数学 百文网手机站

小学数学知识点整理

时间:2022-12-14 17:44:25 数学 我要投稿

小学数学知识点整理大全

  上学期间,是不是经常追着老师要知识点?知识点是指某个模块知识的重点、核心内容、关键部分。哪些知识点能够真正帮助到我们呢?以下是小编收集整理的小学数学知识点整理大全,欢迎阅读与收藏。

小学数学知识点整理大全

  小学数学知识点整理 篇1

  角:

  (1)角的静态定义:具有公共端点的两条不重合的射线组成的图形叫做角。

  这个公共端点叫做角的顶点,这两条射线叫做角的两条边。

  (2)角的动态定义:一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角。

  所旋转射线的端点叫做角的顶点,开始位置的射线叫做角的始边,终止位置的射线叫做角的终边

  角的符号:∠

  角的种类:角的大小与边的长短没有关系;角的大小决定于角的两条边张开的程度,张开的越大,角就越大,相反,张开的越小,角则越小。

  在动态定义中,取决于旋转的方向与角度。

  角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种。

  以度、分、秒为单位的角的度量制称为角度制。此外,还有密位制、弧度制等。

  (1)锐角:大于0°,小于90°的角叫做锐角。

  (2)直角:等于90°的角叫做直角。

  (3)钝角:大于90°而小于180°的角叫做钝角。

  乘法:

  乘法是指一个数或量,增加了多少倍。例如4乘5,就是4增加了5倍率,也可以说成5个4连加。

  乘法算式中各数的名称:

  “×”是乘号,乘号前面和后面的数叫做因数,“=”是等于号,等于号后面的数叫做积。

  例:10(因数)×(乘号)200(因数)=(等于号)2000(积)

  平行:

  在平面上两条直线、空间的两个平面或空间的一条直线与一平面之间没有任何公共点时,称它们平行。如图直线AB平行于直线CD,记作AB∥CD。平行线永不相交。

  垂直:

  两条直线、两个平面相交,或一条直线与一个平面相交,如果交角成直角,叫做互相垂直。

  平行四边形:

  在同一平面内有两组对边分别平行的四边形叫做平行四边形。

  梯形:

  梯形是指一组对边平行而另一组对边不平行的四边形。

  平行的两边叫做梯形的底边,其中长边叫下底,短边叫上底;也可以单纯的认为上面的一条叫上底,下面一条叫下底。不平行的两边叫腰;夹在两底之间的垂线段叫梯形的高。

  除法:

  除法法则:除数是几位,先看被除数的前几位,前几位不够除,多看一位,除到哪位,商就写在哪位上面,不够商一,0占位。余数要比除数小,如果商是小数,商的小数点要和被除数的小数点对齐;如果除数是小数,要化成除数是整数的除法再计算。

  小学数学知识点整理 篇2

  (一)分数乘法意义:

  1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

  “分数乘整数”指的是第二个因数必须是整数,不能是分数。

  2、一个数乘分数的意义就是求一个数的几分之几是多少。

  “一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)

  (二)分数乘法计算法则:

  1、分数乘整数的计算方法:用分子乘整数的积作分子,分母不变。能约分的可以先约分,再计算。

  (1)为了计算简便能约分的可先约分再计算。(整数和分母约分)

  (2)约分是用整数和下面的分母约掉公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)。

  2、分数乘分数的计算方法是:用分子相乘的积做分子,用分母相乘的积作分母。(分子乘分子,分母乘分母)

  (1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

  (2)分数化简的方法是:分子、分母同时除以它们的公因数。

  (3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。

  (4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。

  (三)积与因数的关系:

  一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b>1时,c>a。

  一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b<1时,c

  一个数(0除外)乘等于1的数,积等于这个数。a×b=c,当b=1时,c=a。

  在进行因数与积的大小比较时,要注意因数为0时的特殊情况。

  (四)分数混合运算

  1、分数混合运算的运算顺序与整数混合运算的运算顺序相同,先算乘法,后算加减法,有括号的先算括号里面的,再算括号外面的。

  2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

  乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)

  乘法分配律:a×(b±c)=a×b±a×c

  (五)分数乘法应用题——用分数乘法解决问题

  1、求一个数的几分之几是多少?(用乘法)

  已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘。

  2、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。

  3、求比一个数多(或少)几分之几的数是多少的解题方法

  (1)单位“1”的量+(-)单位“1”的量×这个数量比单位“1”的量多(或少)的几分之几=这个数量;

  (2)单位“1”的量×[1+这个数量比单位“1”的量多(或少)的几分之几]=这个数量。

  小学数学知识点整理 篇3

  1.根据方向和距离可以确定物体在平面图上的位置。

  2.在平面图上标出物体位置的方法:

  先用量角器确定方向,再以选定的单位长度为基准用直尺确定图上距离,最后找出物体的具体位置,并标上名称。

  3.描述路线图时,要先按行走路线确定每一个参照点,然后以每一个参照点建立方向标,描述到下一个目标所行走的方向和路程,即每一步都要说清是从哪儿走,向什么方向走了多远到哪儿。

  4.绘制路线图的方法:

  (1)确定方向标和单位长度。

  (2)确定起点的位置。

  (3)根据描述,从起点出发,找好方向和距离,一段一段地画。除第一段(以起点为参照点)外,其余每一段都要以前一段的终点为参照点。

  (4)以谁为参照点,就以谁为中心画出“十”字方向标,然后判断下一地点的方向和距离。

  小学数学知识点整理 篇4

  【数学公式】

  数量关系计算公式

  1、单价×数量=总价

  2、单产量×数量=总产量

  3、速度×时间=路程

  4、工效×时间=工作总量

  5、加数+加数=和

  6、一个加数=和—另一个加数

  7、被减数—减数=差

  8、减数=被减数—差

  9、被减数=减数+差

  10、因数×因数=积

  11、一个因数=积÷另一个因数

  12、被除数÷除数=商

  13、除数=被除数÷商

  14、被除数=商×除数

  15、有余数的除法:被除数=商×除数+余数

  一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5×6)

  1公里=1千米

  1千米=1000米

  1米=10分米

  1分米=10厘米

  1厘米=10毫米

  1平方米=100平方分米

  1平方分米=100平方厘米

  【珠算读写数】

  小小珠算真神奇,读数写数最容易。

  四位一级是关键,读写都从高位起。

  级前中0读一个,级末有0不读起。

  亿级万级仿个级,读完后面加单位。

  一级一级往下写,珠不靠梁0占位。

  【多位数的大小比较】

  多位数大小看位数,位数多的数就大。

  位数相同看高位,高位数大数就大。

  【分数大小的比较】

  分数大小的比较,分子、分母要记好。

  分母相同看分子,分子大的分数大。

  分子相同看分母,分母大的分数小。

  【列方程解应用题】

  列方程解应用题,抓住关键去分析。

  已知条件换成数,未知条件换字母。

  找齐相关代数式,连接起来读一读。

  【计量单位对口歌】

  小朋友,快排队,手拉手对单位。看谁说得快又对。

  人民币单位元、角、分,进率是10要牢记。

  1元得10角,1角得10分,1元等于100分。

  米、分米、厘米和毫米。

  单位是千米。

  1米=10分米,1分米=10厘米,1厘米=10毫米。

  米和千米也相临,进率1000是特例。

  吨与千克还有克,进率1000要牢记。

  形体单位更容易,相临100是面积,相临1000是体积。

  大单位,小单位,大小换算有规律。

  从大到小乘进率,小数点向右移;从小到大除以进率,小数点向左移。

  进率是10移一位,进率100移两位,进率1000移三位。以此类推。

  【分解质因数】

  分解质因数,方法是短除。

  除数是质数,商也是质数。

  表示的形式很简单:合数=质数×质数

  公约数、公倍数与互质数

  公约数,公倍数,关键要把“公”记住。

  公有的约数叫做公约数,公约数中的,就叫公约数。

  如果公约数只有1,它们就叫互质数。

  公有的倍数叫做公倍数。公倍数中最小的,就叫最小公倍数。

  求法有区别,千万别失误。

  短除只把除数乘,是求公约数。

  除数和商要连乘,是求最小公倍数。

  小学数学知识点整理 篇5

  1、混合运算乘加、乘减、除加、除减的混合运算先算乘除,后算加减

  2、带有小括号的混合运算有小括号时要先算小括号里面的。

  3、正确掌握“算式里既有加减法又有乘法,先算乘法,后算加减法”的运算顺序。

  4、能正确计算有关的两步式题。

  5、体会小括号在混合运算中的作用是改变运算顺序。

  6、掌握带小括号的混合运算的运算顺序:先算小括号里面的,后算小括号外面的。

  7、能正确计算带有小括号的运算。

  小学数学知识点整理 篇6

  整除的意义

  整数a除以整数b(b≠0),除得的商正好是整数而没有余数,我们就说a能被b整除(也可以说b能整除a)

  除尽的意义 甲数除以乙数,所得的商是整数或有限小数而余数也为0时,我们就说甲数能被乙数除尽,(或者说乙数能除尽甲数)这里的甲数、乙数可以是自然数,也可以是小数(乙数不能为0)。

  因数和倍数

  1、如果整数a乘整数b整除等于整数C,a和 b就是C的因数,C就是a和b的倍数。(a.b.c都为非0整数)

  2、一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。

  3、一个数的倍数的个数是无限的,其中最小的是它本身,它没有最大的倍数。

  奇数和偶数

  能被2整除的数叫偶数。例如:0、2、4、6、8、10……注:0也是偶数2、不能被2整除的数叫奇数。例如:1、3、5、7、9……

  整除的特征

  1、能被2整除的`数的特征:个位上是0、2、4、6、8。

  2、能被5整除的数的特征:个位上是0或5。

  3、能被3整除的数的特征:一个数的各个数位上的数之和能被3整除,这个数就能被3 整除。

  质数和合数

  1、一个数只有1和它本身两个约数,这个数叫做质数(素数)。

  2、一个数除了1和它本身外,还有别的约数,这个数叫做合数。

  3、1和0既不是质数,也不是合数。

  4、自然数按约数的个数可分为:质数、合数 .0和1

  5、自然数按能否被2整除分为:奇数、偶数

  分解质因数

  1、每个合数都可以写成几个质数相乘的形式,这几个质数叫做这个合数的质因数。例如:18=3×3×2,3和2叫做18的质因数。

  2、把一个合数用几个质因数相乘的形式表示出来,叫做分解质因数。通常用短除法来分解质因数。

  3、几个数公有的因数叫做这几个数的公因数。其中最大的一个叫这几个数的最大公因数。公因数只有1的两个数,叫做互质数。几个数公有的倍数叫做这几个数的公倍数。其中最大的一个叫这几个数的最大公倍数。

  4、特殊情况下几个数的最大公因数和最小公倍数。(1)如果几个数中,较大数是较小数的倍数,较小数是较大数的因数,则较大数是它们的最小公倍数,较小数是它们的最大公因数。(2)如果几个数两两互质,则它们的最大公因数是1,小公倍数是这几个数连乘的积。

  奇数和偶数的运算性质:

  1、相邻两个自然数之和是奇数,之积是偶数。

  2、奇数+奇数=偶数,奇数+偶数=奇数,偶数+偶数=偶数;奇数-奇数=偶数,

  奇数-偶数=奇数,偶数-奇数=奇数,偶数-偶数=偶数;奇数×奇数=奇数,奇数×偶数=偶数,偶数×偶数=偶数。

  小学数学知识点整理 篇7

  简单方程

  代数式:用运算符号(加减乘除)连接起来的字母或者数字。

  方程:含有未知数的等式叫方程。

  列方程:把两个或几个相等的代数式用等号连起来。

  列方程关键问题:用两个以上的不同代数式表示同一个数。

  等式性质:等式两边同时加上或减去一个数,等式不变;等式两边同时乘以或除以一个数(除0),等式不变。

  移项:把数或式子改变符号后从方程等号的一边移到另一边;

  移项规则:先移加减,后变乘除;先去大括号,再去中括号,最后去小括号。

  加去括号规则:在只有加减运算的算式里,如果括号前面是+号,则添、去括号,括号里面的运算符号都不变;如果括号前面是-号,添、去括号,括号里面的运算符号都要改变;括号里面的数前没有+或-的,都按有+处理。

  移项关键问题:运用等式的性质,移项规则,加、去括号规则。

  乘法分配率:a(b+c)=ab+ac

  解方程步骤:①去分母;②去括号;③移项;④合并同类项;⑤求解;

  方程组:几个二元一次方程组成的一组方程。

  解方程组的步骤:①消元;②按一元一次方程步骤。

  消元的方法:①加减消元;②代入消元。

  小学数学知识点整理 篇8

  1、每份数份数=总数总数每份数=份数总数份数=每份数

  2、1倍数倍数=几倍数几倍数1倍数=倍数几倍数倍数=1倍数

  3、速度时间=路程路程速度=时间路程时间=速度

  4、单价数量=总价总价单价=数量总价数量=单价

  5、工作效率工作时间=工作总量工作总量工作效率=工作时间工作总量工作时间=工作效率

  6、加数+加数=和和-一个加数=另一个加数

  7、被减数-减数=差被减数-差=减数差+减数=被减数

  8、因数因数=积积一个因数=另一个因数

  9、被除数除数=商被除数商=除数商除数=被除数

  小学数学知识点整理 篇9

  【时分秒】

  1、钟面上有3根针,它们是时针、分针、秒针,其中走得最快的是秒针,走得最慢的是时针。时针最短,秒针最长。

  2、钟面上有12个数字,12个大格,60个小格;每两个数之间是1个大格,也就是5个小格。

  3、时针走1大格是1小时;分针走1大格是5分钟,走1小格是1分钟;秒针走1大格是5秒钟,走1小格是1秒钟。

  4、分针走1小格,秒针正好走1圈,秒针走1圈是60秒,也就是1分钟。

  5、时针从一个数走到下一个数是1小时。分针从一个数走到下一个数是5分钟。秒针从一个数走到下一个数是5秒钟。

  6、公式(每两个相邻的时间单位之间的进率是60):

  1时=60分

  1分=60秒

  7、常用的时间单位:时、分、秒、年、月、日、世纪等。

  1世纪=100年

  1年=12个月

  【分数的初步认识】

  1、几分之一:把一个物体或一个图形平均分成几份,每一份就是它的几分之一。

  几分之几:把一个物体或一个图形平均分成几份,取其中的几份,就是这个物体或图形的几分之几。

  2、把一个整体平均分得的份数越多,它的每一份所表示的数就越小。

  3、比较大小的方法:

  ①分子相同,分母小的分数反而大,分母大的分数反而小。

  ②分母相同,分子大的分数就大,分子小的分数就小。

  4、分数加减法:

  ①同分母的分数加、减法的计算方法:同分母分数相加减,分母不变,分子相加、减。

  ②计算1减几分之几时,先把1写成与减数分母相同的分数,再计算。

  5、分数的意义:把一个整体平均分成若干份,表示几份就是这个整体的几分之几,所分的份数作分母,所取的份数作分子。

  6、求一个数是另一个数的几分之几是多少的计算方法:先用这个数除以分母(求出1份的数量是多少),再用商乘分子(求出其中几份是多少)。

  【万以内的加法和减法】

  1、读数和写数:

  ①一个数的末尾不管有一个0或几个0,这个0都不读。

  ②一个数的中间有一个0或连续两个0,都只读一个0。

  2、数的大小比较:

  ①位数不同的数比较大小,位数多的数大。

  ②位数相同的数比较大小,先比较这两个数位上的数,如果位上的数相同,就比较下一位,以此类推。

  3、求一个数的近似数:看数的后面一位,如果是0~4就用四舍法,如果是5~9就用五入法。

  4、被减数是三位数的连续退位减法的运算步骤:

  ①列竖式时相同数位一定要对齐;

  ②减法时,哪一位上的数不够减,从前一位退1,在本位上加上10再减;如果前一位是0,则再从前一位退1。

  【倍的认识】

  1、倍的意义:要知道两个数的关系,先确定谁是1倍数,然后把另一个数和它作比较,另一个数里有几个1倍数就是它的几倍。

  2、求一个数是另一个数的几倍的计算方法:一个数÷另一个数=倍数。

  3、求一个数的几倍是多少的计算方法:这个数×倍数=这个数的几倍。

  【长方形和正方形】

  1、有4条直的边和4个角封闭的图形叫做四边形。

  2、四边形的特点:有四条直的边,有四个角。

  3、长方形的特点:长方形有两条长,两条宽,四个角都是直角,对边相等。

  4、正方形的特点:有4个直角,4条边相等。

  5、长方形和正方形是特殊的平行四边形。

  6、平行四边形的特点:

  ①对边相等、对角相等;

  ②平行四边形容易变形。(三角形不容易变形)

  7、封闭图形一周的长度,就是它的周长。

  8、公式:

  长方形的周长=(长+宽)×2=长×2+宽×2

  长方形的长=周长÷2-宽

  长方形的宽=周长÷2-长

  正方形的周长=边长×4

  正方形的边长=周长÷4

  【多位数乘一位数】

  1、估算:先求出多位数的近似数,再进行计算,如497×7≈3500。

  2、①0和任何数相乘都得0;

  ②1和任何不是0的数相乘还得原来的数。

  3、三位数乘一位数,积有可能是三位数,也有可能是四位数。

  4、多位数乘一位数(进位)的笔算方法:

  相同数位对齐,从个位乘起,用一位数分别去乘多位数每一位上的数,哪一位上乘得的数积满几十,就向前一位进几,与哪一位相乘,积就写在哪一位下面。

  5、一个因数中间有0的乘法:

  ①0和任何数相乘都得0;

  ②因数中间有0,用一位数去乘多位数每一位数上的数,与中间的0相乘时,如果后面没有进上来的数,这一位上要用0来占位,如果有进上来的数必须加上。

  6、一个因数末尾有0的乘法的简便计算:笔算时,可以把一位数与多位数0前面的那个数字对齐,再看多位数的末尾有几个0,就在积的末尾添上几个0。

  7、关于“大约”的应用题:问题中出现“大约”“约”“估一估”“估算”“估计一下”,条件中无论有没有大约都是求近似数,用估算。

  8、减法的验算方法:

  ①用被减数减去差,看结果是不是等于减数;

  ②用差加减数,看结果是不是等于被减数。

  9、加法的验算方法:

  ①交换两个加数的位置再算一遍;

  ②用和减一个加数,看结果是不是等于另一个加数。

  小学数学知识点整理 篇10

  1.圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆。

  2.圆心:圆任意两条对称轴的交点为圆心。 注:圆心一般符号O表示

  3.直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。

  4.半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示。

  圆的直径和半径都有无数条。圆是轴对称图形,每条直径所在的直线是圆的对称轴。在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=d/2。

  圆的半径或直径决定圆的大小,圆心决定圆的位置。

  5.圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。

  6.圆周率:圆的周长与直径的比值叫做圆周率。

  圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。计算时,通常取它的近似值,π≈3.14。

  直径所对的圆周角是直角。90°的圆周角所对的弦是直径。

  7.圆的面积公式:圆所占平面的大小叫做圆的面积。πr^2;,用字母S表示。

  一条弧所对的圆周角是圆心角的二分之一。

  在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。

  在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。

  8.周长计算公式

  (1)已知直径:C=πd

  (2)已知半径:C=2πr

  (3)已知周长:D=c/π

  (4)圆周长的一半:1/2周长(曲线)

  (5)半圆的周长:1/2周长+直径(π÷2+1)

  9.面积计算公式:

  (1)已知半径:S=πr2

  (2)已知直径:S=π(d/2)2

  (3)已知周长:S=π[c÷(2π)]2

【小学数学知识点整理】相关文章:

小学数学知识点整理02-22

小学数学知识点整理(题型归纳整理)07-24

小学数学重点知识点整理04-09

小学数学知识点整理7篇03-08

高考数学知识点整理02-20

数学中考知识点归纳整理02-17

中考数学难题知识点整理02-17

高考数学重要知识点整理12-27

中考数学知识点整理07-18