七年级上册数学期末复习资料

时间:2024-01-11 09:56:14 祖锋 数学 我要投稿

七年级上册数学期末复习资料

  复习资料的选择和使用对于学习的效果至关重要。我们可以结合教科书、课堂笔记、习题集、参考书、辅导资料、网络资源和学习平台等多种资料,进行系统和全面的复习,下面是小编为大家整理的七年级上册数学期末复习资料,欢迎大家观看和收藏。

七年级上册数学期末复习资料

  七年级上册数学期末复习资料 1

  一、整式——单项式

  1、单项式的定义:

  由数或字母的积组成的式子叫做单项式。

  说明:单独的一个数或者单独的一个字母也是单项式.

  2、单项式的系数:

  单项式中的数字因数叫这个单项式的系数ab2

  说明:

  ⑴单项式的系数可以是整数,也可能是分数或小数。如3x的系数是3的32系数是1;4.8a的系数是4.8;

  ⑵单项式的系数有正有负,确定一个单项式的系数,要注意包含在它前面的符号,如4xy2的系数是4;2x2y的系数是2;

  ⑶对于只含有字母因数的单项式,其系数是1或-1,不能认为是0,如?ab的系数是-1;ab的系数是1;

  ⑷表示圆周率的π,在数学中是一个固定的常数,当它出现在单项式中时,应将其作为系数的一部分,而不能当成字母。如2πxy的'系数就是2

  3、单项式的次数:

  一个单项式中,所有字母的指数的和叫做这个单项式的次数.

  说明:⑴计算单项式的次数时,应注意是所有字母的指数和,不要漏掉字母指数是1的情况。如单项式2xyz的次数是字母z,y,x的指数和,即4+3+1=8,

  而不是7次,应注意字母z的指数是1而不是0;

  ⑵单项式的指数只和字母的指数有关,与系数的指数无关。如单项式422224x2y3z4的次数是2+3+4=9而不是13次;

  ⑶单项式是一个单独字母时,它的指数是1,如单项式m的指数是1,单项式是单独的一个常数时,一般不讨论它的次数;

  4、在含有字母的式子中如果出现乘号,通常将乘号写作“? ”或者省略不写。 例如:100?t可以写成100?t或100t

  5、在书写单项式时,数字因数写在字母因数的前面,数字因数是带分数时转化成假分数.

  七年级上册数学期末复习资料 2

  有理数

  ★有理数的分类

  1、如果按定义分,有理数可以分为整数(正整数;负整数;0)和分数(正分数,负分数)。

  如果按正、负分,有理数可以分为正有理数(正整数;正分数)、0、负有理数(负整数;负分数)。

  2、所有的有理数都可以用分数表示,π不是有理数。

  数轴

  ★数轴的定义:规定了原点、正方向、单位长度的直线叫做数轴。

  相反数

  1、只有符号不同的两个数叫做互为相反数。(0的相反数是0)

  绝对值

  1、数轴上一点a到原点的距离表示a的绝对值。

  ★绝对值的性质:非负性。

  1、正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

  有理数的大小

  1、正数大于0,负数小于0,正数大于负数。

  2、两个负数,绝对值大的反而小。

  有理数的加法

  1、同号两数相加,取相同的符号,并把绝对值相加。

  2、绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0。一个数同0相加,仍得这个数。

  3、在有理数的加法中,

  加法交换率:两个数相加,交换加数的位置,和不变。

  加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

  有理数的减法

  减去一个数,等于加这个数的相反数。

  ★有理数的乘法

  两数相乘,同号得正,异号得负,并把绝对值相乘。任何数与0相乘后得0。

  倒数:乘积是1的两个数互为倒数。

  乘法交换律:乘法交换律两个数相乘,交换因数的位置,积不变。

  乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,积不变。

  乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

  ★有理数的除法

  除以某个不为0数等于乘与这个数的.倒数两数相除同号为正,异号为负,并把绝对值相除0除以任何一个不等于0的数,都等于0。

  有理数的混合运算

  1、运算顺序:先算乘方,再算乘除,最后算加减。如果是同级运算,则按从左到右的运算顺序计算。如果有括号,先算小括号,再算中括号,最后算大括号。

  有理数的乘方

  ★求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在做a的n次方时的结果时,也可以读作a的n次幂。

  ★负数的奇次幂是负数,负数的偶次幂是正数。

  正数的任何次幂都是正数,0的任何正整数次幂都是0科学计数法

  1、科学记数法将一个数字表示成a×10的n次幂的形式,其中a是整数数位只有一位的数,n是正整数,这种中,a叫底数,叫做指数。当看记数方法叫科学记数法。

  近似数

  1、一个数与准确数相近(比准确数略多或者略少些),这一个数称之为近似数。

  ★有效数字:在一个数中,从左边第一个不是0的数字起,到精确到位数止,所有的数字,都叫这个数字的有效数字。

  七年级上册数学期末复习资料 3

  整式的加减

  单项式

  1、单项式的定义:数或字母的乘积叫做单项式,单独做一个数或字母也是单项式。

  2、系数:单项式中的数字因数

  3、次数:单项式中所有的字母的指数和

  ★多项式

  1、几个单项式的和叫做多项式。

  2、每个单项式叫做多项式的项。

  3、不含字母的项叫做常数项。

  4、多项式里次数项的.次数,叫做这个多项式的次数。多项式里次数的那一项叫做多项式的次项。

  ★多项式中没有次数。

  整式

  1、单项式和多项式统称为整式。

  整式的加减

  1、所含字母相同,并且相同字母的指数也相同的项叫做同类项,几个常数项也是同类项。

  2、把多项式中的同类项合并成一项,叫做合并同类项。

  3、合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。合并同类项——去括号

  ★如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

  七年级上册数学期末复习资料 4

  第一章 丰富的图形世界

  1、 生活中常见的几何体:圆柱、 正方体、长方体、 球

  2、 常见几何体的分类:球体、柱体(圆柱、棱柱、正方体、长方体)、锥体(圆锥、棱锥)

  3、 平面图形折成立体图形应注意:侧面的个数与底面图形的边数相等。

  4、 圆柱的侧面展开图是一个长方形;表面全部展开是两个 和一个 ;圆锥的表面全部展开图是一个 和一个 ;正方体表面展开图是一个 和两个小正方形,;长方形的展开图是一个大 和两个 。

  5、 特殊立体图形的截面图形:

  (1)长方体、正方形的截面是:三角形、四边形(长方形、正方形、梯形、平行四边形)、五边形。

  (2)圆柱的.截面是: 圆

  (3)圆锥的截面是:三角形

  (4)球的截面是:圆

  6、我们经常把从 看到的图形叫做主视图,从 看到的图叫做左视图,从 看到的图叫做俯视图。

  7、常见立体图形的俯视图

  几何体长方体正方体圆锥圆柱球

  主视图 正方形 长方形

  俯视图长方形 圆 圆

  左视图长方形正方形

  8、点动成 ,线动成 ,面动成 。

  七年级上册数学期末复习资料 5

  数据的收集与整理

  1、普查与抽样调查

  为了特定目的对全部考察对象进行的全面调查,叫做普查。其中被考察对象的全体叫做总体,组成总体的每一个被考察对象称为个体。

  从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体抽取的一部分个体叫做总体的一个样本。

  2、扇形统计图

  扇形统计图:利用圆与扇形来表示总体与部分的关系,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。(各个扇形所占的百分比之和为1)

  圆心角度数=360°×该项所占的百分比。(各个部分的圆心角度数之和为360°)

  3、频数直方图

  频数直方图是一种特殊的'条形统计图,它将统计对象的数据进行了分组画在横轴上,纵轴表示各组数据的频数。

  4、各种统计图的特点

  条形统计图:能清楚地表示出每个项目的具体数目。

  折线统计图:能清楚地反映事物的变化情况。

  扇形统计图:能清楚地表示出各部分在总体中所占的百分比。

  七年级上册数学期末复习资料 6

  1、有理数:

  (1)凡能写成 形式的数,都是有理数。正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;

  (2)有理数的分类: ① ②

  2、数轴:

  数轴是规定了原点、正方向、单位长度的一条直线。

  3、相反数:

  (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

  (2)相反数的和为0 ? a+b=0 ? a、b互为相反数。

  4、绝对值:

  (1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

  (2) 绝对值可表示为: 或 ;绝对值的问题经常分类讨论;

  5、有理数比大小:

  (1)正数的绝对值越大,这个数越大;

  (2)正数永远比0大,负数永远比0小;

  (3)正数大于一切负数;

  (4)两个负数比大小,绝对值大的反而小;

  (5)数轴上的两个数,右边的数总比左边的数大;

  (6)大数-小数 > 0,小数-大数 < 0.

  6、互为倒数:

  乘积为1的两个数互为倒数;注意:0没有倒数;若 a≠0,那么 的倒数是 ;若ab=1? a、b互为倒数;若ab=-1? a、b互为负倒数。

  7、 有理数加法法则:

  (1)同号两数相加,取相同的符号,并把绝对值相加;

  (2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;

  (3)一个数与0相加,仍得这个数。

  8、有理数加法的运算律:

  (1)加法的交换律:a+b=b+a ;

  (2)加法的结合律:(a+b)+c=a+(b+c)。

  9、有理数减法法则:

  减去一个数,等于加上这个数的相反数;即a-b=a+(-b)。

  10 有理数乘法法则:

  (1)两数相乘,同号为正,异号为负,并把绝对值相乘;

  (2)任何数同零相乘都得零;

  (3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定。

  11 有理数乘法的运算律:

  (1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);

  (3)乘法的分配律:a(b+c)=ab+ac 。

  12、有理数除法法则:

  除以一个数等于乘以这个数的倒数;注意:零不能做除数 。

  13、有理数乘方的法则:

  (1)正数的`任何次幂都是正数;

  (2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n 。

  14、乘方的定义:

  (1)求相同因式积的运算,叫做乘方;

  (2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;

  15、科学记数法:

  把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法。

  16、近似数的精确位:

  一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位。

  17、有效数字:

  从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字。

  18、混合运算法则:

  先乘方,后乘除,最后加减。

  七年级上册数学期末复习资料 7

  ①方程是含有未知数的等式。

  ②方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的整式方程叫做一元一次方程。

  ③注意判断一个方程是否是一元一次方程要抓住三点:

  1)未知数所在的式子是整式(方程是整式方程);

  2)化简后方程中只含有一个未知数;(系数中含字母时不能为零)

  3)经整理后方程中未知数的次数是1.

  ④解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。方程的解代入满足,方程成立。

  ⑤等式的性质:

  1)等式两边同时加上或减去同一个数或同一个式子(整式或分式),等式不变(结果仍相等)。a=b得:a+(-)c=b+(-)c

  2)等式两边同时乘以或除以同一个不为零的数,等式不变。

  a=b得:a×c=b×c或a÷c=b÷c(c≠0)

  注意:运用性质时,一定要注意等号两边都要同时+、-、×、÷;运用性质2时,一定要注意0这个数。

  ⑥解一元一次方程一般步骤:

  去分母(方程两边同乘各分母的最小公倍数)→去括号→移项→合并同类项→系数化1;

  以上是解一元一次方程五个基本步骤,在实际解方程的过程中,五个步骤不一定完全用上,或有些步骤还需要重复使用。因此,解方程时,

  要根据方程的特点,灵活选择方法。在解方程时还要注意以下几点:

  ⑴去分母:在方程两边都乘以各分母的最小公倍数,不要漏乘不含分母的项;分子是一个整体,去分母后应加上括号;

  注意:去分母(等式的基本性质)与分母化整(分数的基本性质)是两个概念,不能混淆;

  ⑵去括号:遵从先去小括号,再去中括号,最后去大括号不要漏乘括号的项;不要弄错符号(连着符号相乘);

  ⑶移项:把含有未知数的项移到方程的一边,其他项都移到方程的另一边(以=为界限),移项要变号;

  ⑷合并同类项:不要丢项,解方程是同解变形,每一步都是一个方程,不能像计算或化简题那样写能连等的形式。

  ⑸系数化1:(两边同除以未知数的系数)把方程化成ax=b(a≠0)的形式,字母及其指数不变系数化成1在方程两边都除以未知数的系数a,得到方程的解不要分子、分母搞颠倒(一步一步来)

  3.2一次方程的应用:

  (一)、概念梳理

  ⑴列一元一次方程解决实际问题的一般步骤是:审题,特别注意关键的字和词的意义,弄清相关数量关系,注意单位统一,注意设未知数;

  ①解:设出未知数(注意单位),

  ②根据相等关系列出方程,

  ③解这个方程,

  ④答(包括单位名称,检验)。

  ⑵一些固定模型中的等量关系:

  ①数字问题:表示一个三位数,则有=100a+10b+c(数位上的数字×位数)

  ②行程问题:基本公式:路程=时间×速度

  甲乙同时相向行走相遇时:甲走的路程+乙走的路程=总路程

  甲走的时间=乙走的时间;

  甲乙同时同向行走追及时:甲走的路程-乙走的路程=甲乙之间距离

  ③工程问题(整体1):基本公式:工作量=工作时间×工作效率

  各部分工作量之和=总工作量;

  ④储蓄问题:本息和=本金+利息;利息=本金×利率×时间

  ⑤商品销售问题:商品利润=售价-进价(成本价)

  商品利润率=(售价-进价)/进价

  ⑥等积变形问题:面积或体积不变

  ⑦和、差、倍、分问题:多、少、几倍、几分之几

  ⑧按比例分配问题:一般设每份为x如:2:3:4为2x、3x、4x

  ⑨资源调配问题:资源、人员的调配(有时要间接设未知数)

  (二)、思想方法(本单元常用到的数学思想方法小结)

  ⑴模型思想:通过对实际问题中的数量关系的分析,抽象成数学模型,建立一元一次方程的思想。

  ⑵方程思想:用方程解决实际问题的思想(如:按比例分配、线段的长、角的大小等)就是方程思想。

  ⑶转化(归纳)思想:解一元一次方程的过程,实质上就是利用去分母、去括号、移项、合并同类项、未知数的系数化为1等各种同解变形,不断地用新的更简单的方程来代替原来的`方程,最后逐步把方程转化为x=a的形式。体现了化“未知”为“已知”的化归思想。

  ⑷数形结合思想:如:数轴问题、在列方程解决行程问题时,借助于线段示意图和图表等来分析数量关系,使问题中的数量关系很直观地展示出来,体现了数形结合的优越性。

  ⑸分类(整体)思想:如:绝对值、偶次方、点在线段上(延长线上、线段外)、角在角内(外)在解含字母系数的方程和含绝对值符号的方程过程中往往需要分类讨论,在解有关方案设计的实际问题的过程中往往也要注意分类思想在过程中的运用。

  3.3二元一次方程组及其解法

  ①由两个一次方程组成的,并含有两个未知数的方程组叫做二元一次方程组

  ②消元法解方程组:

  1、二元一次方程组的解:使二元一次方程组中每个方程都成立的两个未知数的值,叫做二元一次方程组的解(注意格式)

  2、代入消元法:从一个方程中求出某一个未知数的表达式,再把它“代入”另一个方程,进行求解,这种方法叫做代入消元法,简称代入法。

  3、加减消元法:把两个方程的两边分别相加或相减(左边-左边=右边-右边)消去一个未知数的方法,叫做加减消元法,简称加减法(一定要使某个未知数的系数相等或相反)

  3.4二元一次方程组的应用

  两个未知数,两个相等关系(见一次方程的应用)

  七年级上册数学期末复习资料 8

  第二章 整式的加减

  2.1 整式

  单项式:由数字和字母乘积组成的式子。系数,单项式的次数。 单项式指的是数或字母的积的代数式。单独一个数或一个字母也是单项式。因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,即分母中不含有字母,若式子中含有加、减运算关系,其也不是单项式。

  单项式的系数:是指单项式中的数字因数;

  单项数的次数:是指单项式中所有字母的指数的和。

  多项式:几个单项式的和。判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式。每个单项式称项,常数项,多项式的次数就是多项式中次数的次数。多项式的次数是指多项式里次数项的次数,这里 是次数项,其次数是6;多项式的项是指在多项式中,每一个单项式。特别注意多项式的项包括它前面的性质符号。

  它们都是用字母表示数或列式表示数量关系。注意单项式和多项式的每一项都包括它前面的符号。

  单项式和多项式统称为整式。

  2.2整式的加减

  同类项:所含字母相同,并且相同字母的指数也相同的项。与字母前面的系数(≠0)无关。

  同类项必须同时满足两个条件:(1)所含字母相同;(2)相同字母的次数相同,二者缺一不可。同类项与系数大小、字母的排列顺序无关

  合并同类项:把多项式中的同类项合并成一项。可以运用交换律,结合律和分配律。

  合并同类项法则:

  合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变;

  字母的升降幂排列:按某个字母的指数从小(大)到大(小)的顺序排列。

  如果括号外的因数是正(负)数,去括号后原括号内各项的`符号与原来的符号相同(反)。

  整式加减的一般步骤:

  1、如果遇到括号按去括号法则先去括号。 2、结合同类项。 3、合并同类项

  2.3整式的乘法法则 :

  单项式与单项式相乘,把它们的系数、同底数幂分别相乘,其余字母连同它的指数不变,作为积的因式 ;

  单项式和多项式相乘,就是用单项式去乘多项式的每项,再把所得的积相加。

  多项式和多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

  2.4整式的除法法则

  单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。

  多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。

  七年级上册数学期末复习资料 9

  角的种类:角的大小与边的长短没有关系;角的大小决定于角的两条边张开的程度,张开的.越大,角就越大,相反,张开的越小,角则越小。在动态定义中,取决于旋转的方向与角度。角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种。以度、分、秒为单位的角的度量制称为角度制。此外,还有密位制、弧度制等。

  锐角:大于0°,小于90°的角叫做锐角。

  直角:等于90°的角叫做直角。

  钝角:大于90°而小于180°的角叫做钝角。

  平角:等于180°的角叫做平角。

  优角:大于180°小于360°叫优角。

  劣角:大于0°小于180°叫做劣角,锐角、直角、钝角都是劣角。

  周角:等于360°的角叫做周角。

  负角:按照顺时针方向旋转而成的角叫做负角。

  正角:逆时针旋转的角为正角。

  0角:等于零度的角。

  余角和补角:两角之和为90°则两角互为余角,两角之和为180°则两角互为补角。等角的余角相等,等角的补角相等。

  对顶角:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。两条直线相交,构成两对对顶角。互为对顶角的两个角相等。

  七年级上册数学期末复习资料 10

  1、基本运算:

  实数可实现的基本运算有加、减、乘、除、平方等,对非负数还可以进行开方运算。

  实数加、减、乘、除(除数不为零)、平方后结果还是实数。

  任何实数都可以开奇次方,结果仍是实数,只有非负实数,才能开偶次方其结果还是实数。

  有理数范围内的运算律、运算法则在实数范围内仍适用:

  交换律:a+b=b+a , ab=ba

  结合律:(a+b)+c=a+(b+c)

  分配律:a(b+c)=ab+ac

  2、实数的相反数:

  实数的相反数的意义和有理数的相反数的意义相同。

  实数只有符号不同的两个数,它们的和为零,我们就说其中一个是另一个的相反数。

  实数a的相反数是-a,a和-a在数轴上到原点0的距离相等。

  3、实数的绝对值:

  实数的绝对值的意义和有理数的绝对值的意义相同。一个正实数的绝对值等于它本身;

  一个负实数的绝对值等于它的`相反数,0的绝对值是0,实数a的绝对值是 :|a|

  ①a为正数时,|a|=a(不变)

  ②a为0时, |a|=0

  ③a为负数时,|a|= a(为a的相反数)

  (任何数的绝对值都大于或等于0,因为距离没有负的。)

  4、实数的倒数:

  实数的倒数与有理数的倒数一样,如果a表示一个非零的实数,那么实数a的倒数是:1/a (a≠0)

【七年级上册数学期末复习资料】相关文章:

七年级上册数学期末复习资料03-02

四年级上册数学的期末复习资料01-21

关于七年级上册生物期末知识点的复习资料01-19

七年级英语上册复习资料01-20

七年级上册的历史复习资料01-26

七年级上册的地理复习资料10-26

人教版六年级上册数学期末复习资料12-19

七年级上册生物期中复习资料01-22

六年级上册语文期末复习资料01-27