高二数学复习知识点汇编11篇
上学期间,不管我们学什么,都需要掌握一些知识点,知识点是知识中的最小单位,最具体的内容,有时候也叫“考点”。你知道哪些知识点是真正对我们有帮助的吗?以下是小编整理的高二数学复习知识点,仅供参考,大家一起来看看吧。
高二数学复习知识点1
1.不等式证明的依据
(2)不等式的性质(略)
(3)重要不等式:①|a|≥0;a2≥0;(a-b)2≥0(a、b∈R)
②a2+b2≥2ab(a、b∈R,当且仅当a=b时取“=”号)
2.不等式的证明方法
(1)比较法:要证明a>b(a0(a-b<0),这种证明不等式的方法叫做比较法.
用比较法证明不等式的步骤是:作差——变形——判断符号.
(2)综合法:从已知条件出发,依据不等式的性质和已证明过的不等式,推导出所要证明的不等式成立,这种证明不等式的方法叫做综合法.
(3)分析法:从欲证的不等式出发,逐步分析使这不等式成立的充分条件,直到所需条件已判断为正确时,从而断定原不等式成立,这种证明不等式的方法叫做分析法.
证明不等式除以上三种基本方法外,还有反证法、数学归纳法等.
高二数学复习知识点2
第一章:集合和函数的基本概念,错误基本都集中在空集这一概念上,而每次考试基本都会在选填题上涉及这一概念,一个不小心就是五分没了。次一级的知识点就是集合的韦恩图,会画图,集合的“并、补、交、非”也就解决了,还有函数的定义域和函数的单调性、增减性的概念,这些都是函数的基础而且不难理解。在第一轮复习中一定要反复去记这些概念,的方法是写在笔记本上,每天至少看上一遍。
第二章:基本初等函数:指数、对数、幂函数三大函数的运算性质及图像。函数的几大要素和相关考点基本都在函数图像上有所体现,单调性、增减性、极值、零点等等。关于这三大函数的运算公式,多记多用,多做一点练习基本就没多大问题。函数图像是这一章的重难点,而且图像问题是不能靠记忆的,必须要理解,要会熟练的画出函数图像,定义域、值域、零点等等。对于幂函数还要搞清楚当指数幂大于一和小于一时图像的不同及函数值的大小关系,这也是常考常错点。另外指数函数和对数函数的对立关系及其相互之间要怎样转化问题也要了解清楚。
第三章:函数的应用。主要就是函数与方程的结合。其实就是的实根,即函数的零点,也就是函数图像与X轴的交点。这三者之间的转化关系是这一章的重点,要学会在这三者之间的灵活转化,以求能最简单的解决问题。关于证明零点的方法,直接计算加得必有零点,连续函数在x轴上方下方有定义则有零点等等,这是这一章的难点,这几种证明方法都要记得,多练习强化。这二次函数的零点的Δ判别法,这个倒不算难。
高二数学复习知识点3
(1)定义:
对于函数y=f(x)(x∈D),把使f(x)=0成立的实数x叫做函数y=f(x)(x∈D)的零点。
(2)函数的零点与相应方程的根、函数的图象与x轴交点间的关系:
方程f(x)=0有实数根?函数y=f(x)的图象与x轴有交点?函数y=f(x)有零点。
(3)函数零点的判定(零点存在性定理):
如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根。
二二次函数y=ax2+bx+c(a>0)的图象与零点的关系
三二分法
对于在区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法。
1、函数的零点不是点:
函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图象与x轴交点的横坐标,所以函数的零点是一个数,而不是一个点。在写函数零点时,所写的一定是一个数字,而不是一个坐标。
2、对函数零点存在的判断中,必须强调:
(1)、f(x)在[a,b]上连续;
(2)、f(a)·f(b)<0;
(3)、在(a,b)内存在零点。
这是零点存在的一个充分条件,但不必要。
3、对于定义域内连续不断的函数,其相邻两个零点之间的所有函数值保持同号。
利用函数零点的存在性定理判断零点所在的区间时,首先看函数y=f(x)在区间[a,b]上的图象是否连续不断,再看是否有f(a)·f(b)<0。若有,则函数y=f(x)在区间(a,b)内必有零点。
四判断函数零点个数的常用方法
1、解方程法:
令f(x)=0,如果能求出解,则有几个解就有几个零点。
2、零点存在性定理法:
利用定理不仅要判断函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点。
3、数形结合法:
转化为两个函数的图象的交点个数问题。先画出两个函数的图象,看其交点的个数,其中交点的个数,就是函数零点的个数。
已知函数有零点(方程有根)求参数取值常用的方法
1、直接法:
直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围。
2、分离参数法:
先将参数分离,转化成求函数值域问题加以解决。
3、数形结合法:
先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解。
高二数学复习知识点4
一、随机事件
主要掌握好(三四五)
(1)事件的三种运算:并(和)、交(积)、差;注意差A—B可以表示成A与B的逆的积。
(2)四种运算律:交换律、结合律、分配律、德莫根律。
(3)事件的五种关系:包含、相等、互斥(互不相容)、对立、相互独立。
二、概率定义
(1)统计定义:频率稳定在一个数附近,这个数称为事件的概率;(2)古典定义:要求样本空间只有有限个基本事件,每个基本事件出现的可能性相等,则事件A所含基本事件个数与样本空间所含基本事件个数的比称为事件的古典概率;
(3)几何概率:样本空间中的元素有无穷多个,每个元素出现的可能性相等,则可以将样本空间看成一个几何图形,事件A看成这个图形的子集,它的概率通过子集图形的大小与样本空间图形的大小的比来计算;
(4)公理化定义:满足三条公理的任何从样本空间的子集集合到[0,1]的映射。
三、概率性质与公式
(1)加法公式:P(A+B)=p(A)+P(B)—P(AB),特别地,如果A与B互不相容,则P(A+B)=P(A)+P(B);
(2)差:P(A—B)=P(A)—P(AB),特别地,如果B包含于A,则P(A—B)=P(A)—P(B);
(3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特别地,如果A与B相互独立,则P(AB)=P(A)P(B);
(4)全概率公式:P(B)=∑P(Ai)P(B|Ai)。它是由因求果,
贝叶斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai)。它是由果索因;
如果一个事件B可以在多种情形(原因)A1,A2,...,An下发生,则用全概率公式求B发生的概率;如果事件B已经发生,要求它是由Aj引起的概率,则用贝叶斯公式。
(5)二项概率公式:Pn(k)=C(n,k)p^k(1—p)^(n—k),k=0,1,2,...,n。当一个问题可以看成n重贝努力试验(三个条件:n次重复,每次只有A与A的逆可能发生,各次试验结果相互独立)时,要考虑二项概率公式。
高二数学复习知识点5
1.平面向量的数量积
平面向量数量积的定义
已知两个非零向量a和b,它们的夹角为,把数量|a||b|cos 叫做a和b的数量积(或内积),记作ab.即ab=|a||b|cos ,规定0a=0.
2.向量数量积的运算律
(1)ab=ba
(2)(a)b=(ab)=a(b)
(3)(a+b)c=ac+bc
[探究] 根据数量积的运算律,判断下列结论是否成立.
(1)ab=ac,则b=c吗?
(2)(ab)c=a(bc)吗?
提示:(1)不一定,a=0时不成立,
另外a0时,ab=ac.由数量积概念可知b与c不能确定;
(2)(ab)c=a(bc)不一定相等.
(ab)c是c方向上的向量,而a(bc)是a方向上的向量,当a与c不共线时它们必不相等.
高二数学复习知识点6
(1)直线的倾斜角
定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的.取值范围是0°≤α<180°
(2)直线的斜率
①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。
②过两点的直线的斜率公式:
注意下面四点:
(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;
(2)k与P1、P2的顺序无关;
(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;
(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(3)直线方程
①点斜式:直线斜率k,且过点
注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。
②斜截式:,直线斜率为k,直线在y轴上的截距为b
③两点式:()直线两点,
④截矩式:
其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。
⑤一般式:(A,B不全为0)
注意:各式的适用范围特殊的方程如:
平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);
(4)直线系方程:即具有某一共同性质的直线
(一)平行直线系
平行于已知直线(是不全为0的常数)的直线系:(C为常数)
(二)垂直直线系
垂直于已知直线(是不全为0的常数)的直线系:(C为常数)
(三)过定点的直线系
(ⅰ)斜率为k的直线系:,直线过定点;
(ⅱ)过两条直线,的交点的直线系方程为
(为参数),其中直线不在直线系中。
(5)两直线平行与垂直
当,时;
注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。
(6)两条直线的交点
相交
交点坐标即方程组的一组解。
方程组无解;方程组有无数解与重合
(7)两点间距离公式:
设是平面直角坐标系中的两个点,则
(8)点到直线距离公式:
一点到直线的距离
(9)两平行直线距离公式
在任一直线上任取一点,再转化为点到直线的距离进行求解。
高二数学复习知识点7
反正弦函数的导数:正弦函数y=sin_在[-π/2,π/2]上的反函数,叫做反正弦函数。记作arcsin_,表示一个正弦值为_的角,该角的范围在[-π/2,π/2]区间内。定义域[-1,1],值域[-π/2,π/2]。
反函数求导方法
若F(_),G(_)互为反函数,
则:F'(_)_G'(_)=1
E.G.:y=arcsin__=siny
y'__'=1(arcsin_)'_(siny)'=1
y'=1/(siny)'=1/(cosy)=1/根号(1-sin^2y)=1/根号(1-_^2)
其余依此类推
高二数学复习知识点8
等腰直角三角形面积公式:S=a2/2,S=ch/2=c2/4(其中a为直角边,c为斜边,h为斜边上的高)。
面积公式
若假设等腰直角三角形两腰分别为a,b,底为c,则可得其面积:
S=ab/2。
且由等腰直角三角形性质可知:底边c上的高h=c/2,则三角面积可表示为:
S=ch/2=c2/4。
等腰直角三角形是一种特殊的三角形,具有所有三角形的性质:稳定性,两直角边相等直角边夹一直角锐角45°,斜边上中线角平分线垂线三线合一。
高二数学复习知识点9
导数是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。
导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。
不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。
对于可导的函数f(x),x?f'(x)也是一个函数,称作f(x)的导函数。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。
高二数学复习知识点10
1.总体和样本
在统计学中,把研究对象的全体叫做总体.
把每个研究对象叫做个体.
把总体中个体的总数叫做总体容量.
为了研究总体的有关性质,一般从总体中随机抽取一部分:
研究,我们称它为样本.其中个体的个数称为样本容量.
2.简单随机抽样,也叫纯随机抽样。就是从总体中不加任何分组、划类、排队等,完全随
机地抽取调查单位。特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。简单随机抽样是其它各种抽样形式的基础。通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。
3.简单随机抽样常用的方法:
抽签法;随机数表法;计算机模拟法;使用统计软件直接抽取。
在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;③概率保证程度。
4.抽签法:
(1)给调查对象群体中的每一个对象编号;
(2)准备抽签的工具,实施抽签
(3)对样本中的每一个个体进行测量或调查
例:请调查你所在的学校的学生做喜欢的体育活动情况。
5.随机数表法:
例:利用随机数表在所在的班级中抽取10位同学参加某项活动。
高二数学复习知识点11
数列定义:
如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。
前n项和公式为:Sn=na1+n(n—1)d/2或Sn=n(a1+an)/2(2)
以上n均属于正整数。
解释说明:
从(1)式可以看出,an是n的一次函数(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。
在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项,且为数列的平均数。
且任意两项am,an的关系为:an=am+(n—m)d
它可以看作等差数列广义的通项公式。
推论公式:
从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an—1=a3+an—2=…=ak+an—k+1,k∈{1,2,…,n}
若m,n,p,q∈N_,且m+n=p+q,则有am+an=ap+aq,Sm—1=(2n—1)an,S2n+1=(2n+1)an+1,Sk,S2k—Sk,S3k—S2k,…,Snk—S(n—1)k…或等差数列,等等。
基本公式:
和=(首项+末项)×项数÷2
项数=(末项—首项)÷公差+1
首项=2和÷项数—末项
末项=2和÷项数—首项
末项=首项+(项数—1)×公差
【高二数学复习知识点汇编11篇】相关文章:
高二数学复习知识点08-05
高二数学复习知识点(11篇)12-17
高二数学复习知识点11篇12-09
高二数学复习知识点梳理最新12-07
高二数学复习知识点集合11篇01-03
高二数学复习知识点(精选11篇)12-28
高二数学复习知识点(集合11篇)12-25
高二数学复习知识点精选11篇12-24
高二数学复习知识点合集11篇12-21