中所涉及到的数学学习方法还应是对大多数学生适用的“通法”,而不能是适用于少数个别学生的特殊方法。总之,学法指导应由“学会”向“会学”发展,从根本上让学生掌握学习方法,形成学习的能力,让学生终身受益。

  以上内容就是小学五年级数学学习的一些方法,下面我们来看一下天师附小高立莉老师是如何说的? 数学教学中,如何将教师的教转化为学生自主的学,实现学生由“学会”到“会学”的转变,变被动学习为主动学习,是当前数学教学改革中要解决的根本问题之一。

  1.学习与思考相结合在学习过程中,对课本的内容要认真研究,提出疑问,追本穷源。对每一个概念、公式、定理都要弄清其来龙去脉、前因后果,内在联系,以及蕴含于推导过程中的数学思想和方法。在解决问题时,要尽量采用不同的途径和方法,要克服那种死守书本、机械呆板、不知变通的学习方法。

  2.学用结合,勤于实践在学习过程中,要准确地掌握抽象概念的本质含义,了解从实际模型中抽象为理论的演变过程;对所学理论知识,要在更大范围内寻求它的具体实例,使之具体化,尽量将所学的理论知识和思维方法应用于实践。

  3.博观约取,由博返约课本是学生获得知识的主要来源,但不是唯一的来源。在学习过程中,除了认真研究课本外,还要阅读有关的课外资料,来扩大知识领域。同时在广泛阅读的基础上,进行认真研究,掌握其知识结构。

  4.既有模仿,又有创新模仿是数学学习中不可缺少的学习方法,但是决不能机械地模仿,应该在消化理解的基础上,开动脑筋,提出自己的见解和看法,而不拘泥于已有的框框,不囿于现成的模式。

  5.及时复习,增强记忆课堂上学习的内容,必须当天消化,要先复习,后做练习。复习工作必须经常进行,每一单元结束后,应将所学知识进行概括整理,使之系统化、深刻化。

  6.总结学习经验,评价学习效果学习中的总结和评价,是学习的继续和提高,它有利于知识体系的建立、解题规律的掌握、学习方法和态度的调整和评判能力的提高。在学习过程中,应注意总结听课、阅读和解题中的收获和体会。

  更深一步是涉及到具体内容的学习方法,如:怎样学习数学概念、数学公式、法则、数学定理、数学语言;怎样提高抽象概括能力、运算能力、逻辑思维能力、空间想象能力、分析问题和解决问题的能力;怎样解数学题;怎样克服学习中的差错;怎样获取学习的反馈信息;怎样进行解题过程的评价与总结;怎样准备考试。对这些问题的进一步的研究和探索,将更有利于学生对数学的学习。数学教学不仅要追求学生掌握知识的效果,更要着眼于学生获取知识过程的学习方法。在教学中,我通过对学生课前、课内、课后等学习方法的指导,有效培养学生的学习能力。

数学如何学习方法9

  一、基本知识

  1.定义:

  (1) .数列:按一定次序排序的一列数

  (2) 等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则这个数列叫做等差数列

  等比数列:一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,则这个数列叫做等比数列

  写作素材--美句仿写

  1.太阳无语,却放射出光辉;高山无语,却体现出巍峨。

  蓝天无语,却显露出高远;大地无语,却展示出广博。

  鲜花无语,却散发出芬芳;青春无语,却散发出活力。

  2.什么样的年龄最理想?鲜花说,开放的年龄千枝竞秀。

  什么样的青春最辉煌?太阳说,燃烧的青春一片光芒。

  什么样的心灵最明亮?月亮说,纯洁的心灵晶莹透亮。

  什么样的人生最美好?海燕说,奋斗的人生快乐无穷。

  3.我梦想:来到塞外的大漠,在夕阳的金黄中感受“长河落日圆”的壮丽。

  我梦想:来到海边的沙滩,从波涛的澎湃中感受“乱石穿空,惊涛拍岸,卷起千堆雪”的惊心动魄。

  我梦想:来到白雪皑皑的高山,在朝阳的艳丽中,领略“红装素裹”的分外妖娆。

  4.幸福是“临行密密缝,意恐迟迟归”的牵挂;

  幸福是“春种一粒粟,秋收千颗子”的收获;

  幸福是“采菊东篱下,悠然见南山”的闲适;

  幸福是“不畏浮云遮望眼,只缘身在最高层”的追求。

  5.书是我的精神食粮,它重塑了我的灵魂。

  简爱说过:“我们是平等的,我不是无感情的机器”,我懂得了作为女性的自尊。

  白朗宁说过:“拿走爱,世界将变成一座坟墓”,我懂得了为他人奉献爱心是多么重要。

  裴多菲说过:“生命诚可贵,爱情价更高。若为自由故,二者皆可抛”,我懂得了自由的价值。

  鲁迅说过:“不在沉默中爆发,就在沉默中灭亡”,我懂得了反抗精神的可贵。

  每读完一本书,我就完成了一次生命的感悟。

  6.幸福是贫困中相濡以沫的一块糕饼,

  幸福是患难中心心相印的一个眼神;

  幸福是父亲一次粗糙的抚摸,

  幸福是朋友一个温馨的字条;

  幸福是母亲一声温柔的叮咛,

  幸福是老师一次亲切的问候。

  7.爱心是冬日里的一片阳光,使饥寒交迫的人分外感到人间的温暖。

  爱心是沙漠中的一泓泉水,使濒临绝境的人重新看到生活的希望。

  爱心是夜空中的一轮明月,使孤苦无依的人即刻获得心灵的慰藉。

  爱心是春天里的一场细雨,使心灵枯萎的人特别感到情感的滋润。

  爱心是夏日里的一阵清风,使心急如焚的人感到无比的凉爽。

  爱心是黑夜里的一座灯塔,使迷失方向的航船找到停靠的港湾。

  8.假如生命是一株小草,我愿为春天献上一点嫩绿。

  假如生命是一棵大树,我愿为大地(夏日)撒下一片绿阴(阴凉);

  假如生命是一朵鲜花,我愿为世界奉上一缕馨香;

  假如生命是一枚果实,我愿为人间留下一丝甘甜。

  9.生命真是一个奇迹。

  一枝从污泥里长出的夏荷,竟开出雪一样洁白纯净的花儿;

  一粒细细黑黑的萤火虫,竟能在茫茫黑夜里发出星星般闪亮的光。

  一株微不足道的小草,竟开出像海洋一样湛蓝的花;

  一只毫不起眼的鸟儿,竟能在枝头唱出远胜小提琴的夜曲;

  一条柔软无骨的蚯蚓,居然能在坚实的土地里如鱼在海中似的自由遨游。

  10.大自然能给我们许多启示:

  滴水可以穿石,是在告诉我们做事应持之以恒;

  大地能载万物,是在告诉我们求学要广读博览;

  青松不惧风雪,是在告诉我们做人要坚毅刚强;

  成熟的稻穗低着头,那是在启示我们要谦虚;

  一群蚂蚁抬走骨头,那是在启示我们要齐心协力。

  11.人们都爱秋天,爱她的天高气爽,爱她的云淡日丽,爱她的香飘四野。

  人们都爱莲花,爱她的亭亭玉立,爱她的不蔓不枝,爱她的香远益清。

  人们都爱春天,爱她的风和日丽,爱她的花红柳绿,爱她的雨润万物。

  12.古往今来,大凡有所建树者。无不是临渊之后退而结网者。

  如果哥伦布只是“临渊羡鱼”,而不去辟风斩浪,扬帆远航,他又怎么会有发现新大陆的壮举?

  如果哥白尼只是“临渊羡鱼”,而不去苦心观测,创立新说,他又怎么会写出《天体运行》这部巨著?

  如果只是 “临渊羡鱼”,而不去开通丝绸之路,张骞怎会有通西域那鞍前的潇洒?

  如果只是“临渊羡鱼”,而不去开辟海上航线,鉴真又怎么会东海那水上风流?

数学如何学习方法10

  在学习新概念、新运算时,老师们总是通过已有知识自然而然过渡到新知识,水到渠成,亦即所谓“温故而知新”。因此说,数学是一门能自学的学科,自学成才最典型的例子就是数学家华罗庚。

  自学能力的培养是深化学习的必由之路

  我们在课堂上听老师讲解,不光是学习新知识,更重要的是潜移默化老师的那种数学思维习惯,逐渐地培养起自己对数学的一种悟性。我去佛山一中开家长会时,一中校长的一番话使我感触良多。他说:我是教物理的,学生物理学得好,不是我教出来的,而是他们自己悟出来的。当然,校长是谦虚的,但他说明了一个道理,学生不能被动地学习,而应主动地学习。一个班里几十个学生,同一个老师教,差异那么大,这就是学习主动性问题了。

  自学能力越强,悟性就越高。随着年龄的增长,同学们的依赖性应不断减弱,而自学能力则应不断增强。因此,要养成预习的习惯。在老师讲新课前,能不能运用自己所学过的已掌握的旧知识去预习新课,结合新课中的新规定去分析、理解新的学习内容。由于数学知识的无矛盾性,你所学过的数学知识永远都是有用的,都是正确的,数学的进一步学习只是加深拓广而已。因此,以前的数学学得扎实,就为以后的进取奠定了基础,就不难自学新课。同时,在预习新课时,碰到什么自己解决不了的问题,带着问题去听老师讲解新课,收获之大是不言而喻的。有些同学为什么听老师讲新课时总有一种似懂非懂的感觉,或者是“一听就懂、一做就错”,就是因为没有预习,没有带着问题学,没有将“要我学”真正变为“我要学”,力求把知识变为自己的。学来学去,知识还是别人的。

  初中温馨建议:检验数学学得好不好的标准就是会不会解题。听懂并记忆有关的定义、法则、公式、定理,只是学好数学的必要条件,能独立解题、解对题才是学好数学的标志。

数学如何学习方法11

  学数学并非为了单纯的考试,但考试成绩基本上还是可以反映出一个人数学水平的高低、数学素质的好坏的,要想在考试中取得好的成绩,以下几个方面的素质是必不可少的。

  如何对待考试

  功夫用在平时,考前不搞突击,考试中需要掌握的内容应该在平时就掌握好,考试前一天晚上不搞疲劳战,一定要休息好,这样,在考场上才能有充沛的精力,考试时还要放下包袱,驱除压力,把注意力集中在试卷上,认真分析,严密推理。

  应试需要技巧,试卷发下来后,应先大致看一下题量,大概分配一下时间,做题时若一道题用时太多还未找到思路,可暂时放过去,将会做的做完,回头再仔细考虑,一道题目做完之后不要急于做下一道,要再看一遍,因为这时脑中思路还比较清晰,检查起来比较容易,对于有若干问的解答题,在解答后面的问题时可以利用前面问题的结论,即使前面的问题没有解答出来,只要说清这个条件的出处(当然是题目要求证明的),也是可以运用的。

  考试时要冷静,有的同学一遇到不会的题目,脑袋立刻热了起来,结果,心里一着急,自己本来会的也做不出来了,这种心理状态是考不出好成绩的,我们在考试时不妨用一用自我安慰的心理:我不会的题目别人也不会,(俗称精神胜利法)或许可以使心情平静,从而发挥出自己的最好水平,当然,安慰归安慰,对于那些一下子做不出的题目,还是要努力思考,尽量能做出多少就做多少,一定的步骤也是有分的。

数学如何学习方法12

  新《课程标准》中指出:“数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。”课堂教学是学生在校期间学习科学文化知识的主阵地,也是对学生进行思想品德教育的主渠道。课堂学习是学生获得知识与技能的主要途径,因此,教学质量如何,主要取决于课堂教学质量的好坏。怎样才能较好地提高中学数学课堂教学质量?笔者根据多年的高中教学经验认为:必须激起学生的学习渴望,优化课堂结构,改进教学方法,重视数学机智教学。

  一、创设生活化情境,努力激发学生的学习兴趣

  新课程标准更多地强调学生用数学的眼光从生活中捕捉数学问题,主动地运用数学知识分析生活现象,自主地解决生活中的实际问题。在教学中我们要善于从学生的生活中抽象数学问题,从学生已有生活经验出发,设计学生感兴趣的生活素材以丰富多彩的形式展现给学生,使学生感受到数学与生活的联系——数学无处不在,生活中处处有数学。因此,要通过学生所了解、熟悉的社会实际问题(如环境问题、治理垃圾问题、旅游问题等等),为学生创设生动活泼的探究知识的情境,从而充分调动学生学习数学知识的积极性,激发学生的学习热情。心理学家认为,兴趣是人们力求认识某种事物或爱好某种活动的倾向,兴趣的功效之一就是能对正在进行的活动起到推动作用。学生的学习兴趣和自觉性是构成学习动机的重要成份,无疑,数学课堂教学应积极激发学生对学习的需要和兴趣。

  二、优化课堂结构,提高课堂时间的利用率

  数学课堂教学一般有复习、引入、传授、反馈、深化、小结、作业布置等过程,如何恰当地把各部分进行搭配与排列,设计合理的课堂教学层次,充分利用课堂时间,是上好一节数学课最重要的因素。

  设计课堂层次时,必须重视认知过程的完整性。由于人们认识事物的过程是一个渐进的过程,因此,要努力做到使教学层次的展开符合学生的认知规律,使教师的教与学生的学两方面的活动协调和谐。在组织课堂教学时,当学生初步获取教师所传授的知识后,应安排动脑动手独立思考与练习,教师及时捕捉反馈信息,并有意识地让它们产生“撞击”与“交流”。这样,同学们对某一概念的理解,对某一例题的推演,就会有一个由感性认识到理性认识并由认识到实践的过程,从而加深对知识的领会,能力也得到发展。

  设计课堂教学层次还必须注意紧扣教学目的与要求,充分熟悉教材,理解教材的重点、难点、基本要求与能力要求,从多方面围绕教学目的来组织课堂教学。当课堂容量较大时,要保证讲清重点、解决难点,其他的可以指明思路,找出关键,有的甚至可以点而不讲,但要指导学生自学完成;当课堂容量不大时,可安排学生分析评论,并进一些深化练习,进行比较、提高。这样,课堂结构紧凑,时间能得到充分利用,有利于实现课堂教学目标。

  三、创设自主学习与合作学习的情境

  要把数学学习设置到复杂的、有意义的问题情境中,通过让学生合作解决真正的问题,掌握解决问题的技能,并形成自主学习的能力。创设促进自主学习的问题情境,首先教师要精心设计问题,鼓励学生质疑,培养学生善于观察、认真分析、发现问题的能力。其次,要积极开展合作探讨,交流得出很多结论。当学生所得的结论不够全面时,可以给学生留下课后再思考、讨论的余地,这样就有利于激发学生探索的动机,培养他们自主动脑、力求创新的能力。如在讲解等比数列的通项公式时,采取实例设疑导入法。

  通过创设一个问题情境,就把复杂、抽象而又枯燥的问题简单化、具体化、通俗化,同时也趣味化,提高了学生学习数学的兴趣。合作学习为学生的全面发展特别是学生个体的社会化发展创造了适宜的环境和条件。教学实践中,我们注意到:在很多情况下,正是由于问题或困难的存在才使得合作学习显得更为必要,每节新课前教师应要求学生依据导学提纲预习本节内容,要求将学生在预习中遇到的问题记录在笔记本的主要区域,课前预习中不能解决的问题课堂中解决,课堂中未弄明白的问题课后解决,个人无法解决的问题小组解决,小组无法解决的问题请教老师, 实现真正的“兵教兵,兵练兵。兵强兵”,没有问题就寻找问题,鼓励引导学生在同桌、临桌之间相互探讨,让学生在课堂上有足够的时间体验问题的解决过程,更多地鼓励学生独立审题、合作探讨,把问题分析留给自己。这种做法的出发点就是避免学生对教师的过分依赖,当然他们归纳基本步骤和要点遇到困难时,教师应施以援手。

  四、构筑新型师生关系,加大感情投入

  学校最重要、最基本的人际关系是教学过程中教师和学生的关系,教师要善待每一名学生,做他们关怀体贴、博学多才的朋友,做他们心灵智慧的双重引路人。“亲其师而信其道”“厌其师而弃其道”,平等、尊重、倾听、感染、善待理解每一名学生,这是为师的底线和基本原则,而高素质、时代感强、具有创新精神的教师, 正逐渐成为学生欣赏崇拜的对象。现在,学生正从“学会”变为“会学”,教师正从“讲”师变为“导师”,课堂中新型的师生关系正逐步形成。总而言之,为了在课堂上达到师生互动的效果,我们在课外就应该花更多的时间和学生交流,放下架子和学生真正成为朋友。学术功底是根基,必须扎实牢靠并不断更新;教学技巧是手段,必须生动活泼、直观形象,师生互动是平台,必须师生双方融洽和谐、平等对话。

  总之,在新的课程标准下, 教学活动中要充分调动学生的积极性和主动性,高度重视学生在教学过程中的主体地位,改变原来教师为主体的状况。我们高中数学教学要改变教学方法与策略,优化教学理念,通过教学方式的改善,提高课堂效率,在有效的课堂时间内顺利完成教学目标,同时尽可能地让学生掌握更多的新知识,迅速提高他们的综合能力。

数学如何学习方法13

  一、培养良好的倾听习惯

  倾听这一行为,是让学习成为学习的最重要的行为。善于学习的学生通常都是善于倾听的儿童。要打造高效课堂首先要转变发言热闹的教室为用心的相互倾听的教室。只有在用心倾听的教室里,才能通过发言让各种思考和情感相互交流,否则交流是不可能发生的。因此就需要引导学生在发言之前,要仔细地倾听和欣赏每一个学生的声音。不是听学生发言的内容,而是听其发言中所包含着的心情、想法,与他们心心相印。

  倾听学生的发言,好比是在和学生玩棒球投球练习。把学生投过来的球准确地接住,投球的学生即便不对你说什么,他的心情也是很愉快的。作为教师要擅长接学生投过来的每一种球,特别是学生投得很差的球或投偏了的球,这也是作为教师其自身的专业素质和驾驭课堂能力的最好表现。

  反思自己的教学,课堂上不失激情,但太过关注过程的设计和结构的完整,对于那些投偏了的球,通常是一带而过或置之不理,按照早已制定好的教学目标按部就班、一丝不苟地前进,学生在我的带领下有条不紊地走进预想的领地,作为教师的我有时更甚至替学生思考,代学生言论,无形中,控制着教学,操纵着学生。学生的思想的渴求和学习的需要被我置之脑后,无形中的一支指挥棒束缚住了自己的教学,也把学生们困在了一个固定的圈子里画地为牢。失去了倾听的课堂永远是没有生命力的课堂。

  二、知识点故事化

  数学的学习首先要让学生自己喜欢,学生喜欢数学,才能心甘情愿地深入学习,数学学习就能事半功倍;学生不喜欢数学,教师下再多的苦功夫也等于浪费时间。对于小学生来说,故事是一件美好的事物,不论是在生活中还是学习中,小学生总是对各种类型的故事保持着莫大的热情和兴趣。同样,这种思路也可以转移到小学数学的教学实践中,将小学数学教学故事化不失为一种有效的教学方法。尤其是在小学低年级的数学教学中,小学生的年龄更小,耐性也就更差,教师就可以通过将数字、公式等故事化来引导学生逐渐喜欢数学,以提高数学学习的效率。

  三、充分的课前准备

  我们知道,没有预设的课堂是放任的,也是杂乱无章的,必然也是低效的。要创造高效的课堂,充分用好这四十分钟的每一秒,充分的课前准备就显得非常重要了。我们不能因为自己预设得不充分、目标掌握得不明确,对于课堂即时生成调控不力而浪费时间。新《标准》)针对学生不同年龄段的身心特点,对不同学段的教学目标作出了科学而具体的规定。这就要求我们要认真研读《标准》,在制定教学目标的时候,要严格按照《标准》的要求对照执行。首先,教学目标的定位要难易适中。就跟打篮球一样,篮筐太高了学生再怎么努力也投不进,自然就丧失了信心;而篮筐太低了,学生就会轻而易举地灌进篮筐,当然也就没有战胜困难的喜悦。其次,教者在制定教学目标的时候,要充分考虑到三维目标的统一。知识与技能、情感态度与价值观、过程与方法,这三个方面同等重要,缺一不可。再次,教学目标的制定也要兼顾好、中、差三个层次。根据因材施教原则,教学目标的制定也要因人而异,不同层次的学生要求达到的目标也各不相同,要避免一概而论。要保证课堂上80%以上的学生掌握80%以上的课堂教学内容。

  四、划分学习小组促进共同学习

  教师在进行课堂讲解时,是以大多数人对知识的理解吸收程度为标准调整课堂进度的,但不可避免的,会有学生快于教学进度或落后于教学进度,这就需要教师掌握每一位学生的学习进度和情况,从而进行科学的学习小组划分,将对知识理解吸收能力强和弱的学生合理搭配,促进互补学习,以提高班级的总水平和平均水平。

  五、科学教学评价

  教学评价是对教师整个教学设计、教学流程、教学效果的检测,目的是了解学生学习的状况,激发他们的学习热情,促进他们综合素质的全面发展。教学评价也是教师反思和教学改革的有力措施。有效、科学、公平、公正的教学评价,能够有效推动数学教学过程的开展。对学生客观的数学教学活动中的学习状况的评价,教师不仅要关注他们基础知识和基本技能的掌握程度,还要关注他们情感态度与价值观的形成与发展;既要关注学生数学知识学习的效果,又要关注他们参与教学活动的倾注程度、合作交流意识、自信心以及独立学习思考的良好行为习惯、数学思维的发展水平等方面的发展与变化。同时,对学生进行的评价,也必须特别关注他们的个体差异。

  俗话说:教无定法,贵在得法。课堂教学是一种创造性的劳动,创造是教学活动的生命力,只有培养学生良好的学习兴趣,增强学习的积极性和主动性,拓展学生的创造性思维,使他们所学到的知识能够较好地掌握和运用,这样的教学才是名副其实的高效课堂。

数学如何学习方法14

  一看到这个问题,同学们可能会说:学数学嘛,就是解题,题目做得越多,数学成绩就会越好。这种认识对不对呢?对,但不完全对。我们不妨留心一下自己周围的同学,思考这样一个问题:学校或班级里数学成绩优秀的同学,他们为什么成绩比自己好呢?如果自己的学习成绩就是班级或学校的尖子,那么也请总结一下:自己的学习成绩为什么总能领先于其他同学呢?是自己题目做得多吗?为什么有许多同学英语、语文成绩很不错,数学题目做得也不算少,但就是数学成绩不行呢?如果我们能进行这样的思考,那么很快就会发觉,这其中还有一个重要的因素在左右着我们的数学成绩的提高,那就是数学的学习方法。

  数学是中小学的重要工具学科,许多同学由于没有正确掌握数学学习方法,有的负担很重但不得要领;有的陷入题海,茫茫然不知所措。因此在学习数学的时候,我们必须学会如何掌握数学知识?掌握数学技能,发展数学能力,以及养成良好的数学心理品质,从掌握数学学习方法进而形成综合学习的能力。下面我们一起来探讨一下数学学习中要注意的一些问题:

  一、 扎实打好数学基础

  初中数学的基础知识是指数学教材中的概念、法则、公式、定理等必学内容以及其中蕴含的数学思想方法,还包括学习数学的经验和解题的经验,具体是以下几个方面:

  1.正确理解和掌握所学的基本概念、法则、公式、定理,把握他们之间的内在联系。

  例如:分式 无意义,x的取值范围应为 。有的同学填x=3,这是错误的。因为这里有个概念,即分式无意义的概念和一个运算绝对值的法则,只有充分理解和掌握这一个概念和一个法则,才知道|x|-9=0,解出x=3的正确答案。而且由于数学是一个连贯性很强的学科,正确掌握了绝对值以后会为我们初二学习二次根式、初三学习无理方程等打下良好的基础。因此,如果在学习某一内容或解一题时碰到了困难,那么很有可能就是因为有关的、以前的一些基本知识没有掌握好所造成的,因此要注意查缺补漏,找到问题及时解决,努力做到发现一个问题及时解决一个问题。只有基础扎实,我们成绩才会提高。

  2.培养数学运算能力,养成良好的学习习惯。

  每次考完试后,我们常会听到一些同学说:这次考试我又粗心了。而粗心最多的一种现象就是由于跳步骤产生的错误,并且屡错不改。这实际上是不良的学习习惯、求快心理造成的数学运算技能的不过关。要知道数学题的每一步都是符合一定的法则来完成的,如果在解题过程中忽视了某一步,那么就会发生这一步的法则没有正确的运用,进而产生错解。因此,运算能力的提高从根本上说是要弄懂算理,不仅知道怎样算,而且知道为什么这样算,从而把握运算的方向、途径和程序,一步一步仔细完成,形成准确快捷的运算能力。同学们要注意,如果你有上述类似跳步的现象应及时改正,不然长期下去,你会有一种恐惧心理,还没有开始解题就已经担心自己会做错,这样就会错得越多。有这样感受的同学必须迅速走出误区,学习的效率才有渐长的可能。

  3.要学会一些必要的检验手段,培养自己的求异思维。

  中国有句老话:百密一疏。疏漏是难免的,如果有多种检验手段,那么就可以做到万无一失了。那么多种检验手段如何掌握呢?这就需要我们在平时学习中有意识的训练自己的求异思维。如若数学问题要求解答的不是计算结果,而且寻求解决的方法或途径,其可运用的方法不是一种,解决的途径不止一条,而可有多种多条解答的方式,则不一定相同而是相异的答案。这种情况则属于求异思维的运用。例如:把正方形四等分,同学们在等分时多为这些方法:把它分成四个相等的小正方形或者是把它分成四个全等的等腰直角三角形,我们应该问自己还有吗?决不可以满足找出一种或两种,就认为大功告成,实际上它的方法还有好多。你能找到吗?这就是求异思维,平时有很多题目,虽然他只有一个答案,但是如果我们考虑用多种方法去解决他的话,对于我们创造性思维的发展是十分有利的。

  二、 逻辑思维能力的培养

  在数学中,一个数学概念的形成,一个数学命题的建立,一个题目的解答通常要经过对概念、命题或题目进行观察、比较、分析、综合、概括、抽象、归纳、演绎的过程,这些都需要在头脑里进行思维活动,并能正确的阐述自己的思想和观点,这就是逻辑思维能力,为了提高自己的逻辑思维能力,同学们应做到以下几点:

  1.严格遵守思维规律,养成严谨的思维习惯。

  严格遵守思维规律,推理严谨,言必有据,这是逻辑思维的核心。这首先要求我们要准确的使用概念、定义或定理、公式,能符合逻辑的判断。我们常会碰到这样的情况,当我们在证明两角相等的时候,有一种方法叫等边对等角。如果我们没注意到它的前题条件是在同一三角形中的话,那么就会产生错误,或者当解不出题时就乱做一通,出现偷换命题、假选论据、自相矛盾、循环论证等这样一系列的问题,为了防止这类现象的发生,我们必须在平时的学习中严格思维规律,严格按照正确的思维方法解题,对学习中出现的错误,要严格对待、决不马虎,培养自己严谨求实的思维习惯。

  2.重视知识的获取过程,培养抽象、概括、分析综合、推理证明能力。

  老师上课在讲解公式、定理、概念时,一般都揭示他们的形成过程,而这个过程却又是同学们最容易忽视的,认为:我只需听懂这个定理本身到时会用就行了,不需要知道他们是怎么得出的。这样的想法是不对的。因为老师在讲解知识的形成,发生的过程中,讲解的就是问题的一个思维过程,揭示的是问题解决的一种思想和方法,其中包含了抽象、概括分析、综合、推理等能力。如果我们不重视的话,实际就失去了一次从中吸取经验,锻炼和发展逻辑思维能力的机会。以上是数学学习的一些方法,供同学们参考。

  数学成绩的提高,数学方法的掌握都和同学们良好的学习习惯分不开的,因此在最后我们再一起探讨一下数学的学习习惯。

  良好的数学学习习惯包括:听讲、阅读、探究、作业。

  听讲。应抓住听课中的主要矛盾和问题,在听讲时尽可能与老师的讲解同步思考,必要时做好笔记。每堂课结束以后应深思一下进行归纳,做到一课一得。

  阅读。阅读时应仔细推敲,弄懂弄通每一个概念、定理和法则,对于例题还应与同类参考书联系起来一同学习,博采众长,增长知识,发展思维。

  探究。要学会思考,在问题解决之后再探求一些新的方法,学会从不同角度去思考问题,甚至改变条件或结论去发现新问题,经过一段学习,应当将自己的思路整理一下,以形成自己的思维规律。

  作业。要先复习后作业,先思考再动笔,做会一类题领会一大片,作业要认真、书写要规范,只有这样脚踏实地,一步一个脚印,才能学好数学。

【数学如何学习方法】相关文章:

数学如何学习方法12-27

如何掌握数学的学习方法06-27

考研数学如何掌握学习方法12-11

数学如何学习方法14篇11-24

教你如何掌握的数学学习方法06-28

如何实施数学学习方法的指导06-27

数学教学中如何培养学生的学习方法06-25

关于初二如何学好数学的学习方法06-27

如何进行数学学习方法指导06-28

如何正确掌握初三数学学习方法06-28