高二数学复习知识点

时间:2024-06-29 22:10:00 数学 我要投稿
  • 相关推荐

高二数学复习知识点合集11篇

  在平时的学习中,是不是经常追着老师要知识点?知识点也可以通俗的理解为重要的内容。哪些才是我们真正需要的知识点呢?下面是小编为大家收集的高二数学复习知识点,欢迎阅读与收藏。

高二数学复习知识点合集11篇

高二数学复习知识点1

  数列定义:

  如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的'公差,公差常用字母d表示。

  前n项和公式为:Sn=na1+n(n—1)d/2或Sn=n(a1+an)/2(2)

  以上n均属于正整数。

  解释说明:

  从(1)式可以看出,an是n的一次函数(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。

  在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项,且为数列的平均数。

  且任意两项am,an的关系为:an=am+(n—m)d

  它可以看作等差数列广义的通项公式。

  推论公式:

  从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an—1=a3+an—2=…=ak+an—k+1,k∈{1,2,…,n}

  若m,n,p,q∈N_,且m+n=p+q,则有am+an=ap+aq,Sm—1=(2n—1)an,S2n+1=(2n+1)an+1,Sk,S2k—Sk,S3k—S2k,…,Snk—S(n—1)k…或等差数列,等等。

  基本公式:

  和=(首项+末项)×项数÷2

  项数=(末项—首项)÷公差+1

  首项=2和÷项数—末项

  末项=2和÷项数—首项

  末项=首项+(项数—1)×公差

高二数学复习知识点2

  (1)定义:

  对于函数y=f(x)(x∈D),把使f(x)=0成立的实数x叫做函数y=f(x)(x∈D)的零点。

  (2)函数的零点与相应方程的根、函数的图象与x轴交点间的关系:

  方程f(x)=0有实数根?函数y=f(x)的图象与x轴有交点?函数y=f(x)有零点。

  (3)函数零点的判定(零点存在性定理):

  如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根。

  二二次函数y=ax2+bx+c(a>0)的图象与零点的关系

  三二分法

  对于在区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法。

  1、函数的零点不是点:

  函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图象与x轴交点的横坐标,所以函数的零点是一个数,而不是一个点。在写函数零点时,所写的一定是一个数字,而不是一个坐标。

  2、对函数零点存在的判断中,必须强调:

  (1)、f(x)在[a,b]上连续;

  (2)、f(a)·f(b)<0;

  (3)、在(a,b)内存在零点。

  这是零点存在的一个充分条件,但不必要。

  3、对于定义域内连续不断的函数,其相邻两个零点之间的所有函数值保持同号。

  利用函数零点的存在性定理判断零点所在的区间时,首先看函数y=f(x)在区间[a,b]上的图象是否连续不断,再看是否有f(a)·f(b)<0。若有,则函数y=f(x)在区间(a,b)内必有零点。

  四判断函数零点个数的常用方法

  1、解方程法:

  令f(x)=0,如果能求出解,则有几个解就有几个零点。

  2、零点存在性定理法:

  利用定理不仅要判断函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的`图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点。

  3、数形结合法:

  转化为两个函数的图象的交点个数问题。先画出两个函数的图象,看其交点的个数,其中交点的个数,就是函数零点的个数。

  已知函数有零点(方程有根)求参数取值常用的方法

  1、直接法:

  直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围。

  2、分离参数法:

  先将参数分离,转化成求函数值域问题加以解决。

  3、数形结合法:

  先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解。

高二数学复习知识点3

  反正弦函数的导数:正弦函数y=sinx在[-π/2,π/2]上的反函数,叫做反正弦函数。记作arcsinx,表示一个正弦值为x的.角,该角的范围在[-π/2,π/2]区间内。定义域[-1,1],值域[-π/2,π/2]。

  反函数求导方法

  若F(X),G(X)互为反函数,

  则:F'(X)_'(X)=1

  E.G.:y=arcsin=siny

  y'_'=1(arcsinx)'_siny)'=1

  y'=1/(siny)'=1/(cosy)=1/根号(1-sin^2y)=1/根号(1-x^2)

  其余依此类推

高二数学复习知识点4

  等腰直角三角形面积公式:S=a2/2,S=ch/2=c2/4(其中a为直角边,c为斜边,h为斜边上的高)。

  面积公式

  若假设等腰直角三角形两腰分别为a,b,底为c,则可得其面积:

  S=ab/2。

  且由等腰直角三角形性质可知:底边c上的'高h=c/2,则三角面积可表示为:

  S=ch/2=c2/4。

  等腰直角三角形是一种特殊的三角形,具有所有三角形的性质:稳定性,两直角边相等直角边夹一直角锐角45°,斜边上中线角平分线垂线三线合一。

高二数学复习知识点5

  导数是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。

  导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的`线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。

  不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。

  对于可导的函数f(x),x?f'(x)也是一个函数,称作f(x)的导函数。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。

高二数学复习知识点6

  1.平面向量的数量积

  平面向量数量积的定义

  已知两个非零向量a和b,它们的'夹角为,把数量|a||b|cos 叫做a和b的数量积(或内积),记作ab.即ab=|a||b|cos ,规定0a=0.

  2.向量数量积的运算律

  (1)ab=ba

  (2)(a)b=(ab)=a(b)

  (3)(a+b)c=ac+bc

  [探究] 根据数量积的运算律,判断下列结论是否成立.

  (1)ab=ac,则b=c吗?

  (2)(ab)c=a(bc)吗?

  提示:(1)不一定,a=0时不成立,

  另外a0时,ab=ac.由数量积概念可知b与c不能确定;

  (2)(ab)c=a(bc)不一定相等.

  (ab)c是c方向上的向量,而a(bc)是a方向上的向量,当a与c不共线时它们必不相等.

高二数学复习知识点7

  一、随机事件

  主要掌握好(三四五)

  (1)事件的三种运算:并(和)、交(积)、差;注意差A—B可以表示成A与B的逆的积。

  (2)四种运算律:交换律、结合律、分配律、德莫根律。

  (3)事件的五种关系:包含、相等、互斥(互不相容)、对立、相互独立。

  二、概率定义

  (1)统计定义:频率稳定在一个数附近,这个数称为事件的概率;(2)古典定义:要求样本空间只有有限个基本事件,每个基本事件出现的可能性相等,则事件A所含基本事件个数与样本空间所含基本事件个数的比称为事件的古典概率;

  (3)几何概率:样本空间中的元素有无穷多个,每个元素出现的可能性相等,则可以将样本空间看成一个几何图形,事件A看成这个图形的子集,它的概率通过子集图形的大小与样本空间图形的'大小的比来计算;

  (4)公理化定义:满足三条公理的任何从样本空间的子集集合到[0,1]的映射。

  三、概率性质与公式

  (1)加法公式:P(A+B)=p(A)+P(B)—P(AB),特别地,如果A与B互不相容,则P(A+B)=P(A)+P(B);

  (2)差:P(A—B)=P(A)—P(AB),特别地,如果B包含于A,则P(A—B)=P(A)—P(B);

  (3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特别地,如果A与B相互独立,则P(AB)=P(A)P(B);

  (4)全概率公式:P(B)=∑P(Ai)P(B|Ai)。它是由因求果,

  贝叶斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai)。它是由果索因;

  如果一个事件B可以在多种情形(原因)A1,A2,...,An下发生,则用全概率公式求B发生的概率;如果事件B已经发生,要求它是由Aj引起的概率,则用贝叶斯公式。

  (5)二项概率公式:Pn(k)=C(n,k)p^k(1—p)^(n—k),k=0,1,2,...,n。当一个问题可以看成n重贝努力试验(三个条件:n次重复,每次只有A与A的逆可能发生,各次试验结果相互独立)时,要考虑二项概率公式。

高二数学复习知识点8

  1.在中学我们只研直圆柱、直圆锥和直圆台。所以对圆柱、圆锥、圆台的旋转定义、实际上是直圆柱、直圆锥、直圆台的定义。

  这样定义直观形象,便于理解,而且对它们的性质也易推导。

  对于球的定义中,要注意区分球和球面的概念,球是实心的。

  等边圆柱和等边圆锥是特殊圆柱和圆锥,它是由其轴截面来定义的,在实践中运用较广,要注意与一般圆柱、圆锥的区分。

  2.圆柱、圆锥、圆和球的性质

  (1)圆柱的性质,要强调两点:一是连心线垂直圆柱的底面;二是三个截面的性质——平行于底面的截面是与底面全等的圆;轴截面是一个以上、下底面圆的直径和母线所组成的矩形;平行于轴线的截面是一个以上、下底的圆的弦和母线组成的矩形。

  (2)圆锥的性质,要强调三点

  ①平行于底面的截面圆的性质:

  截面圆面积和底面圆面积的比等于从顶点到截面和从顶点到底面距离的平方比。

  ②过圆锥的顶点,且与其底面相交的截面是一个由两条母线和底面圆的弦组成的等腰三角形,其面积为:

  易知,截面三角形的顶角不大于轴截面的顶角(如图10-20),事实上,由BC≥AB,VC=VB=VA可得∠AVB≤BVC.

  由于截面三角形的顶角不大于轴截面的顶角。

  所以,当轴截面的顶角θ≤90°,有0°<α≤θ≤90°,即有

  当轴截面的顶角θ>90°时,轴截面的`面积却不是的,这是因为,若90°≤α<θ<180°时,1≥sinα>sinθ>0.

  ③圆锥的母线l,高h和底面圆的半径组成一个直径三角形,圆锥的有关计算问题,一般都要归结为解这个直角三角形,特别是关系式

  l2=h2+R2

  (3)圆台的性质,都是从“圆台为截头圆锥”这个事实推得的,高考,但仍要强调下面几点:

  ①圆台的母线共点,所以任两条母线确定的截面为一等腰梯形,但是,与上、下底面都相交的截面不一定是梯形,更不一定是等腰梯形。

  ②平行于底面的截面若将圆台的高分成距上、下两底为两段的截面面积为S,则

  其中S1和S2分别为上、下底面面积。

  的截面性质的推广。

  ③圆台的母线l,高h和上、下两底圆的半径r、R,组成一个直角梯形,且有

  l2=h2+(R-r)2

  圆台的有关计算问题,常归结为解这个直角梯形。

  (4)球的性质,着重掌握其截面的性质。

  ①用任意平面截球所得的截面是一个圆面,球心和截面圆圆心的连线与这个截面垂直。

  ②如果用R和r分别表示球的半径和截面圆的半径,d表示球心到截面的距离,则

  R2=r2+d2

  即,球的半径,截面圆的半径,和球心到截面的距离组成一个直角三角形,有关球的计算问题,常归结为解这个直角三角形。

高二数学复习知识点9

  空间中的平行问题

  (1)直线与平面平行的判定及其性质

  线面平行的'判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行.

  线线平行线面平行

  线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,

  那么这条直线和交线平行.线面平行线线平行

  (2)平面与平面平行的判定及其性质

  两个平面平行的判定定理

  (1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行

  (线面平行→面面平行),

  (2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行.

  (线线平行→面面平行),

  (3)垂直于同一条直线的两个平面平行,

  两个平面平行的性质定理

  (1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行.(面面平行→线面平行)

  (2)如果两个平行平面都和第三个平面相交,那么它们的交线平行.(面面平行→线线平行)

高二数学复习知识点10

  反正弦函数的导数:正弦函数y=sin_在[-π/2,π/2]上的反函数,叫做反正弦函数。记作arcsin_,表示一个正弦值为_的角,该角的`范围在[-π/2,π/2]区间内。定义域[-1,1],值域[-π/2,π/2]。

  反函数求导方法

  若F(_),G(_)互为反函数,

  则:F'(_)_G'(_)=1

  E.G.:y=arcsin__=siny

  y'__'=1(arcsin_)'_(siny)'=1

  y'=1/(siny)'=1/(cosy)=1/根号(1-sin^2y)=1/根号(1-_^2)

  其余依此类推

高二数学复习知识点11

  常用逻辑用语:

  1、四种命题:

  ⑴原命题:若p则q;⑵逆命题:若q则p;⑶否命题:若p则q;⑷逆否命题:若q则p

  注:1、原命题与逆否命题等价;逆命题与否命题等价。判断命题真假时注意转化。

  2、注意命题的否定与否命题的区别:命题否定形式是;否命题是.命题“或”的否定是“且”;“且”的否定是“或”.

  3、逻辑联结词:

  ⑴且(and):命题形式pq;pqpqpqp

  ⑵或(or):命题形式pq;真真真真假

  ⑶非(not):命题形式p.真假假真假

  假真假真真

  假假假假真

  “或命题”的真假特点是“一真即真,要假全假”;

  “且命题”的真假特点是“一假即假,要真全真”;

  “非命题”的真假特点是“一真一假”

  4、充要条件

  由条件可推出结论,条件是结论成立的充分条件;由结论可推出条件,则条件是结论成立的'必要条件。

  5、全称命题与特称命题:

  短语“所有”在陈述中表示所述事物的全体,逻辑中通常叫做全称量词,并用符号表示。含有全体量词的命题,叫做全称命题。

  短语“有一个”或“有些”或“至少有一个”在陈述中表示所述事物的个体或部分,逻辑中通常叫做存在量词,并用符号表示,含有存在量词的命题,叫做存在性命题。

【高二数学复习知识点】相关文章:

数学复习知识点归纳07-26

小升初数学复习知识点09-21

高二物理复习知识点资料整理07-03

高二数学知识点08-01

高二数学复习方法05-26

小升初数学总复习的知识点09-13

小升初数学知识点复习05-19

高二化学上学期复习知识点12-12

高二物理必修三知识点复习笔记08-15