数学五年级知识点

时间:2024-10-17 11:48:05 诗琳 数学 我要投稿

人教版数学五年级知识点

  在我们平凡的学生生涯里,是不是听到知识点,就立刻清醒了?知识点有时候特指教科书上或考试的知识。掌握知识点是我们提高成绩的关键!以下是小编整理的人教版数学五年级知识点,仅供参考,希望能够帮助到大家。

人教版数学五年级知识点

  数学五年级知识点 1

  一、小数乘法的计算方法

  先按整数乘法算出积

  再给积点上小数点

  二、点小数点的方法:

  看因数中一共有几位小数,就从积的右边起数几位,点上小数点。

  乘得的积的小数点位数不够,就要用0补足,再点小数点。

  一个数(0除外)乘以大于1的数,积比原来的数大。

  一个数(0除外)乘以小于1的数,数比原来的'数小。

  三、积的近似数

  用四舍五入法保留一定的小数位数。

  四舍五入法:小于5,把它和右边的数全舍去,改写成0

  大于5,向前进1,再把它和右面的数全舍去,改写成0

  由于小数的末尾去掉0和加上0,小数的大小不变,所以取小数的近似数时不用把数改写成0,直接去掉。

  2.205≈2 (保留整数)

  2.205≈2.2 (保留一位小数)

  2.205≈2.21 (保留两位小数)

  四、小数的四则运算顺序跟整数是一样的。

  1)从左往右算

  2)先算乘除,再算加减

  3)有括号的先算括号内

  4)不用算的先抄下来

  整数乘法的交换律、结合律和分配律,对于小数乘法也适用。

  乘法交换律:交换两个因数的位置,积不变。

  a×b=b×a

  乘法结合律:先乘前两个数,或者先乘后两个数,积不变

  (a×b)×c=a×(b×c)

  乘法分配律:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。

  (a+b)×c=a×c+b×c

  扩展:

  (a+b+c)×d=a×d+b×d+c×d

  数学怎么比较分数大小?

  (1)分母相同的两个分数,分子大的分数比较大。

  (2)分子相同的两个分数,分母小的分子比较大。

  (3)什么是真分数?

  分子比分母小的分数叫真分数。

  (4)什么是假分数?

  分子比分母大或者分子和分母相等的分数叫假分数。

  (5)什么是带分数?

  由整分数和真分数合成的数通常叫带分数。

  (6)什么是分数的基本性质?

  分数的分子和分母同时乘或除以相同的数(0除外),分数大小不变,这就是分数的基本性质。

  (7)什么是约分?

  把一个分数化成同它相等,但分子、分母都比较小的数叫做约分。

  (8)什么是最简分数?

  分子、分母是互质数的分数叫最简分数。

  小学数学乘法法则

  1.一位数乘法法则

  整数乘法低位起,一位数乘法一次积。

  个位数乘得若干一,积的末位对个位。

  计算准确对好位,乘法口诀是根据。

  2.两位数乘法法则

  整数乘法低位起,两位数乘法两次积。

  个位数乘得若干一,积的末位对个位。

  十位数乘得若干十,积的末位对十位。

  计算准确对好位,两次乘积加一起。

  3.多位数乘法法则

  整数乘法低位起,几位数乘法几次积。

  个位数乘得若干一,积的末位对个位。

  十位数乘得若干十,积的末位对十位。

  百位数乘得若干百,积的末位对百位

  计算准确对好位,几次乘积加一起。

  4.因数末尾有0的乘法法则

  因数末尾若有0,写在后面先不乘,

  乘完积补上0,有几个0写几个0。

  数学五年级知识点 2

  列方程解应用题的方法:

  (1)综合法

  先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。这是从部分到整体的一种思维过程,其思考方向是从已知到未知。

  (2)分析法

  先找出等量关系,再根据具体建立等量关系的'需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。这是从整体到部分的一种思维过程,其思考方向是从未知到已知。

  列方程解应用题的范围:

  小学范围内常用方程解的应用题:

  (1)一般应用题;

  (2)和倍、差倍问题;

  (3)几何形体的周长、面积、体积计算;

  (4)分数、百分数应用题;

  (5)比和比例应用题。

  平行四边形的面积公式:

  底×高(推导方法如图);如用“h”表示高,“a”表示底,“S”表示平行四边形面积,则S平行四边形=ah

  三角形面积公式:

  S△=1/2xah(a是三角形的底,h是底所对应的高)

  梯形面积公式:

  (1)梯形的面积公式:(上底+下底)×高÷2.

  用字母表示:(a+b)×h÷2

  (2)另一计算公式:中位线×高

  用字母表示:l·h

  (3)对角线互相垂直的梯形:对角线×对角线÷2.

  数学五年级知识点 3

  1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。两个面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

  长方体特点:

  (1)有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。

  (2)一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。

  2、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。

  正方体特点:

  (1)正方体有12条棱,它们的长度都相等。

  (2)正方体有6个面,每个面都是正方形,每个面的面积都相等。

  (3)正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。

  相同点

  不同点

  面棱

  长方体

  都有6个面,12条棱,8个顶点。

  6个面都是长方形。

  (有可能有两个相对的面是正方形)。

  相对的棱的长度都相等

  正方体

  6个面都是正方形。

  12条棱都相等。

  3、长方体、正方体有关棱长计算公式:

  长方体的棱长总和=(长+宽+高)×4=长×4+宽×4+高×4

  L=(a+b+h)×4

  长=棱长总和÷4-宽-高

  a=L÷4-b-h

  宽=棱长总和÷4-长-高

  b=L÷4-a-h

  高=棱长总和÷4-长-宽

  h=L÷4-a-b

  正方体的棱长总和=棱长×12

  L=a×12

  正方体的棱长=棱长总和÷12

  a=L÷12

  4、长方体或正方体6个面和总面积叫做它的表面积。

  长方体的表面积=(长×宽+长×高+宽×高)×2

  S=2(ab+ah+bh)

  无底(或无盖)

  长方体表面积=长×宽+(长×高+宽×高)×2

  S=2(ab+ah+bh)-ab

  S=2(ah+bh)+ab

  无底又无盖长方体表面积=(长×高+宽×高)×2

  S=2(ah+bh)

  贴墙纸

  正方体的表面积=棱长×棱长×6 S=a×a×6用字母表示:S= 6a2

  生活实际:

  油箱、罐头盒等都是6个面

  游泳池、鱼缸等都只有5个面

  水管、烟囱等都只有4个面。

  注意1:用刀分开物体时,每分一次增加两个面。(表面积相应增加)

  注意2:长方体或正方体的长、宽、高同时扩大几倍,表面积会扩大倍数的平方倍。

  (如长、宽、高各扩大2倍,表面积就会扩大到原来的'4倍)。

  5、物体所占空间的大小叫做物体的体积。

  长方体的体积=长×宽×高V=abh

  长=体积÷宽÷高a=V÷b÷h

  宽=体积÷长÷高b=V÷a÷h

  高=体积÷长÷宽h= V÷a÷b

  正方体的体积=棱长×棱长×棱长

  V=a×a×a = a3

  读作“a的立方”表示3个a相乘,(即a·a·a)

  长方体或正方体底面的面积叫做底面积。

  长方体(或正方体)的体积=底面积×高

  用字母表示:V=S h(横截面积相当于底面积,长相当于高)。

  注意:一个长方体和一个正方体的棱长总和相等,但体积不一定相等。

  6、箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积。

  固体一般就用体积单位,计量液体的体积,如水、油等。

  常用的容积单位有升和毫升也可以写成L和ml。

  1升=1立方分米

  1毫升=1立方厘米

  1升=1000毫升

  (1L = 1dm3 1ml = 1cm3)

  长方体或正方体容器容积的计算方法,跟体积的计算方法相同。

  但要从容器里面量长、宽、高。(所以,对于同一个物体,体积大于容积。)

  注意:长方体或正方体的长、宽、高同时扩大几倍,体积就会扩大倍数的立方倍。

  (如长、宽、高各扩大2倍,体积就会扩大到原来的8倍)。

  x形状不规则的物体可以用排水法求体积,形状规则的物体可以用公式直接求体积。

  排水法的公式:

  V物体=V现在-V原来

  也可以V物体=S×(h现在- h原来)

  V物体=S×h升高

  8、【体积单位换算】

  大单位乘进率=小单位

  小单位÷进率=大单位

  进率:1立方米=1000立方分米=1000000立方厘米(立方相邻单位进率1000)

  1立方分米=1000立方厘米=1升=1000毫升

  1立方厘米=1毫升

  1平方米=100平方分米=10000平方厘米

  1平方千米=100公顷=1000000平方米

  注意:长方体与正方体关系

  把长方体或正方体截成若干个小长方体(或正方体)后,表面积增加了,体积不变。

  重量单位进率,时间单位进率,长度单位进率

  大单位乘进率=小单位

  小单位÷进率=大单位

  数学奇偶数性质

  1、两个连续整数中必有一个奇数和一个偶数。

  2、奇数+奇数=偶数;偶数+奇数=奇数;偶数+偶数+...+偶数=偶数。

  3、奇数-奇数=偶数;偶数-奇数=奇数;奇数-偶数=奇数。

  4、若a、b为整数,则a+b与a-b有相同的奇偶性,即a+b与a-b同为奇数或同为偶数。

  5、n个奇数的乘积是奇数,n个偶数的乘积是偶数;算式中有一个是偶数,则乘积是偶数。

  6、奇数的个位是1、3、5、7、9;偶数的个位是0、2、4、6、8。

  7、奇数的平方除以2、4、8余1。

  8、任意两个奇数的平方差是2、4、8的倍数。

  数学时分秒知识点

  1、钟面上有3根针,它们分别是时针、分针、秒针,其中走得最快的是秒针,走得最慢的是时针。(时针最短,秒针最长)

  2、计量很短的时间,常用秒。秒是比分更小的时间单位。

  3、钟面上最长最细的针是秒针。秒针走一小格的时间是1秒。

  4、秒表:一般在体育运动中用来记录以秒为单位的时间。

  5、常用时间单位:时、分、秒。

  6、时间单位:时、分、秒,每相邻两个个单位之间的进率都是60。

  1时=60分1分=60秒半时=30分30分=半时

  7、分针走一圈,时针走一大格,是1小时。秒针走一圈,分针走一小格,是1分。

  8、计算一段时间,可以用结束的时刻减去开始的时刻。

  数学五年级知识点 4

  1、公式:

  长方形:周长=(长+宽)×2--【长=周长÷2-宽;宽=周长÷2-长】字母公式:C=(a+b)×2

  面积=面积=长×宽字母公式:S=ab

  正方形:周长=边长×4字母公式:C=4a

  平行四边形的面积=底×高字母公式:S=ah

  三角形的面积=底×高÷2--【底=面积×2÷高;高=面积×2÷底】字母公式:S=ah÷2

  梯形的面积=(上底+下底)×高÷2字母公式:S=(a+b)h÷2

  【上底=面积×2÷高-下底,下底=面积×2÷高-上底;高=面积×2÷(上底+下底)】

  2、平行四边形面积公式推导:

  剪拼、平移

  3、三角形面积公式推导:

  旋转

  平行四边形可以转化成一个长方形;

  两个完全一样的三角形可以拼成一个平行四边形,

  长方形的长相当于平行四边形的底;

  平行四边形的底相当于三角形的底;

  长方形的宽相当于平行四边形的高;

  平行四边形的高相当于三角形的高;

  长方形的'面积等于平行四边形的面积,

  平行四边形的面积等于三角形面积的2倍,

  因为长方形面积=长×宽,所以平行四边形面积=底×高。

  因为平行四边形面积=因为平行四边形面积=底×高,所以三角形面积=底×高÷2

  4、梯形面积公式推导:

  旋转

  5、三角形、梯形的第二种推导方法老师已讲,自己看书

  两个完全一样的梯形可以拼成一个平行四边形,知道就行。

  平行四边形的底相当于梯形的上下底之和;

  平行四边形的高相当于梯形的高;

  平行四边形面积等于梯形面积的2倍,

  因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2

  6、等底等高的平行四边形面积相等;

  等底等高的三角形面积相等;

  等底等高的平行四边形面积是三角形面积的2倍。

  7、长方形框架拉成平行四边形,周长不变,面积变小。

  8、组合图形:转化成已学的简单图形,通过加、减进行计算。

  数学0是奇数还是偶数

  0是一个特殊的偶数(20xx年国际数学协会规定零为偶数;我国20xx年也规偶数定零为偶数)。它既是正偶数与负偶数的分界线,又是正奇数与负奇数的分水岭。

  小学规定0为最小的偶数,但是在初中学习了负数,出现了负偶数时,0就不是最小的偶数了。

  哥德巴赫猜想说明任何大于二的偶数都可以写为两个质数之和,但尚未有人能证明这个猜想。

  小学数学必背关系表达式

  1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数

  2、 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数

  3、速度×时间=路程路程÷速度=时间路程÷时间=速度

  4、单价×数量=总价总价÷单价=数量总价÷数量=单价

  5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率

  6、加数+加数=和和-一个加数=另一个加数

  7、被减数-减数=差被减数-差=减数差+减数=被减数

  8、因数×因数=积积÷一个因数=另一个因数

  9、被除数÷除数=商被除数÷商=除数商×除数=被除数

  数学五年级知识点 5

  1、分数的意义:一个物体、一物体等都可以看作一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。

  2、单位“1”:一个整体可以用自然数1来表示,通常把它叫做单位“1”。(也就是把什么平均分什么就是单位“1”。)

  3、分数单位:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。如4/5的分数单位是1/5。

  4、分数与除法

  A÷B=A/B(B≠0,除数不能为0,分母也不能够为0)例如:4÷5=4/5

  5、真分数和假分数、带分数

  1、真分数:分子比分母小的分数叫真分数。真分数<>

  2、假分数:分子比分母大或分子和分母相等的分数叫假分数。假分数≥1

  3、带分数:带分数由整数和真分数组成的分数。带分数>1.

  4、真分数<1≤假分数

  真分数<1<带分数

  6、假分数与整数、带分数的互化

  (1)假分数化为整数或带分数,用分子÷分母,商作为整数,余数作为分子,如:

  (2)整数化为假分数,用整数乘以分母得分子如:

  (3)带分数化为假分数,用整数乘以分母加分子,得数就是假分数的分子,分母不变,如:

  (4)1等于任何分子和分母相同的分数。如:

  7、分数的基本性质:

  分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。

  8、最简分数:分数的分子和分母只有公因数1,像这样的分数叫做最简分数。

  一个最简分数,如果分母中除了2和5以外,不含其他的质因数,就能够化成有限小数。反之则不可以。

  9、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。

  如:24/30=4/5

  10、通分:把异分母分数分别化成和原来相等的同分母分数,叫做通分。

  如:2/5和1/4可以化成8/20和5/20

  11、分数和小数的互化

  (1)小数化为分数:数小数位数。一位小数,分母是10;两位小数,分母是100……

  如:

  0.3=3/10 0.03=3/100 0.003=3/1000

  (2)分数化为小数:

  方法一:把分数化为分母是10、100、1000……

  如:3/10=0.3 3/5=6/10=0.6

  1/4=25/100=0.25

  方法二:用分子÷分母

  如:3/4=3÷4=0.75

  (3)带分数化为小数:

  先把整数后的分数化为小数,再加上整数

  12、比分数的大小:

  分母相同,分子大,分数就大;

  分子相同,分母小,分数才大。

  分数比较大小的一般方法:同分子比较;通分后比较;化成小数比较。

  13、分数化简包括两步:一是约分;二是把假分数化成整数或带分数。

  1/2=0.5 1/4=0.25 3/4=0.75

  1/5=0.2 2/5=0.4 3/5=0.6

  4/5=0.8

  1/8=0.125 3/8=0.375 5/8=0.625 7/8=0.875 1/20=0.05 1/25=0.04

  14、两个数互质的特殊判断方法:

  ① 1和任何大于1的自然数互质。

  ② 2和任何奇数都是互质数。

  ③相邻的两个自然数是互质数。

  ④相邻的两个奇数互质。

  ⑤不相同的两个质数互质。

  ⑥当一个数是合数,另一个数是质数时(除了合数是质数的倍数情况下),一般情况下这两个数也都是互质数。

  15、求最大公因数的方法:

  ①倍数关系:最大公因数就是较小数。

  ②互质关系:最大公因数就是1

  ③一般关系:从大到小看较小数的因数是否是较大数的因数。

  如何提高数学成绩

  认真听讲的

  这里的听"讲",应包括两方面的意思:一是指在课堂上,精力要集中,不做与学习无关的`动作,要认真倾听老师的点拨、指导,要抓住新知识的生长点,新旧知识的联系,弄清公式、法则的来龙去脉。二是说要认真地听其他同学的发言,对他人的观点、回答能做出评价和必要的补充。

  认真审题

  审题是正确解题的前提,养成认真审题的习惯,不但是提高学习成绩的保障,而且能使孩子从小就具有做事细心、踏实的品性。

  认真计算

  计算是小学生数学学习中最基本的技能。一个从小就能慎重对待计算的人,在以后的行事中就不会轻易犯下草率从事的错误。所以,家长要训练孩子沉着、冷静的学习态度。不管题目难易都要认真对待。对于孩子认真计算有进步的时候要给予鼓励表扬,及时树立自信心。

  检验改错

  在数学知识的探索中,有错误是难免的,正如在人生的旅程中,总是难免有各式各样的错误。因此,检验改错的习惯正是孩子必不可少的一个发展性学习习惯。由此,在日常练习中应把检查和验算当作不可缺少的的步骤,养成检验的好习惯。

  数学统计知识点

  (一)简单的数据分析:在画条形图时要先利用格尺找准数量,做好标记后再画。

  (二)求平均数用移多补少的方法:

  平均数=总数量/总份数

  总数量=平均数×总份数

  总份数=总数量/平均数

  数学五年级知识点 6

  1、分数:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。

  2、分母:表示平均分的份数。分子:表示取出的份数。

  3、分数单位:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。表示其中的一份的数,叫做这个分数的分数单位。

  4、真分数:分子小于分母的分数叫做真分数。真分数小于1。

  5、假分数:分子大于或等于分母的分数,叫做假分数。假分数都大于或等于1。

  6、带分数:由整数和真分数组成的分数叫做带分数。

  7、假分数化成带分数:用分子除以分母,商是带分数的整数部分,余数是带分数分数部分的分子,分母不变。

  8、整数化成假分数:用指定的分母做分母,用整数与分母的积做分子。

  9、带分数化成假分数:用带分数的整数部分乘分母加分子做分子,分母不变。

  10、质因数:每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的因数,叫做这个合数的质因数。

  11、把一个合数用质因数相乘的形式表示出来,叫做分解质因数。如12=2×2×3

  12、几个数公有的因数叫做这几个数的公因数。其中的一个,叫做它们的公因数。

  13、互质:两个数的公因数只有1,这两个数叫做互质。互质的规律:(1)相邻的自然数互质;(2)相邻的'奇数都是互质数;(3)1和任何数互质;(4)两个不同的质数互质(5)2和任何奇数互质。质数与互质的区别:质数是就一个数而言,而互质是指两个或两个以上的数之间的关系;这些数本身不一定是质数,但它们之间的公因数是1,如8和9。

  14、几个数公有的倍数叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。

  15、求公因数,最小公倍数的方法关系公因数最小公倍数倍数关系

  16、分子分母互质的分数叫最简分数,或者说分子分母的公因数只有的1的分数是最简分数。

  17、约分:把一个分数的分子和分母同时除以公因数,分数值不变,这个过程叫做约分。计算结果通常用最简分数表示。

  18、通分:把异分母分数分别化成同分母分数,叫通分。通常用最小公倍数做分数的分母较简便。

  19、如何比较分数的大小:分母相同时,分子大的分数大;分子相同时,分母小的分数大;分子分母都不同时,通分再比。

  20、分数基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分数大小不变。

  21、分数的意义两种解释:①把单位“1”平均分成4份,表示这样的3份。 ②把3平均分成4份,表示这样的1份。

  数学整数加法知识点

  (1)把两个数合并成一个数的运算叫做加法。

  (2)在加法里,相加的数叫做加数,加得的数叫做和。加数是部分数,和是总数。

  (3)加数+加数=和,一个加数=和—另一个加数

  数学世界最大的数和最小的数

  最大的数,从数学意义上讲是不存在的。但是有一个数,宇宙间任何一个量都未能超过它,这个数就是10的100次方,也叫“古戈尔”(gogul的译音)。

  目前世界上每秒运算10亿(10的9次方)次的最快速的电子计算机,假定它从宇宙形成时(距今约200亿年)就开始运算,到今天,其运算总次数也不够10的100次方次。

  没有最小的数字,但有最小的自然数,就是“0”。

  数学五年级知识点 7

  1、表示相等关系的式子叫做等式。

  2、含有未知数的等式是方程。

  3、方程一定是等式;等式不一定是方程。等式>方程

  4、等式两边同时加上或减去同一个数,所得结果仍然是等式。这是等式的性质。

  等式两边同时乘或除以同一个不等于0的数,所得结果仍然是等式。这也是等式的性质。

  5、求方程中未知数的过程,叫做解方程。

  解方程时常用的关系式:

  一个加数=和-另一个加数减数=被减数-差被减数=减数+差

  一个因数=积÷另一个因数除数=被除数÷商被除数=商×除数

  注意:解完方程,要养成检验的好习惯。

  6、五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。奇数个连续的自然数(或连续的奇数,连续的偶数)的和÷个数=中间数

  7、4个连续的自然数(或连续的奇数,连续的偶数)的.和,等于中间两个数或首尾两个数的和×个数÷2(高斯求和公式)

  8、列方程解应用题的思路:

  A、审题并弄懂题目的已知条件和所求问题。

  B、理清题目的等量关系。

  C、设未知数,一般是把所求的数用X表示。

  D、根据等量关系列出方程E、解方程F、检验G、作答。

  数学五年级知识点 8

  1、方程的意义

  含有未知数的等式,叫做方程。

  2、方程和等式的关系

  3、方程的解和解方程的区别

  使方程左右两边相等的未知数的值,叫做方程的.解。

  求方程的解的过程叫做解方程。

  4、列方程解应用题的一般步骤

  (1)弄清题意,找出未知数,并用表示。

  (2)找出应用题中数量之间的相等关系,列方程。

  (3)解方程。

  (4)检验,写出答案。

  5、数量关系式

  加数=和-另一个加数减数=被减数–差被减数=差+减数

  因数=积另一个因数除数=被除数商被除数=商除数

  例4用含有字母的式子表示下面的数量关系

  (1)的7倍;(2)的5倍加上6;(3)5减的差除以3;

  (4)200减5个;(5)比7个多2的数。

  例9要修一段公路,平均每天修米,修了6天,还剩下米。

  (1)用含有字母的式子表示这段公路有多少米;

  (2)根据这个式子,分别求等于50,等于200时,公路长多少米

  例11某个数与9的和的12倍等于156,求这个数是多少。

  例12王晰买了2支钢笔和5支圆珠笔,共付17元。一支钢笔的价格是一支圆珠笔的40倍,求每支钢笔多少钱,每支圆珠笔多少钱?

  数学五年级知识点 9

  1、方法:化大为小或化繁为简,画图,列表,再总结应用

  2、植树问题:

  (1)、两端要栽:

  间隔数=总长÷间距;总长=间距×间隔数;

  棵数=间隔数+1;间隔数=棵数-1

  (类似问题有:竖电线杆,两端插旗......)

  (2)、两端不栽:

  间隔数=总长÷间距;总长=间距×间隔数;

  棵数=间隔数-1;间隔数=棵数+1

  (类似问题有:锯木头,剪铁丝......)

  (3)、一端栽一端不栽:间隔数=总长÷间距;

  总长=间距×间隔数;棵数=间隔数;间隔数=棵数

  (类似问题有:敲钟听声,上楼时间.....)

  3、锯木问题:段数=次数+1;次数=段数-1总时间=每次时间×次数

  4、方阵问题:外层的数目是:边长×4—4或者是(边长-1)×4;

  单边边长=(外层数目+4)÷4

  整个方阵的`总数目是:边长×边长

  5、封闭的图形(例如围成一个圆形、椭圆形):

  总长÷间距=间隔数;棵数=间隔数。

  6、过桥问题总长=车身长+车间距×车间隔数+桥(路长)

  速度=总长÷时间

  7、出租车计费(信件邮资、洗照片)等问题。

  计算时分成两部分。(1)标准部分。已经知道总价的,不再计算,不知道总价需计算。

  (2)超出部分。超出数量×超出单价。后相加。

  数学五年级知识点 10

  分数的意义和性质

  1.单位“1”:一个物体、一些物体都可以看作一个整体,可以用自然数1来表示,通常把它叫做单位“1”。

  2.分数:把单位“1”平均分成若干份,表示这样一份或几份的数叫做分数。

  3.分数单位:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。

  4.分数与除法的关系:被除数÷除数=被除数/除数(≠0),反过来,分数也可以看做两个数相除,分数的分子相当于被除数,分母相当于除数,分数线相当于除号。

  5.求一个数是另一个数的几分之几的方法:用一个数除以另一个数。(前面的量除以后面的`量)

  真分数和假分数

  1.真分数:分子比分母小的分数叫做真分数。(真分数都小于1.)

  2.假分数:分子比分母大或分子和分母相等的分数叫做假分数。(假分数大于1或等于1)

  3.带分数:由整数(不包括0)和真分数合成的数叫做带分数。

  4.假分数化成整数或带分数的方法:用分子除以分母。当分子是分母的整数倍时,能化成整数;当分子不是分母的整数倍时,能化成带分数,商是带分数的整数部分,余数是分数部分的分子,分母不变。

  分数的基本性质

  1.分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这就是分数的基本性质。

  2.性质应用:可以把不同分母的分数化成同分母分数,也可以把一个分数化成指定分母的分数

  数学五年级知识点 11

  一、比较图形面积大小的方法:

  1、数格法;

  2、重叠法;

  3、分割平移法;

  4、公式计算面积法;

  5、借助参照物比较法。

  二、计算不规则图形面积的方法:

  1、数格法;

  2、分割法;

  3、大面积减小面积法;

  4、综合计算法

  注:数格子时,先数完整的格子,再数能拼接的格子,如果几个格子可以拼接成一个完整的`格子,就可以算作一个整格;不能拼接的格子,如果接近半格,按半格算;如果只多一点点的,可以忽略不计;如果超过半格,接近一格的,按一格计算。

  三、底和高

  1、底和高是互相垂直的两条垂线段。(画高时,用虚线画高)

  2、画垂线时用实线画。

  四、面积公式

  1、平行四边形面积=底×高(s平=ah)

  底=平行四边形面积÷高(a=s平÷h)

  高=平行四边形面积÷底(h=s平÷a)

  2、三角形面积=底×高÷2(s三=ah÷2)

  底=三角形面积×2÷高(a=s三×2÷h)

  高=三角形面积×2÷底(h=s三×2÷a)

  3、梯形面积=(上底+下底)×高÷2(s梯=(a+b)h÷2)

  上底=梯形面积×2÷高-下底(a=s梯×2÷h-b)

  下底=梯形面积×2÷高-上底(b=s梯×2÷h-a)

  高=梯形面积×2÷(上底+下底)(h=s梯×2÷(a+b))

  数学五年级知识点 12

  1、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。

  如:0.60.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算。

  2、小数除以整数的计算方法:小数除以整数,按整数除法的方法去除。,商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。

  3、除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。

  注意:如果被除数的位数不够,在被除数的末尾用0补足。

  4、在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的.小数位数,求出商的近似数。

  5、除法中的变化规律:

  ①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。

  ②除数不变,被除数扩大,商随着扩大。

  ③被除数不变,除数缩小,商扩大。

  6、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

  循环节:一个循环小数的小数部分,依次不断重复出现的数字。如6.3232……的循环节是32

  7、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小数,叫做无限小数。

  数学五年级知识点 13

  自然数在日常生活中起了很大的作用,人们广泛使用自然数。自然数是人类历史上最早出现的数,自然数在计数和测量中有着广泛的应用。人们还常常用自然数来给事物标号或排序,如城市的公共汽车路线、门牌号码、邮政编码等。

  数学万以内的加减法知识点

  1、最大的几位数和最小的几位数:

  最大的一位数是9,最小的`一位数是0.

  最大的二位数是99,最小的二位数是10

  最大的三位数是999,最小的三位数是100

  最大的四位数是9999,最小的四位数是1000

  最大的五位数是99999,最小的五位数是10000

  最大的三位数比最小的四位数小1。

  2、笔算加减法时:相同数位要对齐;从个位算起。哪一位上的数相加满10,就向前一位进1;哪一位上的数不够减,就从前一位退1当作10,加本位再减;如果前一位是0,则再从前一位退1。

  3、两个三位数相加的和:可能是三位数,也有可能是四位数。

  4、加法公式:

  加数+加数=和

  和-另一个加数=加数

  5、减法公式:

  被减数-减数=差

  差+减数=被减数或被减数=差+减数

  被减数-差=减数

  6、口算时:

  例:(1)35+48,先算35+40=75,再算75+8=83。

  (2)72-28,先算72-20=52,再算52-8=44或先算72-30=42,再算42+2=44

  7、问题中出现“大约”、“约”、“估一估”、 “估算”、 “估计一下” “应准备”等词语时,都是用估算。

  数学五年级知识点 14

  1、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位 置最多能看到三个面。

  2、正面、侧面、后面都是相对的,它是随着观察角度的变化而变化。通过观察、想象、猜 测, 培养空间想象力和思维能力, 能正确辨认从正面、 侧面、 上面观察到的简单物体的形状。

  3、观察物体,从实物观察到对立体图形的观察有一个体验、认识、提高的过程,建议同学 们先多观察物体,多画观察到的图形,有意识的训练想象能力,逐渐就会观察立体图形了

  4、观察物体,先要确定观察的方向(常选择上面、正面、左侧面、右侧面) ,再确定观察的' 形状,并把它画下来 摆立体图形时, 可根据从上面看到的平面图形摆出底层, 再根据从正面看到的摆出前排图形, 然后根据从左面看对后排进行修正,最后从不同方向观察所摆图形是否符合原题要求

  5、摆立体图形时,可根据从上面看到的平面图形摆出底层,再根据从正面看到的摆出前排 图形, 然后根据从左面看对后排进行修正, 最后从不同方向观察所摆图形是否符合原题要求。

  6、数正方体的个数时,为了既不遗漏又不重复,可分层数;观察露在外面的面,应弄清从 哪几个方向看到的是什么图形,再计算

  7、构建空间想象力:

  (1) 、将两个完全一样的正方体并排放,要求想象画出以不同角度看到的样子(强调 左右面是重合,故只能看见一个正方形) 。

  (2) 、将一个正方体和圆柱体并排放,要求想象画出从不同角度看到的样子。

  8、动手操作,思维拓展 用 5 个小正方体摆从正面看到的图形 (你能摆出几种不同的方法) 。 (有多少种不同摆 法,最少要用多少个小正方体,最多只能用多少个小正方体

【数学五年级知识点】相关文章:

数学五年级下册知识点09-04

【合集】数学五年级下册知识点09-06

小学五年级上册数学知识点:数学广角06-03

小学数学五年级下册数学知识点梳理07-16

数学中考知识点06-29

五年级数学上册知识点07-20

数学函数知识点12-12

数学必考知识点07-12

五年级数学上册的知识点07-19