数学复习指导
数学复习指导1
一、适当多做题,养成良好的解题习惯。要想学好初一数学,做一定量的题目是必需的,刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些初一数学辅导书上的课外习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的初一数学解题规律,熟悉掌握各种题型的解题思路。对于一些易错题,可备有错题集,写出自己错误的解题思路和正确的解题过程,两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中会充分暴露,故在平时养成良好的解题习惯是非常重要的。
二、细心地挖掘概念和公式很多初一同学对数学概念和公式不够重视,这类问题反映在三个方面:一是,对初一数学概念的理解只是停留在文字表面,对概念的特殊情况重视不够。二是,对初一数学概念和公式一味的死记硬背,缺乏与实际题目的联系。这样就不能很好的将学到的知识点与解题联系起来。三是,一部分同学不重视对数学公式的记忆。记忆是理解的基础。如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?
三、总结相似的类型题目当你会总结题目,对所做的题目会分类,知道自己能够解决哪些题型,掌握了哪些常见的解题方法,还有哪些类型题不会做时,你才真正的掌握了数学这门学科的窍门,才能真正的做到“任它千变万化,我自岿然不动”。这个问题如果解决不好,在进入初二、初三以后,同学们会发现,有一部分同学天天做题,可成绩不升反降。其原因就是,他们天天都在做重复的工作,很多相似的题目反复做,需要解决的问题却不能专心攻克。久而久之,不会的题目还是不会,会做的题目也因为缺乏对数学的整体把握,弄的一团糟。
四、收集自己的典型错误和不会的题目同学们最难面对的,就是自己的错误和困难。但这恰恰又是最需要解决的问题。同学们做题目,有两个重要的目的:一是,将所学的知识点和技巧,在实际的题目中演练。另外一个就是,找出自己的不足,然后弥补它。这个不足,也包括两个方面,容易犯的错误和完全不会的内容。但现实情况是,同学们只追求做题的数量,草草的应付作业了事,而不追求解决出现的问题,更谈不上收集错误。
数学复习指导2
对中考数学的备考复习,12日,长春市教育局教育教学研究室的李春花老师为考生提出了指导意见和建议。
复习数学切莫盲目拓展
20xx年长春市中考数学学科的试题命制,将严格遵循《数学课程标准》及现行华师版数学教材,严格按照《20xx年长春市初中课程学习指导手册·数学》所确定的内容范围及知识难度。
“因此复习阶段应充分提高复习的实效性,切不可盲目拓展,忽略基础,而应重点知识重点复习,把握范围,以点带面,注重思想方法的归纳与总结。”李春花说。
李春花提醒考生,在平时模拟训练过程中要避免一些“繁、难、偏、怪”题目的出现,这样的训练不但没有发挥其激励作用,相反在一定程度上打消学生复习的积极性,学生的复习负担再度加重,学生也因此忽略了基础,忽略了重点,走向了比较偏的方向。
注重归纳思想方法
20xx年长春市的中考命题将继续执行7:2:1的难度,进行初中毕业生的学业评价工作。因此,基础知识和基本技能的考核仍将占有较大的比例,必须认认真真地夯实基础。李春华建议考生,重视基本概念,基本定理,使之系统化,结构化,形成知识网络。
“数学思想方法是数学发生、发展的根本,是探索研究数学所依赖的基础,在复习过程中,要注重归纳思想方法,跳出问题看问题,才能达到解题能力和认识水平的飞跃。”李春花说。
随后,李春花举例说,如要注意归纳求线段长的方法,借助相似三角形,借助勾股定理等方法,注意归纳求函数最值的方法。
答题时不要纠结难题
在答题方法与技巧上,李春花说,考生在考试的过程中,由于知识点不牢、紧张等各因素,难免会出现不会的试题,这时如何把握考试时间,及时调整答题的方法非常重要,不要因为一题“卡”住而使得很多会做的题也失分。
同时,李春花提醒,考生在答题时切忌答串位置;另外每个试题留出的空间足够,但很多考生将试卷当成“草纸”,在答题区域内反复勾抹,使试题看起来相当“乱”,最后,正确的答案无处可写,这样的失分更不值得。所以考生应该先理清思路,再做答。
数学复习指导3
为了能更好更全面的做好复习和迎考准备,确保将所涉及的中考考点全面复习到位,让孩子们充满信心的步入考场,现特准备了中考数学复习指导的内容。
常常有很多家长说,“孩子对于数学考试非常头疼,选择题和填空题都还勉强能做完,可对于大题就有点束手无策,特别是最后的压轴题,压根儿没碰过!”
其实压轴题难度也是有约定的:历年中考,压轴题一般都由3个小题组成。
第(1)题容易上手,得分率在0.8以上;
第(2)题稍难,一般还是属于常规题型,得分率在0.6与0.7之间,
第(3)题较难,能力要求较高,但得分率也大多在0.3与0.4之间。
而从近几年的中考压轴题来看,大多不偏不怪,得分率稳定在0.5与0.6之间,即考生的平均得分在7分或8分。由此可见,压轴题也并不可怕。今天乐思学教育就给大家分析一下中考压轴题,希望对数学有困难的同学有帮助。
1线段、角的计算与证明
中考的解答题一般是分两到三部分的。第一部分基本上都是一些简单题或者中档题,目的在于考察基础。第二部分往往就是开始拉分的中难题了。对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。
2一元二次方程与函数
在这一类问题当中,尤以涉及的动态几何问题最为艰难。几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察。但是在后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合。
3多种函数交叉综合问题
初中数学所涉及的函数就一次函数,反比例函数以及二次函数。这类题目本身并不会太难,很少作为压轴题出现,一般都是作为一道中档次题目来考察考生对于一次函数以及反比例函数的掌握。所以在中考中面对这类问题,一定要做到避免失分。
4列方程(组)解应用题
在中考中,有一类题目说难不难,说不难又难,有的时候三两下就有了思路,有的时候苦思冥想很久也没有想法,这就是列方程或方程组解应用题。方程可以说是初中数学当中最重要的部分,所以也是中考中必考内容。从近年来的中考来看,结合时事热点考的比较多,所以还需要考生有一些生活经验。实际考试中,这类题目几乎要么得全分,要么一分不得,但是也就那么几种题型,所以考生只需多练多掌握各个题类,总结出一些定式,就可以从容应对了。
5动态几何与函数问题
整体说来,代几综合题大概有两个侧重,第一个是侧重几何方面,利用几何图形的性质结合代数知识来考察。而另一个则是侧重代数方面,几何性质只是一个引入点,更多的考察了考生的计算功夫。但是这两种侧重也没有很严格的分野,很多题型都很类似。其中通过图中已给几何图形构建函数是重点考察对象。做这类题时一定要有“减少复杂性”“增大灵活性”的主体思想。
6几何图形的归纳、猜想问题
中考加大了对考生归纳,总结,猜想这方面能力的考察,但是由于数列的系统知识要到高中才会正式考察,所以大多放在填空压轴题来出。对于这类归纳总结问题来说,思考的方法是最重要的。
这篇中考数学复习指导的内容,希望会对各位同学带来很大的帮助。
数学复习指导4
一、基础阶段
考研数学考察的是对基础知识的综合运用,所以基础知识尤为重要,很多同学在复习时存在一个误区,认为我把难题做好就行了,难题都会做了,简单的题目就更没有问题了,其实这是错误的,如果基础知识没有掌握牢固,在复习过程中会发现越复习越困难,到复习的后期会发现连简单的问题都不知道如何下手了。这就是基础知识没有掌握牢固的结果。
在这个阶段,也就是从现在开始至六月份,是基础阶段的复习时间,这个阶段以课本和习题为主,这个阶段做题是为了巩固基础知识,不要为了做题而做题。我们考研数学的复习分为几个阶段,首先是打基础,之后是综合运用基础知识解题,最后就是提高熟练度。可想而知,如果大家基础知识没有掌握牢固,那如何综合运用呢?
在这一阶段,考生们不要和其他同学比进度,也不要单纯的追求量,完完整整的看一遍,达到看过的知识都能够熟练掌握的程度,会比我们囫囵吞枣的看三四遍都有用,所以这个阶段不要比进度,争取把每一个知识点都掌握牢固,知道每个定理公式或方法的基本内容、适用条件、易错点等。
二、强化阶段
七月至九月份是强化阶段,强化阶段是对基础知识的综合运用。这个阶段考生们要提高综合解题能力,形成完整的知识体系。考生们这段时间主要是做题,熟练的掌握每个模块要考的题型类型以及每种题型的解题方法。这个阶段考生易犯的错误是眼高手低,觉得自己解题方法掌握了就可以了,对于计算题就放过了,这是不可以的,考研数学要求考生在规定的时间内完成规定的计算量。所以如果计算题都放过那么就更加无法提高计算能力。
三、提高阶段
考生掌握了基本的基础知识和针对每个题型的解题方法,这个阶段就需要做分类的真题。分类解析是让大家短时间内获得每个模块考点、考试题型的一种快捷方式,通过做真题了解自己对每一模块和每一题型的掌握情况,对不是很清楚的部分再继续做这一部分的习题,达到每个模块都掌握牢固,每种题型都有解决的思路。
四、冲刺阶段
最后这个阶段就是做模拟题,模拟考试环境、考试时间和心态,这一阶段考生在做题的时候注意时间,严格按照考研的考试时间来做真题。这个阶段考生易犯的错误特别是到了十二月份,把主要精力都放在了政治和英语上,基本上会一直不看数学,认为数学也就达到上限了,再做题也不会提高很高的分数。诚然这一阶段背政治或者英语能提的分数比较高,但是,长时间不做数学题考生就会发现再做题的时候手生,很多知识点和题型都忘记了,这样我们辛辛苦苦所掌握的知识又还回去了,岂不很可惜。所以考生们一定要坚持做题,稳中求胜。
每年必考的10种简单题型
1.运用洛必达法则和等价无穷小量求极限问题,直接求极限或给出一个分段函数讨论基连续性及间断点问题。
2.运用导数求最值、极值或证明不等式。
3.微积分中值定理的运用。
4.重积分的计算,包括二重积分和三重积分的计算及其应用。
5.曲线积分和曲面积分的计算。
6.幂级数问题,计算幂级数的和函数,将一个已知函数用间接法展开为幂级数。
7.常微分方程问题。可分离变量方程、一阶线性微分方程、伯努利方程等的通解、特解及幂级数解法。
8.解线性方程组,求线性方程组的待定常数等。
9.矩阵的相似对角化,求矩阵的特征值,特征向量,相似矩阵等。
10.概率论与数理统计。求概率分布或随机变量的分布密度及一些数字特征,参数的点估计和区间估计。
数学复习指导5
在考研队伍中,每一年都有这样一部分选择跨专业考研的考生,这样不可避免的遇到了自己以前没有系统学习过的数学。像英语专业、法律专业、中文等专业的考生如果选择经济管理类的专业的话,就要重头对数学进行一个系统的学习,才能保证考研成功。对于零数学基础,或者数学基础薄弱的考生来说,如何走好考研这条关键路呢?我们考研数学教研室李老师认为,只要同学们端正心态,将基础知识打牢固,考研是没有问题的。
一、端正心态,树立信心,左右权衡,正确选择
基础薄弱的考生复习考研,最关键的是信心和毅力问题。很多人因为基础不好,学习起来有难度,就怕自己考不上,遇到困难就退缩,没有长期坚持下去的毅力,这些是考研路上的大敌。所以前期的专业选择还是非常重要的,有兴趣才会坚持,坚持才会看到希望。
考研数学包括三个部分内容:高等数学、线性代数、概率论与数理统计,各个部分的要求内容又各不相同,函数、行列式、数理统计等名词可能让你“乱 花渐欲迷人眼”。 李老师分析,根据历年考研数学试题注重考查考生灵活掌握概念的程度和计算的熟练程度,这也给数学基础薄弱的考生增加了一定的难度。所以,李老师建议考生,要对自己有一个全面的衡量,重点思考一下自己所选择的专业是否适合自己,有没有兴趣和动力去学习和考研,如果回答是肯定的话,那么就不要害怕数学的难度,勇敢地去复习吧!
二、打好基础 数学其实并不难
对于数学基础薄弱的考生来说,将数学基础牢牢把握,重视基础概念、定理、原理、命题等。入门是比较困难,但是只要入了门,后面的复习自然水到渠成。如果考研学子感觉初期无法进入状态,建议大家可以报一个辅导班,根据老师一点点学习,领悟用法。
同时,李老师在此为同学们解读考研数学各科特点并指导复习的重难点:
高等数学:高等数学的在考研数学中所占比重高,是三门课程中最为重要的一科,在学习高数的过程中,要注意每种题型的训练,重点是总结,把在基础阶段不懂的知识点,强化记忆,然后系统地梳理知识点。建议考生认真研读大纲要求,在复习的过程中明确考试重点,充分把握重点。
高数第一章不定式的极限,同学们要充分掌握求不定式极限的各种方法,比如利用极限的四则运算、两个重要极限、洛必达法则等等,还要总结求极限过程中常用到的转化、化简的方法。对函数的连续性的探讨也是考试的重点,这要求考生要充分理解函数连续的定义和掌握判断连续性的方法。对于导数和微分,其实 重点不是给一个函数求导数,而是导数的定义,也就是抽象函数的可导性,理清连续、可导、可微之间的关系,分清一元与多元的异同。对于积分部分,定积分、分段函数的积分、带绝对值的函数的积分等各种积分的求法都是重要的题型,在求积分的过程中,一定要注意积分的对称性,利用分段积分去掉绝对值把积分求出来。 中值定理一般每年都要考一个题的,多看看以往考试题型,研究一下考试规律。对于微分部分,隐函数的求导,复合函数的偏导数等是考试的重点。二重积分的计算,当然数学一里面还包括了三重积分,掌握积分区域具有可加性、二重积分对称性的应用、二重积分直角坐标和极坐标的变换、二重积分转换成累次积分计算这些 知识点。另外还有曲线和曲面积分,这是数一必考的重点内容。一阶微分方程,掌握几个教材中的几种类型的求解就可以了。还有无穷级数,要掌握判别敛散性、幂级数的展开和求和常用的方法和技巧。
线性代数:线性代数考试题型不多,计算方法比较初等,但是往往计算量比较大,导致很多考生对线性代数感到棘手。从理论的角度出发,线性代数的很多概念和性质之间的联系很多,特别要根据每年线性代数的两道大题考试内容,找出所涉及到的概念与方法之间的联系与区别。例如向量组的秩与矩阵的秩之间的联 系,向量的线性相关性与齐次方程组是否有非零解之间的联系,向量的线性表示与非齐次线性方程组解的讨论之间的联系,实对称阵的对角化与实二次型化标准形之间的联系等。掌握他们之间的联系与区别,对做线性代数的两个大题在解题思路和方法上会有很大的帮助。
复习过程中,综合掌握“一条主线,两种运算,三个工具”。一条主线是解线性方程组,两种运算是求行列式、矩阵的初等行(列)变换,三个工具是行 列式、矩阵、向量。其中,向量组线性相关性是难点,要理解记忆各条定理,理清其中关系,多做题巩固知识点。特征向量与二次型虽不难,但年年必考,计算能力要跟上,多做题才能提高正确率。
概率论与数理统计:概率论与数理统计课程的主要特点是概念和公式繁多,章节的关系松散,应用题比较抽象,所以复习时要注重这些概念的理解。
第一、二章是基础,很少单独命题,经常结合后面的章节进行考察,但这两章要深刻理解,只有这部分内容透彻理解后面的内容才能容易掌握。概率部分要重点掌握的是二维随机变量的概率分布、边缘分布、条件分布、独立性等概念,要把定义和对应计算公式掌握的很熟练。另外,数学期望、方差、协方差、相关系数等数字特征的概念及计算公式也要重点复习,因为这几个概念是每年必考,并且主要考计算。最后,这部分难点是多维随机变量的函数的分布。这个考点最近几年每年必考,并且主要以大题的形式出现。虽然是难点,但是方法还是比较固定的,掌握每种题型的方法即可。大数定律和中心极限定理不是考试的重点,考纲要求是了解,所以只要掌握定理的条件和结论。数理统计部分主要围绕三大统计量分布,点估计是这部分内容的重难点,经常会考解答题。统计量的评选标准中的无偏估计要重点复习, 有效性和相合性了解即可。区间估计和假设检验这么多年考的比较少,所以也是了解一下,找几个小题做一下就行了。
数学复习指导6
高考数学复习指导:数学复习的五大忌讳
一忌杂乱、繁多,顾此失彼在高考中想领先于他人,想方设法要比别人学、看、作得多,虽是件好事。但所采用的方法却往往是对自己不利的,精神非常可贵,方法不可取。
1.高中阶段所学的数学知识具有一定的范围,有些数学知识的重复和变形,都代表相同的知识点和方法,不要做简单、无聊的重复,这样会使你身陷题海,不能自拔,既耗精力,又会失去了信心。
2.应以学校所选的数学复习资料为准,因每一套复习资料都经过反复推敲,仔细的研究,很系统地将相应的知识点按照一定的规律和方法融会于其中。对于需要的知识点,再补充,这样你学的数学知识点系统性强。
3.不能对数学题太贪,以系统掌握思想、方法为主线,查缺补漏。同学们的精力是有限的,而数学题目千变万化,是无限的,因此,若以有限的精力去做无限的题目,必然会导致你没有系统地研究数学题,反而会使你的学习失去系统性,顾此失彼,是高三复习(第一轮、第二轮)的大敌。
二忌学而不思则罔第二轮数学复习,但多学生会认为自己的基础已过关,放松对基础知识、基本方法等的学习和研究。而是去大量做题,导致很多同学身陷题海,不能自拔,其主要原因就是学而不思,数学题目是数学知识的载体,平时养成思考、总结的习惯,自己对数学题分析能力会提高。学而不思在数学第二轮的复习中几种具体表现:上课听懂了,课后作业不会做;对数学题有未曾相识的感觉;只会朦胧做出数学题,却讲不出其中原因;对总结一类题目的解题方法和策略缺乏;粗心是犯同样的错误的最好解释。这就是你的数学第二轮复习中,阻滞你很难取得好成绩的又一个大敌。
三忌脸高、手高忘基础同学们总认为基础的东西,简单,没有必要进行研究,又进入第二轮数学复习,再抓基础就是浪费时间,甚至是放弃理想中的大学的认识。更有一些同学对自己的考大学定位较高,总是高挂自己。似乎有泰山顶看小山的感觉。俗话说得好,最深刻的道理,往往存在于最简单的事实之中。同学们可以仔细、认真地分析老师讲的课、做过的数学题,无论是多难的题目,最后都归结到数学课本上的知识点。重视双基,就是搞好第二轮数学复习的关键,更是一种态度,态度决定一切。
四忌蒙着眼睛走路在第二轮数学复习中,不能蒙着眼睛走路,老师叫干什么就干什么,老师讲什么就听什么,看见数学题就做,发了试卷就考,可是有了问题也不问,从来不去想,怎样才能使自己的数学变为强项,怎样会更好弥补自己的不足,为自己分别制定长期和短期的学习目标如何做会很快收效。一个人如果没有人生目标,那么他的人生将失去意义。
五忌对自己宽大,不清算
数学复习要注重基础、抓老系统的数学知识梳理、对自己的漏洞提高警惕。否则就会失去时机。首先要学会节省做题时间,对不同题型采用不同的方法,以简捷为准;其次做好改错反思,建立改错本。错误是数学复习中最好的老师,也是最宝贵的财富;最后就是解数学题时审题要慢,要看清楚,步骤要到位,立足于一次成功,加强对注意书写规范,重要步骤不能丢,丢步骤=丢分。
数学复习指导7
考研学子经常说的一句话是:得数学者,得考研。可见数学在整个考研复习中的地位之重,不可小觑。考研中数学满分150分,对考研是否成功有起着关键性的作用,怎么在提高阶段能够对数学进行快速提分,除了多做题还要结合以下两点:
一、 考研数学的复习要按章节复习
数学每一章之间都是有关系的,所以一定要按章节把定义、定理、公式从头到尾过一遍,像定义中的导数定义、微分定义、定积分定义、偏导数定义、全微分定义要一一搞透;像洛必达法则,等价无穷小,泰勒公式等都要重点掌握,还有微分中值定理主要在考研数学中用来证明含中值的不等式,这些都是考研中的高频考点,一定要按章节一一复习,不要丢三落四,影响复习效果。
二、 考研数学的复习要善于归纳总结
秋季是考研的关键时期,但是大家想利用提高阶段搞题海战术也是不可行的,因为毕竟时间有限,那么在做题的过程中就要求大家必须归纳总结,毕竟考研数学就是23道题,而且每年题型的重复率很高,所以一定要对常考的题型进行归纳总结。
在考研数学复习中不要害怕遇到问题,希望同学们能够正视问题的客观存在,主动地去面对问题、解决问题,相信你自己的实力!
数学复习指导8
考研数学作为公共学科里面最令人头痛的学科,让很多考生对他咬牙切齿,却依旧低下头来。由于考研数学综合性比较强、知识覆盖面广、难度颇大,是很多考生复习起来没有思路。而且高等数学作为考研数学考试中内容最多的一部分,分值所占比例也最高。
据20xx数学考研大纲显示,在数一和数三中,高数部分占总分的56%,在数二中,高数部分所占总分比例高达78%,所以高等数学对数学总体成绩的高低就显的特别重要,正所谓“得高数者得天下”。但是又该如何掌握好高等数学知识也成为考生复习的头等大事。在此提供指导20xx年考生该如何巩固高等数学的一些方法。
首先,从根本上理解概念定理。
高数中有很多概念,需要考生理解记忆。而概念本身是反映事物的本质,考生只有弄清楚它是如何定义的,有什么性质,才能从根本上理解一个概念。所有需要背诵记忆的东西只有建立在理解的基础上才会变得更加容易。定理是一个正确的命题,它分为条件和结论两个部分组成。对于定理的记忆除了要掌握它的条件和结论,还要搞清楚它所适用的范围,更好的理解运用。
其次,从熟练上掌握题型特点。
在复习中很多考生都过多的重视题海策略,往往忽视了最根本的例题。课本上的例题都是很经典的,有助于考生理解概念和掌握定理。通过反复掌握例题来了解不同例题的特点和解法,在理解例题的同时适量的练习习题。在做题时要善于总结,把做错的题型总结起来,在后面的复习中加深印象。通过熟练的掌握例题以及总结类型,这样在往后遇到的题目中才能做到举一反三。
最后,从宏观上理清知识脉络。
考生要对整个高数知识有个整体的把握,构建一个系统的知识体系,这样把所有知识串联在一起,方便记忆,以及加深对知识的理解,这为今后的复习起到事半功倍的效果。
考研数学历年来出的题目往往不是那些高难度的题型,大多是考查考生基础知识。所以考生只有脚踏实地,把基础知识掌握牢固才能赢得考研数学。
数学复习指导9
中考是九年义务教育的终端显示与成果展示,中考是一次选拔性考试,其竞争较为激烈。为了更有效地帮助学生梳理学过的知识,提高复习质量和效率,在中考中取得理想的成绩,下文为大家准备了中考数学优化复习的方法。
对概念的深度理解:考生对数学知识的学习与应用都应基于对数学概念的理解,而概念往往是贯穿整个知识点从形成到应用始末的主线,在对概念复习中不仅应区分它的本质与非本质属性、内涵和外延,还应充分挖掘作为概念的判定与性质的双重属性,发挥概念在章节复习中的主线作用在实际复习中。
对题目呈现方式的自我变式:课堂中例题的内容必须借助于一定的形式来表现,而上课时间的有限并不允许老师把每一个问题都讲得很透彻,考生还得在自己课余复习中积极去挖掘老师在课堂教学中留下的思考,学会积极归纳和例题变式,这样不仅有利于考生掌握例题中所包含的知识点,更有利于考生掌握举一反三的数学思维习惯,做到在成功中体验学习数学的乐趣。
对思维习惯自我训练:复习阶段考生常常会出现这样的情景,上课听听都懂,可是要自己独立完成作业却往往是一筹莫展。这主要是因为考生对这样的听懂仅限于对题目解法的知其然,而不知其所以然,没有理解老师在解题之前的探索经历,进而造成了对数学思维训练的缺失。因此在复习过程中有意训练怎么用数学的眼光来看问题、解决问题更有利于提高复习的有效性。从已知条件、隐含条件、结论、解法四个角度,对问题进行分析不仅可以让自己领悟到怎样数学地看问题的窍门,还可以从中领略到数学中数形结合、整体与部分思想的妙用。
对旧题的新解:适当地复习错题、旧题,可以事半功倍。花时间解决旧题可以唤起的是考生对数学学习的灵感,考生的数学功底也将会在不知不觉中加深变厚了。
数学复习指导10
俗语说的好“好钢用在刀刃上”,比喻做事情要注意重点和要点,在关键的地方使劲,往往达到理想的效果。在考研数学的复习当中也要注意这一点。经常有学生遇到这样的情况,在考研数学复习的初期阶段,本着全面复习的态度认认真真、从头到尾地对每一个考点进行细致的复习,按照高等数学、线性代数、概率论的顺序进行复习。可是,当复习线性代数的时候发现高等数学的部分内容淡忘了,复习概率论的时候又发现线性代数的部分内容记不清了,这样经过几个月的一轮的复习,最后发现留在自己脑中的知识点的已经很有限了。这是为什么呢?如何避免这种情况呢?
人的记忆效果随着时间的推移而迅速下降,这是正常的现象。一是可以通过反复加强记忆,第二种办法就是加强要点和重点的作用,提纲挈领,从而掌握全局。因此,建议大家在第一轮全面复习的时候同时要兼顾复习要点,让要点成为复习中的“刀刃”,起到提纲挈领、统领全局的作用。
那么,考研数学复习中的“刀刃”都有哪些呢?下面说明复习高等数学一科的“刀刃”之处。
高等数学
高等数学是考研数学的重中之重,备考高等数学要特别注意以下三个方面。
一、 按照大纲对数学基本概念、基本方法、基本定理准确把握。
数学是一门演绎的科学,靠侥幸押题是行不通的。只有对基本概念有深入理解,牢牢掌握基本定理和公式,才能找到解题的突破口和切入点。分析近几年考生的数学答卷可以发现,考生失分的一个重要原因就是对基本概念、定理理解不准确,数学中最基本的方法掌握不好,给解题带来思维上的困难。数学的'概念和定理是组成数学试题的基本元件,数学思维过程离不开数学概念和定理,因此,正确理解和掌握好数学概念、定理和方法是取得好成绩的基础和前提。
二、要加强解综合性试题和应用题能力的训练,力求在解题思路上有所突破。
综合题的考查内容可以是同一学科的不同章节,也可以是不同学科的。近几年试卷中常见的综合题有:级数与积分的综合题;微积分与微分方程的综合题;求极限的综合题;空间解析几何与多元函数微分的综合题;线性代数与空间解析几何的综合题;以及微积分与微分方程在几何上、物理上、经济上的应用题等等。在解综合题时,迅速地找到解题的切入点是关键一步,为此需要熟悉规范的解题思路。
三、重视历年试题的强化训练。
统计表明,每年的研究生入学考试高等数学内容较之前几年都有较大的重复率,近年试题与往年考题雷同的占50%左右,这些考题或者改变某一数字,或改变一种说法,但解题的思路和所用到的知识点几乎一样。所以希望考生要注意年年被考到的内容,对往年考题要全部消化巩固。这样,通过对考研的试题类型、特点、思路进行系统的归纳总结,并做一定数量习题,有意识地重点解决解题思路问题。对于那些具有很强的典型性、灵活性、启发性和综合性的题,要特别注重解题思路和技巧的培养。尽管试题千变万化,但其知识结构基本相同,题型相对固定。要特别注意以题型为思路归纳总结。
数学复习指导11
中考是九年义务教育的终端显示与成果展示,中考是一次选拔性考试。为了更有效地帮助学生梳理学过的知识,提高复习质量和效率,在中考中取得理想的成绩,下文为大家准备了中考数学一模复习指导的内容。
1、回顾课本,梳理知识脉络
期中考试范围一般为前三章,可对着课本目录,回顾每一小节对应知识板块都有哪些?重点是什么?
背诵相关定义、性质、定理,定义、法则、运算律
2、重视课本例题、习题、复习题
日常老师重点强调的题型,做一做,思考背后的定义、定理、法则。
课本例题中有固定操作方法的题目,需要复习,比如五步法证明全等。
3、重点解决两类问题
平时作业、单元测试的错题需要分类,备考复习时需要重点解决两类问题:
知识漏洞类,靠“猜、蒙”做的题一般都属于这种类型。老师、课本、众享在线课程对应的预习课程可以解决这类问题。
习惯类,认为自己粗心、马虎,认为自己会做,但实际做错的题目背后的问题,一般属于这类问题。比如操作步骤、检查、标注等。
习惯的培养是长期的过程,每次聚焦一个问题来解决,每次考试在习惯上更进一步。
众享的每一节视频课上老师都会在讲题中大量示范读题、审题、标注、操作步骤、检查等,比如计算类题目“先观察、划部分,依法则、作运算,不跳步、巧检验”同学们可以模仿。
数学复习指导12
第一轮复习,即基础复习阶段,这个阶段的复习是整个高考复习中最关键的环节,一般从8月份到第二年的三月份,历时8个月,这一阶段的复习效果直接影响整个高考的成败,因此同学们应该高度重视,在第一轮复习中我们必须严格按照《复习大纲》的要求,把《大纲》中所有的考点逐个进行突破,全面落实,形成完整的知识体系。这就需要考生要对课本中的基本概念,基本公式,基本方法重点掌握,在复习中应淡化特殊技巧的训练,重视数学思想和方法的作用。常用的数学思想方法有:(1)函数思想方法:根据问题的特点构建函数将所要研究的问题,转化为对构建函数的性质如定义域、值域、单调性、奇偶性、周期性、最值、对称性、范围和图像的交点个数等的研究;(2)方程思想方法:通过列方程(组)建立问题中的已知数和未知数的关系,通过解方程(组)实现化未知为已知,从而实现解决问题的目的;(3)数形结合的思想:它可以把抽象的数学语言与直观图形相对应,使复杂问题简单化,抽象问题具体化,(4)分类讨论的思想:此思想方法在解答题中越来越体现出其重要地位,在解题中应明确分类原则:标准要统一,不重不漏。
同时考生在此阶段的复习过程中一定要重视教材的作用,我们有很大一部分考生不重视课本,甚至在高考这一年中从来没翻过课本,这是非常危险的。因为高考试题有一部分都是从书上的例题和练习里引申变形而来的,对于我们基础比较薄弱的同学来讲,就更应该仔细阅读教材,认真琢磨书上的例题,体会其中包含的数学思想和数学方法。这对于我们提高数学能力是非常有帮助的!
对于课外参考书的选择我认为选择一到两本适合自己的参考书,把里面的精髓学懂学会就足够了,不必弄的太多,弄的太多,反而对自己是一个很大的包袱。
第二轮复习,即专题强化复习阶段,一般从三月份到四月底,由于第一轮复习是以各知识板块为主,横向联系不多,因此在第二轮复习中应重点突出在知识网络交汇点处的复习,高考中一般有下面几个专题,即:函数与导函数专题;平面向量与三角函数专题;平面向量与解析几何专题;空间向量与立体几何专题;概率与统计专题;数列与不等式专题等,通过这几个版块的复习目标在于提高学生解答高考解答题的能力。此阶段学生不应沉迷于套卷演练,而应以典型例题为载体,以数学思想方法的灵活运用为线索,讲求解题策略,使自己在第一轮复习的基础上,数学素质得以明显提升。值得注意的是在这个阶段当年的《考试大纲》已经出台了,考生应该仔细阅读《考试大纲》,针对前期的复习来查漏补缺,特别是对于《大纲》中与往年变动的地方我们一定高度重视,重点复习,争取在高考复习中面面俱到,不留死角。
第三轮复习,即考前冲刺复习阶段,在这个阶段我们应该大量做一些练习, 要做题先要选题,高考真题一定是最好的练习题!因此建议一定要好好做一下最十年以来的高考试卷,包括全国卷和地方卷,其次最好能找到近5年以来各区的统考试题,在做题的过程中来巩固前面复习过的考点。同时最后的复习别忘了课本,特别是在考前应该再次翻开课本把里面公式和定理再看看,把典型的例题再做做,因为书上的例题毕竟比较简单,在考前做例题一是防止手生,便于高考正常发挥,一是有助于提高我们的自信心。
在高考复习的整个过程中,我们最好能建立一个积错本,就是要求我们在每一次练习中对于错误的地方一定要进行错误分析,一般错误包括三种:一种是计算失误,一种是审题失误,一种是思维起点错误。对于第一种这是我们大多数同学经常出现的问题,在高考备考中我们一定要注意,每次考试和做题中一定要有始有终,千万不能眼高手低,我们很多同学在平时训练时一看题觉得自己会做就放弃演算过程,这是不好的学习习惯,只有每次在做题时能善始善终,才能提高我们运算的准确度,避免计算失误!对于第二种审题失误,比如在有一年的高考中让你求的是极值,而我们很多同学求的是最值,画蛇添足,浪费了时间还要扣分,对于这种情况,我想在考试时一定要先把题仔细阅读一遍,甚至可以把试卷上关键字做上记号来提示你充分而准确地利用已知条件,这是一个不错的办法,同学们不妨可以试试!对于第三种这是一个很关键的问题,在高考中解答题占了很大的比例,要克服这个问题,我们在平时学习中一定要注意积累一些典型例题的典型解法,比如在解析几何里的动点问题我们可以考虑消参法,数列中的构造法,函数中的转移法,等等,这都是很好的方法,在备考中通过掌握这一种方法就可以很顺利做一类题目,触类旁通,举一反三!只有我们在平时不断积累,我们就会不断进步,高考中就会得心应手,出奇制胜!
最后,要注意锻炼培养良好的心理素质,高三期间有许多模拟考试,一是为了检查同学们的复习情况,二是为了模拟高考情景,锻炼考生的心理素质。同学们平时就要有意识培养自己认真仔细、顽强坚韧的品格。有的同学题目难考不好,题目容易还是考不好,这就是心理素质不好的表现。面对难题,苦思冥想,不得其解,心慌烦躁,知难而退;面对易题,得意忘形,粗心大意,白白丢分,这是同学们最易犯的毛病。其实,若能想到我难人难,我易人易,沉着应战,就能取得理想的成绩。
高考临近,有些考生精神过度紧张,甚至病倒。我们提醒大家,防止两个极端的做法,一是彻底放松,破坏了长期形成的生物钟,会适得其反。另一个就是挑灯夜战,加班加点,导致考前过度疲劳,临考时打不起精神。建议考生,休息调整是必要的,但必须的是微调,特别要把兴奋状态逐步调整到上午9:00 11:30,下午3:005:00.高考前还要注意饮食的科学性和规律性,不能大吃大喝,宜清淡又要保证全面营养,每天摄入适量的淀粉食物,保证用脑的需要。总之,生活有节奏,亦张亦弛,保持心态平稳。
考前保持必胜的信心是非常必要的,走进考场要信心百倍,即使遇到困难也不要慌张,因为大家是平等的。另外,进入考场适度紧张是正常的也是必要的,因为它有利于激情的产生,千万不能因此而引起不必要的慌张。只要大家精心准备,充满自信,沉着应战,就一定能笑到最后。
数学复习指导13
1.强化“三基”,夯实基础
所谓“三基”就是指基础知识、基本技能和基本的数学思想方法,从近几年的高考数学试题可见“出活题、考基础、考能力”仍是命题的主导思想。因而在复习时应注意加强“三基”题型的训练,不要急于求成,好高骛远,抓了高深的,丢了基本的。
考生要深化对“三基”的理解、掌握和运用,高考试题改革的重点是:从“知识立意”向“能力立意”转变,考试大纲提出的数学学科能力要求是:能力是指思维能力、运算能力、空间想象能力以及实践能力和创新意识。
新课标提出的数学学科的能力为:数学地提出问题、分析问题和解决问题的能力,数学探究能力,数学建模能力,数学交流能力,数学实践能力,数学思维能力。
考生复习基础知识要抓住本学科内各部分内容之间的联系与综合进行重新组合,对所学知识的认识形成一个较为完整的结构,达到“牵一发而动全身”的境界。
强化基本技能的训练要克服“眼高手低”现象,主要在速算、语言表达、解题、反思矫正等方面下功夫,尽量不丢或少丢一些不应该丢失的分数。
要注重基本数学思想方法在日常训练中的渗透,逐步提高学生的思维能力。
夯实解题基本功。高考复习的一个基本点是夯实解题基本功,而对这个问题的一个片面做法是,只抓解题的知识因素,其实,解题的效益取决于多种因素,其中最基本的有:解题的知识因素、能力因素、经验因素、非智力因素。学生在答卷中除了知识性错误之外,还有逻辑性错误和策略性错误和心理性错误。
数学高考历来重视运算能力,运算要熟练、准确,运算要简捷、迅速,运算要与推理相结合,要合理,并且在复习中要有意识地养成书写规范,表达准确的良好习惯。
2.全面复习,系统整理知识,查漏补缺,优化知识结构
这是第一阶段复习中应该重点解决的问题。考生在这一过程应牢牢抓住以下几点:①概念的准确理解和实质性理解;②基本技能、基本方法的熟练和初步应用;③公式、定理的正逆推导运用,抓好相互的联系、变形和巧用。
经过全面复习这一阶段的努力,应使达到以下要求:①按大纲要求理解或掌握概念;②能理解或独立完成课本中的定理证明;③能熟练解答课本上的例题、习题;④能简要说出各单元题目类型及主要解法;⑤形成系统知识的合理结构和解题步骤的规范化。
这一阶段的直接效益是会考得优,其根本目的是为数学素质的提高准备物质基础。认真做好全面复习,才谈得上灵活性和综合性,才能适应高考踩分点多、覆盖面广的特点。
这一阶段复习的基本方法是从大到小、先粗后细,把教学中分割讲授的知识单点、知识片断组织合成知识链、知识体系、知识结构,使之各科内容综合化;基础知识体系化;基本方法类型化;解题步骤规范化。这当中,辅以图线、表格、口诀等已被证明是有益的,“习题化”的复习技术亦被证明是成功的,如,基本内容填空,基本概念判断,基本公式串联,基本运算选择。
3.加强对知识交汇点问题的训练
课本上每章的习题往往是为巩固本章内容而设置的,所用知识相对比较单一。复习中考生对知识交汇点的问题应适当加强训练,实际上就是训练学生的分析问题解决问题的能力。
要形成有效的知识网络。知识网络就是知识之间的基本联系,它反映知识发生的过程,知识所要回答的基本问题。构建知识网络的过程是一个把厚书(课本)读薄的过程;同时通过综合复习,还应该把薄书读厚,这个厚,应该比课本更充实,在课本的基础上加入一些更宏观的认识,更个性化的理解,更具操作性的解题经验。
综合性的问题往往是可以分解为几个简单的问题来解决的,这几个简单问题有机的结合在一起。要解决这类考题,关键在于弄清题意,将之分解,找到突破口。由于课程内容的变化,使知识的交汇点出现了新动向,如从概率统计中产生应用型试题,从导数应用中与函数性质的联袂,从解析几何中产生与平面向量的联系、立体几何、三角函数、数列内容中渗透相关知识的综合考查(如三角与向量的结合、数列与不等式结合、概率与数列内容的结合)等。
数学复习指导14
方法一,教材为本,整体复习。
课本是复习的阶梯,学习须有“本”可依。复习时以课本为主线,进行系统的复习,把学生小学阶段所学的分散的数学知识加以系统化整理,沟通知识间的联系,形成知识网落,针对学生的实际查漏补缺,弥补知识的缺陷。使所学过的知识由零散过渡到完整,构架起较为完整的知识系统,训练综合运用知识的能力。以课本为主线进行整体复习,并非简单地重复已学过的知识,而是对学过知识进行系统梳理,对某些知识点要进行归纳与对比。尤其对某些似是而非的知识点,在复习中必然要弄清楚,并能灵活运用。
方法二, 以错为鉴,温故而知新。
将日常练习、考试中遇到的错题、典型题分门别类地收集在一起,也就是平时说的“错题本”。复习中,必然要隔一段时间就重新去温习这些错题,把解题思路重新写一遍,再记忆一遍,这样做会比做几道新题有更大的收获。利用错题本时,对每一道知识结构性错题,应按照相同或相关的典型题型,去查找课本或资料,找到每道题的解题依据,找到出错的原因,讲出应该如何去做的道理。老师讲解正确答案时,在原题下面空白处记下本身没有做出来或做错的原因分析,把原题做一遍,以加深印象和逐步形成能力。如果此题有多种解题思路,可以在旁边用另一颜色笔把几种解法的简要思路写上。对于不太熟悉的内容和解题思路,必然要打破沙锅问到底,反复练习,掌握其解题规律,以便用一个点的解决带动一条线的解决,用一条线的解决带动一个面的解决。只有把典型题型弄清楚了,才能应对试题的千变万化,这就是以稳定应万变。通过对试题的练习和印证,我们还会更加清晰地明白某道题属于某个知识板块,涉及到几个知识点,有哪些解题思路和方法,让模糊的东西清晰化,随着认识的一步步深化,思维能力也会随之增加。
方法三、讲究方法,适当做题。
复习的方法多种多样,差别的方法也许适用于差别的人,我们应在实际运用中找到适合本身的复习方法,同时应注意不停地变更本身的复习方法。有时我们常会感到一种原来十分灵验的方法经过一段时间后变得不再灵验了,这就要求我们及时地改变方法,,以不停提高复习的效率。当然复习时适本地做题是必不行少的,可心选做差别类型的标题问题,在练习中使知识点得到了巩固,运用能力得到了提高。复习中,要做很多的练习,练习的方法也要“巧”。首先对于像概念、法则这些重要而基础的知识进行记忆巩固,有针对的做练习。其次要精练多思,提高练习的效率,练习中要多思考,多联想,多小结,把所学的知识联系起来进行比力,重点、难点尽量做到有的放矢的精准练习。练习中,选题要精,在教师的指导下,从实际出发,进行各种形式、多层次的练习,练习要有步骤、有目的、有思考,切忌一味做题,陷入题海,做过之后发现了错误要及时研究纠正,总结经验以免再犯,达到“温故知新”的效果。
方法四,注意心理调节。
随着总复习的越来越深入,复习的东西越来越多,练习、模拟不停,心理难免产生烦躁情绪,此时必然要采取各种方式克服这种心理状态。别的要有虚心的心态,当意识到本身还有许多不明确的知识点,还有没完全掌握的技能方法,这样才能在复习时深入钻研,仔细琢磨。而在考试时同学们应调整好本身的心态,努力放松本身,以必胜的信心,坦然面对考试。在复习的最后阶段,我们可以将一些期末的练习题当作正式的期末考试,利用它们来调整本身的心理 状态,并不停积累经验,提高本身的应试技巧,从而使本身在走进正式考场时能进入一个最佳状态。
不管哪所初中最好,学生们要想上一所好的学校,在考试那一年必需要狠下功夫,认真复习,不然再好的学校多我们而言也是遥远的梦想。
数学复习指导15
第一章有理数
1.1正数与负数
①大于0的数叫正数。
②在正数前面加上“-”号的数,叫做负数。
③0既不是正数也不是负数。0是正数和负数的分界,是的中性数。
④搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等。
⑤正整数、0、负整数统称整数(结合数轴和一元一次方程出题),正分数和负分数统称分数。整数和分数统称有理数。
⑥非负数就是正数和零;非负整数就是正整数和0。
⑦“基准”题:有固定的基准数,和的求法:基准数×个数+与基准数相比较的数的代数和;平均数的求法:基准数+与基准数相比较的数的代数和÷个数(写出原数,也可用小学知识解答);“非基准”题:无固定的基准数,如明天和今天比,后天和明天比。
1.2数轴
①通常用一条直线上的点表示数,这条直线叫数轴。
②数轴三要素:原点、正方向、单位长度。
③数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。
④只有符号不同的两个数叫做互为相反数(和为零)。(例:2的相反数是-2,如:2+(-2)=0;0的相反数是0)
⑤数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。
从几何意义上讲,数的绝对值是两点间的距离(无方向性,有两个点)。
⑥数轴上两点间的距离=|M—N|
⑥正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
⑦两个负数,绝对值大的反而小。
⑧|a|≥0(即非负性);绝对值等于一个正数的值有两个(两个互为相反数)如:|a|=5,a=5或a=-5
1.3有理数的大小
①数轴上不同的两个点表示的数,右边点表示的数总比左边点表示的数大。
②负数小于零,零小于正数,负数小于正数。
③两个负数的比较大小,绝对值大的反而小。
1.4有理数的加减法
①有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。
加法的交换律:a+b=b+a;加法结合律:(a+b)+c=a+(b+c)
②有理数减法法则:减去一个数,等于加这个数的相反数。
1.5有理数的乘除法
①有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
乘积是1的两个数互为倒数(积为1)如:(-2)×(-1/2)=1。
乘法交换律:a×b=b×a;结合律:a×(b×c)=(a×b)×c;分配律:a×(b+c)=a×b+a×c(注意可逆的使用)。
②有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得0。1.6有理数的乘方
①求n个相同因数的积的运算,叫乘方,乘方的结果叫幂。在a的n次方中,a叫做底数,n叫做指数。负数的奇次幂是负数,负数的偶次幂是正数(负奇负,负偶正)。正数的任何次幂都是正数,0的任何次幂都是0。
②偶次方等于一个正数的值有两个(两个互为相反数)如:a2=4,a=2或a=-2
注意:|a|+b2=0得:a=0且b=0
强记:a0=1(a≠0);(-1)2=1;-12=-1;(-1)3=-1;-13=-1;(-2)2=4;-22=-4;(-2)3=-8;-23=-8
③有理数的混合运算法则:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。注意:12-4×5=12-20(不能把-变+)
④把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法,注意a的范围为1≤a<10;n比原整数位减1。(注意科学计数法与原数的互划。
⑤四舍五入到哪一位就是精确到哪一位,四舍五入时望后多看一位采用四舍五入。比如:3.5449精确到0.01就是3.54而不是3.55.(再如:2.40万:精确到百位;6.5×104精确到千位,有数量级和科学计数法的要还原成原数,看数量级和科学计数法的最后一个数)。
第二章整式的加减(化简:有括号去括号,能合并的合并)
----------2.1用字母表示数
1、偶数:能被2整除的整数叫偶数(如:-4、-2、0、2、4、)三个连续偶数:2n-2,2n,2n+2(相差2)。
2、奇数:不能被2整除的整数叫做奇数(如:-5、-3、-1、1、3、5)
三个连续奇数:2n-1,2n+1,2n+3(相差2)。
----------2.2代数式
1、用加、减、乘(乘方)、除等运算符号把数或表示数的字母连接而成的式子,叫做代数式。(注:单独一个数字或字母也是代数式)
2、代数式的写法:数学与字母相乘时,“×”号省略,数字写在字母前;字母与字母相乘时,相同字母写成幂的形式;数字与数字相乘时,“×”号不能省略;式中出现除法时,一般写成分数形式。式中出现带分数时,一般写成假分数形式。
3、分段问题书写代数式时要分段考虑,有单位时要考虑是否要();如:电费、水费、出租车、商店优惠-------。
4、单项式:由数字和字母乘积组成的式子。单独一个数或一个字母也是单项式.因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,若①分母中不含有字母,②式子中含有加、减运算关系,也不是单项式.单项式的系数:是指单项式中的数字因数;(不要漏负号和分母)单项数的次数:是指单项式中所有字母的指数的和.(注意指数1)
5、多项式:几个单项式的和。判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式.每个单项式称项,(其中不含字母的项叫常数项)多项式的次数是指多项式里次数项的次数(选代表);多项式的项是指在多项式中每一个单项式.特别注意多项式的项包括它前面的性质符号.它们都是用字母表示数或列式表示数量关系。注意单项式和多项式的每一项都包括它前面的符号。
6、代数式分为整式和分式(分母里含有字母);整式分为单项式和多项式。
----------2.3整式的加减
①同类项:所含字母相同,并且相同字母的指数也相同的项。(简称“二个相同,二个无关”)
②合并同类项:把多项式中的同类项合并成一项。可以运用交换律,结合律和分配律。(同类项用括号括起来,中间用+连接)
③合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,所含字母部分不变,相同字母的指数不变(“两不变”)
④不含某字母项时,就是某字母项的系数为0
⑤字母的升降幂排列:按某个字母的指数从小(大)到大(小)的顺序排列。
⑥如果括号外的符号是+号,去括号和符号后原括号内各项的符号不变;如果括号外的符号是-号,去括号和符号后原括号内各项的符号改变;括号前有数字时,要连着符号相乘。
第三章一元一次方程
1方程:是含有未知数的等式。:
2一元一次方程:方程都只含有一个未知数(元),未知数的次数都是1(次),这样的方程叫做一元一次方程。
例如:3x+8=7;8y+0.5y-10=3;4a+5a+9a=3等都是一元一次方程。又如:.5x2+3x-9=0;x+y+3z=0等不是一元一次方程。
3解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。4等式的性质:
1)等式两边同时加上或减去同一个数或同一个式子(整式或分式),等式不变(结果仍相等).
2)等式两边同时乘以或除以同一个不为零的数,等式不变.
注意:运用性质时,一定要注意等号两边都要同时变;运用性质2时,一定要注意0这个数.
5解一元一次方程(一)----合并同类项与移项一般步骤:移项→合并同类项→系数化1;(可以省略部分)6解一元一次方程(二)----去括号与去分母
一般步骤:去分母(方程两边同乘各分母的最小公倍数)→去括号→移项→合并同类项→系数化1;
以上是解一元一次方程五个基本步骤,在实际解方程的过程中,五个步骤不一定完全用上,或有些步骤还需要重复使用.因此,解方程时,要根据方程的特点,灵活选择方法.在解方程时还要注意以下几点:
①去分母,在方程两边都乘以各分母的最小公倍数,不要漏乘不含分母的项;分子是一个整体,去分母后应加上括号;去分母与分母化整是两个概念,不能混淆;②去括号遵从先去小括号,再去中括号,最后去大括号不要漏乘括号的项;不要弄错符号;③移项把含有未知数的项移到方程的一边,其他项都移到方程的另一边(移项要变符号)。7实际问题与一元一次方程概念梳理
⑴列一元一次方程解决实际问题的一般步骤是:
①审题,特别注意关键的字和词的意义,弄清相关数量关系,②设出未知数(注意单位),③根据相等关系列出方程,④解这个方程,
⑤检验并写出答案(包括单位名称).⑵一些固定模型中的等量关系:
①数字问题:表示一个三位数,则有
②行程问题:甲乙同时相向行走相遇时:甲走的路程+乙走的路程=总路程甲走的时间=乙走的时间;
甲乙同时同向行走追及时:甲走的路程-乙走的路程=甲乙之间的距离③工程问题:各部分工作量之和=总工作量;④储蓄问题:本息和=本金+利息
⑤商品销售问题:商品利润=商品售价-商品成本价=商品利润率×商品成本价或商品售价=商品成本价×(1+利润率)
⑥产油量=油菜籽亩产量X含油率X种植面积.
第四章图形认识初步1多姿多彩的图形
形状:方的、园的等
几何图形大小:长度、面积、体积等位置:相交、垂直、平行等
2几何体也简称体。包围着体的是面。
3常见的立体图形:柱体、椎体、球体等各部分不都在一个平面内。4平面图形:在一个平面内的图形就是平面图形。
5展开图:识记一些常用的展开图。圆柱/圆锥的侧面展开图;6点线面体:是组成几何图形的基本元素。7直线、射线、线段
线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。连接两点间的线段的长度,叫做这两点的距离。
经过两点有一条直线,并且只有一条直线。两点确定一条直线。8角
定义:有公共端点的两条射线组成的图形叫角。角的端点为顶点,两条射线为角的两边。1度=60分1分=60秒1周角=360度1平角=180度9角的比较与运算
角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。
余角:如果两个角的和等于90度(直角),就说这两个叫互为余角,即其中每一个角是另一个角的余角。
补角:如果两个角的和等于180度(平角),就说这两个叫互为补角,即其中每一个角是另一个角的补角。
性质:等角(同角)的补角相等。等角(同角)的余角相等。
第五章相交线与平行线
一、知识概念
1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
3.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
4.平行线:在同一平面内,不相交的两条直线叫做平行线。
5.同位角、内错角、同旁内角:
同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
内错角:∠2与∠6像这样的一对角叫做内错角。
同旁内角:∠2与∠5像这样的一对角叫做同旁内角。
6.命题:判断一件事情的语句叫命题。
7.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
8.对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
9.定理与性质:对顶角的性质:对顶角相等。
10垂线的性质:
性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
11.平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
12.平行线的性质:
性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
13.平行线的判定:
判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角相等,两直线平行。
本章使学生了解在平面内不重合的两条直线相交与平行的两种位置关系,研究了两条直线相交时的形成的角的特征,两条直线互相垂直所具有的特性,两条直线平行的长期共存条件和它所有的特征以及有关图形平移变换的性质,利用平移设计一些优美的图案.重点:垂线和它的性质,平行线的判定方法和它的性质,平移和它的性质,以及这些的组织运用.难点:探索平行线的条件和特征,平行线条件与特征的区别,运用平移性质探索图形之间的平移关系,以及进行图案设计。
第六章平面直角坐标系
一.知识概念
1.有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)
2.平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
3.横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。
4.坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标。
5.象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向一次叫第二象限、第三象限、第四象限。坐标轴上的点不在任何一个象限内。
平面直角坐标系是数轴由一维到二维的过渡,同时它又是学习函数的基础,起到承上启下的作用。另外,平面直角坐标系将平面内的点与数结合起来,体现了数形结合的思想。掌握本节内容对以后学习和生活有着积极的意义。教师在讲授本章内容时应多从实际情形出发,通过对平面上的点的位置确定发展学生创新能力和应用意识。
第七章三角形
一.知识概念
1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
4.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
6.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
7.多边形的内角:多边形相邻两边组成的角叫做它的内角。
8.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
9.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
10.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。
11.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。
12.公式与性质
三角形的内角和:三角形的内角和为180°
三角形外角的性质:
性质1:三角形的一个外角等于和它不相邻的两个内角的和。
性质2:三角形的一个外角大于任何一个和它不相邻的内角。
多边形内角和公式:n边形的内角和等于(n-2)·180°
多边形的外角和:多边形的内角和为360°。
多边形对角线的条数:
(1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形。
(2)n边形共有条对角线。
三角形是初中数学中几何部分的'基础图形,在学习过程中,教师应该多鼓励学生动脑动手,发现和探索其中的知识奥秘。注重培养学生正确的数学情操和几何思维能力。
第八章二元一次方程组
一、知识概念
1.二元一次方程:含有两个未知数,并且未知数的指数都是1,像这样的方程叫做二元一次。方程,一般形式是ax+by=c(a≠0,b≠0)。
2.二元一次方程组:把两个二元一次方程合在一起,就组成了一个二元一次方程组。
3.二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。
4.二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组。
5.消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想。
6.代入消元:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法。
7.加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法。
本章通过实例引入二元一次方程,二元一次方程组以及二元一次方程组的概念,培养学生对概念的理解和完整性和深刻性,使学生掌握好二元一次方程组的两种解法.重点:二元一次方程组的解法,列二元一次方程组解决实际问题.难点:二元一次方程组解决实际问题
第九章不等式与不等式组
一、知识概念
1.用符号“<”“>”“≤”“≥”表示大小关系的式子叫做不等式。
2.不等式的解:使不等式成立的未知数的值,叫做不等式的解。
3.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
4.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。
5.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成6.了一个一元一次不等式组。
7.定理与性质
不等式的性质:
不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变。
不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
本章内容要求学生经历建立一元一次不等式(组)这样的数学模型并应用它解决实际问题的过程,体会不等式(组)的特点和作用,掌握运用它们解决问题的一般方法,提高分析问题、解决问题的能力,增强创新精神和应用数学的意识。
第十章数据的收集、整理与描述
一.知识框架
全面调查
抽样调查
收集数据
描述数据
整理数据
分析数据
得出结论
二.知识概念
1.全面调查:考察全体对象的调查方式叫做全面调查。
2.抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查。
3.总体:要考察的全体对象称为总体。
4.个体:组成总体的每一个考察对象称为个体。
5.样本:被抽取的所有个体组成一个样本。
6.样本容量:样本中个体的数目称为样本容量。
7.频数:一般地,我们称落在不同小组中的数据个数为该组的频数。
8.频率:频数与数据总数的比为频率。
9.组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数,每一组两个端点的差叫做组距。
本章要求通过实际参与收集、整理、描述和分析数据的活动,经历统计的一般过程,感受统计在生活和生产中的作用,增强学习统计的兴趣,初步建立统计的观念,培养重视调查研究的良好习惯和科学态度。
【数学复习指导】相关文章:
数学高校复习指导05-12
文科数学复习指导05-12
考研复习指导:数学暑期复习08-20
数学冲刺阶段复习指导05-12
名师指导数学复习05-12
最新初三数学复习指导05-14
数学学科期末复习指导01-20
高三规划:数学复习指导06-18
考研数学复习的技巧指导12-07
考研数学考前的复习指导12-12