高等数学微分知识点总结
在我们上学期间,大家都背过不少知识点,肯定对知识点非常熟悉吧!知识点是传递信息的基本单位,知识点对提高学习导航具有重要的作用。掌握知识点有助于大家更好的学习。以下是小编精心整理的高等数学微分知识点总结,仅供参考,欢迎大家阅读。
高等数学微分知识点总结1
A.Function函数
(1)函数的定义和性质(定义域值域、单调性、奇偶性和周期性等)
(2)幂函数(一次函数、二次函数,多项式函数和有理函数)
(3)指数和对数(指数和对数的公式运算以及函数性质)
(4)三角函数和反三角函数(运算公式和函数性质)
(5)复合函数,反函数
(6)参数函数,极坐标函数,分段函数
(7)函数图像平移和变换
B.Limit and Continuity极限和连续
(1)极限的定义和左右极限
(2)极限的运算法则和有理函数求极限
(3)两个重要的极限
(4)极限的应用-求渐近线
(5)连续的定义
(6)三类不连续点(移点、跳点和无穷点)
(7)最值定理、介值定理和零值定理
C.Derivative导数
(1)导数的定义、几何意义和单侧导数
(2)极限、连续和可导的关系
(3)导数的求导法则(共21个)
(4)复合函数求导
(5)高阶导数
(6)隐函数求导数和高阶导数
(7)反函数求导数
(8)参数函数求导数和极坐标求导数
D.Application of Derivative导数的应用
(1)微分中值定理(D-MVT)
(2)几何应用-切线和法线和相对变化率
(3)物理应用-求速度和加速度(一维和二维运动)
(4)求极值、最值,函数的增减性和凹凸性
(5)洛比达法则求极限
(6)微分和线性估计,四种估计求近似值
(7)欧拉法则求近似值
E.Indefinite Integral不定积分
(1)不定积分和导数的关系
(2)不定积分的公式(18个)
(3)U换元法求不定积分
(4)分部积分法求不定积分
(5)待定系数法求不定积分
F.Definite Integral 定积分
(1)Riemann Sum(左、右、中和梯形)和定积分的定义和几何意义
(2)牛顿-莱布尼茨公式和定积分的性质
(3)Accumulation function求导数
(4)反常函数求积分
H.Application of Integral定积分的.应用
(1)积分中值定理(I-MVT)
(2)定积分求面积、极坐标求面积
(3)定积分求体积,横截面体积
(4)求弧长
(5)定积分的物理应用
I.Differential Equation微分方程
(1)可分离变量的微分方程和逻辑斯特微分方程
(2)斜率场
J.Infinite Series无穷级数
(1)无穷级数的定义和数列的级数
(2)三个审敛法-比值、积分、比较审敛法
(3)四种级数-调和级数、几何级数、P级数和交错级数
(4)函数的级数-幂级数(收敛半径)、泰勒级数和麦克劳林级数
(5)级数的运算和拉格朗日余项、拉格朗日误差
注意:
(1)问答题主要考察知识点的综合运用,一般每道问答题都有3-4问,可能同时涵盖导数、积分或者微分方程的内容,解出的答案一般都是保留3位小数。
(2)微积分BC课程比AB课程考察内容更多,题目更难,AB的内容和难度大概相当于BC的1/2 。
高等数学微分知识点总结2
微积分定理:———
若函数f(x)在[a,b]上连续,且存在原函数F(x),则f(x)在[a,b]上可积,且
b(上限)∫a(下限)f(x)dx=F(b)—F(a)
这即为牛顿—莱布尼茨公式。
牛顿—莱布尼茨公式的意义就在于把不定积分与定积分联系了起来,也让定积分的运算有了一个完善、令人满意的方法。
微积分常用公式:———
熟练的运用积分公式,就要熟练运用导数,这是互逆的运算,下满提供给大家一些可能用到的三角公式。
微积分基本定理:———
(1)微积分基本定理揭示了导数与定积分之间的联系,同时它也提供了计算定积分的一种有效方法.
(2)根据定积分的定义求定积分往往比较困难,而利用微积分基本定理求定积分比较方便.
题型:
已知f(x)为二次函数,且f(—1)=2,f′(0)=0,f(x)dx=—2,
(1)求f(x)的解析式;
(2)求f(x)在[—1,1]上的最大值与最小值.
解:
(1)设f(x)=ax2+bx+c(a≠0),
则f′(x)=2ax+b
【高等数学微分知识点总结】相关文章:
高等数学下册知识点07-30
高等数学知识点梳理01-27
高等数学集合与函数知识点11-17
高考必考高等数学下册知识点11-08
考研数学高数微分方程应用解读12-06
高等数学的复习建议05-13
考研数学掌握微分学拿高分的技巧12-21
考研数学高数微分方程的应用解读12-05
解析考研高等数学备考重点08-30
考研数学高等数学备考建议05-10