数学 百文网手机站

小学六年级数学总复习知识点归纳

时间:2022-02-23 14:44:40 数学 我要投稿

小学六年级数学总复习知识点归纳

  在日常的学习中,大家最熟悉的就是知识点吧?知识点在教育实践中,是指对某一个知识的泛称。那么,都有哪些知识点呢?以下是小编整理的小学六年级数学总复习知识点归纳,欢迎大家借鉴与参考,希望对大家有所帮助。

小学六年级数学总复习知识点归纳

  小学六年级数学总复习知识点归纳 篇1

  一、与圆有关的概念

  1、圆是由一条曲线围成的平面图形。而长方形、梯形等都是由几条线段围成的平面图形把圆对折,再对折(对折2次)就能找到圆心。因此,圆是轴对称图形,直径所在的直线是圆的对称轴,圆有无数条对称轴。半圆只有1条对称轴。常见的轴对称图形:等腰三角形(1条)、等边三角形(3条)、等腰梯形(1条)、长方形(2条)、正方形(4条)、圆(无数条)、半圆(1条)。

  2、车轮为什么是圆的?答:因为圆心到圆上各点的距离相等,所以圆在滚动时,圆心在一条直线上运动,这样的车轮运行才稳定。

  3、圆内最长的线段是直径,圆规两脚之间的距离是半径。

  4、在同一个圆里,半径是直径的一半,直径是半径的2倍。(d=2r, r =d÷2)

  5、圆心决定圆的位置,半径决定圆的大小。

  6、任何一个圆的周长除以它直径的商都是一个固定的数,我们把它叫做圆周率。用字母π表示。π是一个无限不循环小数。π=3.141592653……

  我们在计算时,一般保留两位小数,取它的近似值3.14。π>3.14

  7、周长相等的平面图形中,圆的面积最大;面积相等的平面图形中,圆的周长最短。

  8、几个直径和为n的圆的周长=直径为n的圆的周长

  几个直径和为n的圆的面积<直径为n的圆的周长

  (如图)略

  9.大小两个圆比较,半径的倍数=直径的倍数=周长的倍数,面积的倍数=半径倍数的平方(即半径扩大n倍,直径扩大n倍,周长扩大n倍,面积扩大n×n倍)

  10、常用的3.14的倍数:

  3.14×2=6.28 3.14×3=9.42 3.14×4=12.56 3.14×5=15.7 0

  3.14×6=18.84 3.14×7=21.98

  3.14×8=25.12 3.14×9=28.26 3.14×16=50.24 3.14×25=78.50

  3.14×36=113.04 3.14×49=153.86 3.14×64=200.96 3.14×81=254.34

  11、常用的平方数:

  11?=121 12?=144 13?=169 14?=196 15?=225 16?=256 17?=289

  18?=324 19?=361 20?=400

  二、圆的周长公式

  1、已知圆的半径(r),求圆的周长(c):C=2πr

  2、已知圆的直径(d),求圆的周长(c)C=πd

  3、已知圆的周长,求圆的半径:r=C÷π÷2

  4、已知圆的周长,求圆的直径:d=C÷π

  5、求半圆的弧长,半圆的弧长等于圆周长的一半:半圆的弧长=πr或者半圆的弧长=πd÷2

  6、求半圆的周长,半圆的周长等于圆周长的一半加一条直径:C半圆= πr+2r

  C半圆= πd÷2+d

  7、车轮滚动一周前进的路程就是车轮的周长。

  每分前进米数(速度)=车轮的周长×每分的转数

  8、求阴影部分的周长:总体思路,记住一点,周长的概念,所有围成这个图形的线段或曲线的长度之和。所以求阴影部分的周长时,首先把阴影部分这个图形的轮廓画出来,找出这个图形都由哪些线段、哪些曲线组合起来的。再分别求出这些线段、曲线的长度,最后相加。比如,这个图形:

  首先,我找出阴影部分在哪,找出阴影部分后发现,这个阴影部分的周长是由两个圆弧、两个条线段组成。那么这两个圆弧合起来正好是一个圆的周长,所以这个阴影部分的周长=10×2×3.14+10×2+10×2

  例题:

  1、小红沿直径6.4米的圆形花圃边走一周,需要走多少米?(走一周的路程就是圆的周长)

  2、一捆电线绕了9圈,每圈直径都是48厘米,这捆电线长多少米?(圆的周长就是绕一圆的长度,有9圈)

  三、圆面积公式

  圆所占平面的大小叫圆的面积。把圆等分的份数越多,拼成的图形就越接近平行四边形或长方形。拼成的平行四边形的底相当于圆周长的一半,高相当于圆的半径;

  1.已知圆的半径,求圆的面积S=πr?

  2.已知圆的周长,求圆的面积S=π(C÷π÷2)?

  3.半圆的面积,即整圆面积的一半:半圆面积=πr?÷2

  4.求圆环的面积一般是用外圆的面积减去内圆的面积,还可以利用乘法分配律进行简便计算。

  S圆环=S外圆—S内圆=πR?-πr?=π(R?-r?)

  5、正方形里最大的圆。两者联系:边长=直径;圆的面积=78.5%正方形的面积

  画法:(1)画出正方形的两条对角线;(2)以对角线交点为圆心,以边长为直径画圆。

  6、长方形里最大的圆。两者联系:宽=直径

  画法:(1)画出长方形的两条对角线;(2)以对角线交点为圆心,以宽为直径画圆。

  例:在长10分米,宽8分米的长方形中画一个最大的圆,圆的周长和面积各是多少?

  7、在圆内画一个最大的正方形这个最大的正方形的面积=直径×半径

  8、在半圆内画一个最大的三角形,三角形的底就是圆的直径,三角形的高就是圆的关径。三角形的面积=直径直径×半径÷2

  二、分数混合运算

  (一)分数混合运算

  1、分数混合运算顺序与整数混合运算顺序相同,没有括号的先算(乘除),再算(加减);有括号的先算(括号里面的),再算(括号外面的)。

  2、整数的运算律在分数运算中同样适用。

  3、加法交换律:a+b=b+a

  4、加法结合律:a+b+c=a+(b+c)

  5、乘法交换律:a×b=b×a

  6、乘法结合律:a×b×c=a×(b×c)

  7、乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c

  8、减法定律:减法的性质a-b-c=a-(b+c)或a-(b+c) =a-b-c连减等于一次性减除

  9、除法的性质:a÷b÷c=a÷(b×c)或a÷(b×c)= a÷b÷c

  连除等于除以两个除数的积

  三、观察物体

  1.观察的范围将眼睛、障碍物的最高处这两点连成线,并将这条线延长,线的一侧没被障碍物挡住的部分就是观察到的范围。站的越高,观察的范围越大。离观察物越近,观察的范围越小。

  2.天安门广场:观察角度不同,看到物体的形状也不同。

  四、分数及百分数的应用

  1、表示一个数是另一个数的百分之几的数叫作(百分数),也叫作(百分率)或(百分比)。

  2、百分率一般是指(部分)占(整体)的百分之几。

  3、小数化百分数时,把小数点向(右)移动(两)位,后面添上百分号;分数化成百分数,可以先化成小数,再化成百分数。

  4、百分数化成小数时,把(百分号)先去掉,再把小数点向(左)移动(两)位;百分数化成分数,先写成分母是(100)的分数形式,再化成(最简)分数。

  5、求一个数是另一个数的几分之几(或百分之几)?

  “是”字前面的数÷“是”字后面的数

  6、求一个数比另一个数多(或少)几分之几(或百分之几)?

  (大数-小数)÷“比”字后面的数

  7、常见的小数、百分比和分数的互化。略

  8、应纳税额。计算方法:营业额×税率

  9、利息=本金×利率×时间,本金=利息÷利率÷时间,利率=利息÷本金÷时间,时间=利息÷本金÷利率

  10、税后利息计算方法:利息-利息×税率

  11、到期后可以取出的钱数计算方法:本金+税后利息

  12、生活中的百分率:

  出勤率、缺勤率、发芽率、优秀率、及格率、合格率、命中率、近视率、出粉率、出米率、出油率、入学率、升学率、森林覆盖率、绿化覆盖率、收视率、体育达标率、疫苗接种率、含糖率、含盐率、正确率、错误率

  达标率=达标学生人数÷学生总人数发芽率=发芽种子数÷种子总数

  出勤率=出勤人数÷学生总人数合格率=合格的产品数÷产品总数

  出米率=米的重量÷稻谷的重量成活率=成活的数量÷种植总数

  出粉率=粉的重量÷小麦的重量出油率=油的重量÷花生的重量

  命中率=命中的次数÷投篮总数含盐率=盐的重量÷盐水的重量

  有关分数百分数应用题解题技巧与方法指导:

  一、解分数,百分数应用题

  二、找单位1的方法

  1、部分数和总数

  在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。

  例如我国人口约占世界人口的1/5,世界人口是总数,我国人口是部分数,所以,世界人口就是单位“1”。

  再如,食堂买来100千克白菜,吃了2/5,吃了多少千克?在这里,食堂一共买来的白菜是总数,吃掉的是部分数,所以100千克白菜就是单位“1”。

  解答这类分数应用题,只要找准总数和部分数,确定单位“1”就很容易了。

  2、两种数量比较

  分数应用题中,两种数量相比的关键句非常多。有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”。在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。

  例如:六(2)班男生比女生多1/2。就是以女生人数为标准(单位“1”),男生比女生多的人数作为比较量。在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于”谁的,“是”谁的几分之几。这个“占”,“相当于”,“是”后面的数量——谁就是单位“1”。

  例如,一个长方形的宽是长的5/12。在这关键句中,很明显是以长作为标准,宽和长相比较,也就是说长是单位“1”。又如,今年的产量相当于去年的4/3倍。那么相当于后面的去年的产量就是标准量,也就是单位“1”。

  3、原数量与现数量

  有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系。这类分数应用题的单位“1”比较难找。

  例如,水结成冰后体积增加了1/10,冰融化成水后,体积减少了1/12。象这样的水和冰两种数量到底谁作为单位“1”?两句关键句的单位“1”是不是相同?

  用上面讲过的两种方法不容易找出单位“1”。其实我们只要看,原来的.数量是谁?这个原来的数量就是单位“1”!比如水结成冰,原来的数量就是水,那么水就是单位“1”。冰融化成水,原来的数量是冰,所以冰的体积就是单位“1”。

  三、如何根据分率句来写等量关系

  四、百分数题型分类及解题方法

  百分数应用题三种类型

  第一大类求分率用除法:求一个数是另一个数的百分之几

  1.直接求一个数是另一个数的百分之几一个数÷另一个数

  2.求一个数比另一个数多百分之几多的部分÷单位1

  3.求一个数比另一个数少百分之几少的部分÷单位1

  例:(1)男生有25人,女生有20人,女生是男生的百分之几?

  (2)男生有25人,女生有20人,男生比女生多百分之几?

  (3)男生有25人,女生有20人,女生比男生少百分之几?

  第二大类单位1已知用乘法:求一个数的百分之几是多少

  1.直接求一个数的百分之几是多少单位1×分率

  2.求比一个数多百分之几的数是多少

  单位1×(1+分率)3.求比一个数少百分之几的数是多少

  单位1×(1-分率)

  例:(1)男生有25人,女生是男生的80% ,女生有多少人?

  (2)女生有20人,男生比女生多25%,女生有多少人?

  (3)男生有25人,女生比男生少20%,女生有多少人?

  第三大类单位1未知用除法:已知一个数的百分之几是多少,求这个数。

  1.已知一个数的百分之几是多少,求这个数。

  已知量÷分率=单位1

  2.已知比一个数多百分之几的数是多少,求这个数

  已知量÷(1+多的分率)=单位1

  3.已知比一个数少百分之几的数是多少,求这个数

  已知量÷(1-少的分率)=单位1

  例:(1)女生有25人,是男生的80%,男生有多少人?

  (2)男生有25人,比女生多25%,女生有多少人?

  (3)女生有20人,比男生少20%,男生有多少人?

  四、比的认识

  (一)、比的意义

  1、比的意义:两个数相除又叫做两个数的比。

  2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

  3、比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。

  例:路程÷速度=时间。

  4、区分比和比值比:表示两个数的关系,可以写成比的形式,也可以用分数表示。比值:相当于商,是一个数,可以是整数,分数,也可以是小数。

  5、根据分数与除法的关系,两个数的比也可以写成分数形式。

  6、比和除法、分数的联系:略

  7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。

  8、根据比与除法、分数的关系,可以理解比的后项不能为0。体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。

  (二)、比的基本性质

  1、根据比、除法、分数的关系:

  商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。

  分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。

  比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

  2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。

  3、根据比的基本性质,可以把比化成最简单的整数比。

  4、化简比:略

  5、按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。

  6、路程一定,速度比和时间比成反比。

  (如:路程相同,速度比是4:5,时间比则为5:4)

  工作总量一定,工作效率和工作时间成反比。

  (如:工作总量相同,工作时间比是3:2,工作效率比则是2:3)

  (三)和比的应用题有关的概念

  1、求每份数的方法和÷分数和=每份数相差数÷相差份数=每份数部分数÷对应份数=每份数

  2、图形求比的常见公式长方体:(长+宽+高)的和=棱长和÷4长方形:(长+宽)的和=周长÷2

  3、相遇问题速度和=路程÷相遇时间

  (四)比的应用

  ★知识体系

  1、在工农业生产和生活中,常常需要把一个数量按照一定的比来进行分配。这种分配方法通常叫按比例分配。

  按比例分配应用题分为三种情况,看下面的三个例子:

  例(1)一年级与二年级共有学生130人,一年级与二年级人数比是5︰8,两个年级各有学生多少人?

  例(2)二年级比一年级多30人,一年级与二年级人数比是5︰8,两个年级各有多少人?例(3)二年级有80人,一年级与二年级人数比是5︰8,一年级有多少人?

  五、常用的数量关系

  1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数

  2、速度×时间=路程路程÷速度=时间路程÷时间=速度

  3、单价×数量=总价总价÷单价=数量总价÷数量=单价

  4、工作效率×工作时间=工作总量

  工作总量÷工作效率=工作时间

  工作总量÷工作时间=工作效率

  5、加数+加数=和和-一个加数=另一个加数

  6、被减数-减数=差被减数-差=减数差+减数=被减数

  7、因数×因数=积积÷一个因数=另一个因数

  8、被除数÷除数=商被除数÷商=除数商×除数=被除数

  小学六年级数学总复习知识点归纳 篇2

  (一)分数乘法的意义和计算法则

  1、分数乘整数的意义

  2/11×3 表示: 求3个2/11是多少? 求2/11的3倍是多少?

  2、分数乘整数的计算方法

  分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。(能约分的要先约分再乘)

  3、一个数乘分数的意义:就是求这个数的几分之几是多少。3/5×1/4表示:求3/5的1/4是多少。

  4、分数乘分数的的计算方法

  分数乘分数,用分子乘分子,分母乘分母。(能约分的要先约分再乘)

  (二)求一个数的几分之几是多少的问题

  1、找单位“1”的方法

  (1)是谁的几分之几,就把谁看作单位“1”。

  (2)一般把“比”字、“是”字、“占”字、“相当于”后面的量看作单位“1”。

  注意: 找单位“1”在分率句里找,有分率的句子称为分率句。

  分率不带单位,具体数量带有单位。

  2、求一个数的几倍、几分之几是多少,用乘法计算。

  15的3/5是多少? 15×3/5=9

  3、已知单位“1”用乘法计算

  单位“1”×分率=分率的对应量

  注意:(1) 乘上什么样的分率就等于什么样的数量。

  (2) 乘上谁占的分率就等于谁的数量。

  (3) 是谁的几分之几,就用谁乘上几分之几。

  4、已知A比B多(或少)几分之几,求A的解题方法

  5、积与因数的大小关系

  大于1的数,积大于A。

  A(0除外)乘上

  小于1的数,积小于A。

  小学六年级数学总复习知识点归纳 篇3

  1、分数除法的意义

  3/10÷1/10表示:已知两个因数的积是3/10,与其中一个因数是1/10,求另一个因数是多少。

  2、分数除法的计算方法

  除以一个不等于0的数,等于乘这个数的倒数。

  3、被除数与商的大小关系

  当除数小于1时,商就大于被除数。(0除外)

  当除数大于1时,商就小于被除数。(0除外)

  4、分数四则混合运算的运算顺序

  (1) 只有“+、-”或只有“×、÷”,从左往右计算。

  (2) 有“+、-”,也有“×、÷”,先乘除后加减。

  (3) 有( )、[ ]的,先算( )里面的,再算[ ]里面的。

  (一)已知一个数的几倍、几分之几是多少,求这个数。用除法计算。

  1、已知一个数的几分之几是多少,求这个数的问题

  例:甲数是15,甲数是乙数的3/5。乙数是多少? 15÷3/5=25

  2、求一个数是另一个数的几倍、几分之几,用除法计算。

  方法是:用“是”字前面的数÷“是”字后面的数。

  例:1、15是5的几倍? 15÷5=3

  2、20是25的几分之几? 20÷25=4/5

  3、求一个数比另一个数多(或少)几分之几的解题方法是:

  用相差量÷问题“比”字后面的量

  例:(1)甲数是25,乙数是20。甲数比乙数多几分之几? (25-20)÷20=1/4

  (2) 甲数是25,乙数是20。乙数比甲数少几分之几? (25-20)÷25=1/5

  4、求单位“1”用除法计算。

  具体量(对应量)÷对应分率=单位“1”

  什么样的数量就对应什么样的分率。

  什么样的分率就对应什么样的数量。

  5、求平均数问题: 总量÷总份数=每份数

  注意:求平均每什么就除以什么数。(求每天就除以天数;求每人就除以人数;求每千克就除以千克数;求每米就除以米数……)

  6、已知A比B多(或少)几分之几,求B的解题方法:

  A÷(1+/-几分之几)=B

  7、已知单位“1”用乘法,求单位“1”用除法;

  分率比多的就1+,比少的就1-。

  8、工程问题

  把工作总量看作“1”,工作效率就是1/工作时间。

  工作时间=工作量 ÷ 工作效率

  要做的工作量 由谁做就除以谁的工作效率

  1人的效率=两人的效率和-另1人的效率

  小学六年级数学总复习知识点归纳 篇4

  一、百分数的意义:

  表示一个数是另一个数的百分之几的数叫做百分数。百分数又叫百分比或百分率,百分数不能带单位。

  注意:百分数是专门用来表示一种特殊的倍比关系的,表示两个数的比。

  1、百分数和分数的区别和联系:

  (1)联系:都可以用来表示两个量的倍比关系。

  (2)区别:意义不同:百分数只表示倍比关系,不表示具体数量,所以不能带单位。分数不仅表示倍比关系,还能带单位表示具体数量。百分数的分子可以是小数,分数的分子只可以是整数。

  注意:百分数在生活中应用广泛,所涉及问题基本和分数问题相同,分母是100的分数并不是百分数,必须把分母写成“%”才是百分数,所以“分母是100的分数就是百分数”这句话是错误的。“%”的两个0要小写,不要与百分数前面的数混淆。一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。一般出粉率在70%、80%,出油率在30%、40%。

  2、小数、分数、百分数之间的互化

  (1)百分数化小数:小数点向左移动两位,去掉“%”。

  (2)小数化百分数:小数点向右移动两位,添上“%”。

  (3)百分数化分数:先把百分数写成分母是100的分数,然后再化简成最简分数。

  (4)分数化百分数:分子除以分母得到小数,(除不尽的保留三位小数)然后化成百分数。

  (5)小数化分数:把小数成分母是10、100、1000等的分数再化简。

  (6)分数化小数:分子除以分母。

  二、百分数应用题:

  1、求常见的百分率,如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几。

  2、求一个数比另一个数多(或少)百分之几,实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。

  求甲比乙多百分之几:(甲-乙)÷乙。

  求乙比甲少百分之几:(甲-乙)÷甲。

  3、求一个数的百分之几是多少。一个数(单位“1”)×百分率

  4、已知一个数的百分之几是多少,求这个数。

  部分量÷百分率=一个数(单位“1”)。

  7、百分数应用题型分类

  (1)求甲是乙的百分之几——(甲÷乙)×100%=百分之几。

  (2)求甲比乙多百分之几——(甲-乙)÷乙×100%。

  (3)求甲比乙少百分之几——(乙-甲)÷乙×100%。

  第七单元 扇形统计图的意义

  1、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比图。

  2、常用统计图的优点:

  (1)条形统计图直观显示每个数量的多少。

  (2)折线统计图不仅直观显示数量的增减变化,还可清晰看出各个数量的多少。

  (3)扇形统计图直观显示部分和总量的关系。

  第八单元 数学广角--数与形

  2+4+6+8+10+12+14+16+18+20=(110)

  规律:从2开始的n个连续偶数的和等于n×(n+1)。所以:10×(10+1)=10×11=110。

  从1开始的连续奇数的和正好是这串数个数的平方。

【小学六年级数学总复习知识点归纳】相关文章:

小学语文总复习知识点归纳09-03

小学数学总复习大全05-13

小学数学的总复习05-12

小学数学总复习专题05-12

初三物理总复习的重要知识点归纳09-27

关于小学数学总复习汇总05-12

小学数学总复习知识要点05-12

小学数学总复习提纲05-12

小学语文总复习知识点分类12-07