数学 百文网手机站

六年级上册数学知识点

时间:2021-12-03 16:37:27 数学 我要投稿

六年级上册数学知识点13篇

  在现实学习生活中,大家都背过各种知识点吧?知识点是指某个模块知识的重点、核心内容、关键部分。相信很多人都在为知识点发愁,下面是小编为大家收集的六年级上册数学知识点,仅供参考,欢迎大家阅读。

六年级上册数学知识点13篇

六年级上册数学知识点1

  (一)、比的意义

  1、比的意义:两个数相除又叫做两个数的比。

  2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

  例如15:10=15÷10=3/2(比值通常用分数表示,也可以用小数或整数表示)

  15∶10=3/2

  前项比号后项比值

  3、比可以表示两个相同量的关系,即倍数关系。例:长是宽的几倍。

  也可以表示两个不同量的比,得到一个新量。例:路程÷速度=时间。

  4、区分比和比值

  比:表示两个数的关系,可以写成比的形式,也可以用分数表示。

  比值:相当于商,是一个数,可以是整数,分数,也可以是小数。

  5、根据分数与除法的关系,两个数的比也可以写成分数形式。

  6、比和除法、分数的联系:

  比前项比号“:”后项比值

  除法被除数除号“÷”除数商

  分数分子分数线“—”分母分数值

  7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。

  8、根据比与除法、分数的关系,可以理解比的后项不能为0。

  9、体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。

  10、求比值:用前项除以后项,结果是写为分数(不会约分的就不约分)

  例如:15∶10=15÷10=15/10=3/2

  (二)、比的基本性质

  1、根据比、除法、分数的关系:

  商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。

  分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。

  比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

  2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。

  3、根据比的基本性质,可以把比化成最简单的整数比。

  4。化简比:

  (2)用求比值的方法。注意:最后结果要写成比的形式。

  例如:15∶10=15÷10=15/10=3/2=3∶2

  还可以15∶10=15÷10=3/2最简整数比是3∶2

  5、比中有单位的,化简和求比值时要把单位化相同再化简和求比值,结果没有单位。

  6。按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。一般有两种解题法

  1,用分率解:按比例分配通常把总量看作单位一,即转化成分率。要先求出总份数,再求出几份占总份数的几分之几,最后再用总量分别乘几分之几。

  例如:有糖水25克,糖和水的比为1:4,糖和水分别有几克?

  1+4=5糖占1/5用25×1/5得到糖的数量,水占4/5用25×4/5得到水的数量。

  2,用份数解:要先求出总份数,再求出每一份是多少,最后分别求出几份是多少。

  例如:有糖水25克,糖和水的比为1:4,糖和水分别有几克?

  糖和水的份数一共有1+4=5一份就是25÷5=5糖有1份就是5×1水有4分就是5×4

  小学数学新课标的基本理念

  1。义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生,实现:人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。

  2。数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据、进行计算、推理和证明,数学模型可以有效地描述自然现象和社会现象;数学为其他科学提供了语言、思想和方法,是一切重大技术发展的基础;数学在提高人的推理能力、抽象能力、想像力和创造力等方面有着独特的作用;数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。

  3。学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。内容的呈现应采用不同的表达方式,以满足多样化的学习需求。有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。由于学生所处的文化环境、家庭背景和自身思维方式的不同,学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。

  小学数学广角知识点

  1、数不仅可以用来表示数量和顺序,还可以用来编码。

  2、邮政编码:由6位组成,前2位表示省(直辖市、自治区),前3位表示邮区,前4位表示县(市),最后2位表示投递局(所)。

  3、身份证号码:由18位组成,(1)前1、2位数字表示:所在省份的代码;(2)第3、4位数字表示:所在城市的代码;

  (3)第5、6位数字表示:所在区县的代码;

  (4)第7~14位数字表示:出生年、月、日;

  (5)第15、16位数字表示:所在地的派出所的代码;

  (6)第17位数字表示性别:奇数表示男性,偶数表示女性;

  (7)第18位数字是校检码:用来检验身份证的正确性。校检码可以是0~9的数字,有时也用x表示。

六年级上册数学知识点2

  一、分数除法的意义和分数除以整数

  知识点一:分数除法的意义

  整数除法的意义:已知两个因数的积与其中一个因数,求另一个因数的运算。

  知识点二:分数除以整数的计算方法

  把一个数平均分成整数份,求其中的几份就是求这个数的几分之几是多少。

  分数除以整数(0除外)的计算方法:(1)用分子和整数相除的商做分子,分母不变。(2)分数除以整数,等于分数乘这个整数的倒数。

  二、一个数除以分数

  知识点一:一个数除以分数的计算方法

  一个数除以分数,等于这个数乘分数的倒数。

  知识点二:分数除法的统一计算法则

  甲数除以乙数(0除外),等于甲数乘乙数的倒数。

  知识点三:商与被除数的大小关系

  一个数(0除外)除以小于1的数,商大于被除数,除以1,商等于被除数,除以大于1的数,商小于被除数。0除以任何数商都为0。

  三、分数除法的混合运算

  知识点一:分数除加、除减的运算顺序

  除加、除减混合运算,如果没有括号,先算除法,后算加减。

  知识点二:连除的计算方法

  分数连除,可以分步转化为乘法计算,也可以一次都转化为乘法再计算,能约分的要约分。

  知识点三:不含括号的分数混合运算的运算顺序

  在一个分数混合运算的算式里,如果只含有同一级运算,按照从左到右的顺序计算;如果含有两级运算,先算第二级运算,再算第一级运算。

  知识点四:含有括号的分数混和运算的运算顺序

  在一个分数混合运算的算式里,如果既有小括号又有中括号,要先算小括号里面的,再算中括号里面的。

  知识点五:整数的运算定律在分数混和运算中的运用

  分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。被除数分子乘除数分母,被除数分母乘除数分子。

  小学数学小数除法知识点

  1、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。如:2。6÷1。3表示已知两个因数的积2。6与其中的一个因数1。3,求另一个因数的运算。

  小数除法的计算方法:

  计算除数是整数的小数除法,按整数除法的计算方法去除,商的小数点要和被除数的小数点对齐,整数部分不够除,商0,点上小数点,继续除;如果有余数,要添0再除。

  计算除数是小数的除法,先把除数转化成整数,除数的小数点向右移动几位,被除数的小数点也要向右移动几位,位数不够时,在被除数的末尾用0补足,然后按照除数是整数的小数除法进行计算。

  2、取近似数的方法:

  取近似数的方法有三种,①四舍五入法②进一法③去尾法

  一般情况下,按要求取近似数时用四舍五入法,进一法、去尾法在解决实际问题的时候选择应用。

  取商的近似数时,保留到哪一位,一定要除到那一位的下一位,然后用四舍五入的方法取近似数。没有要求时,除不尽的一般保留两位小数。

  3、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。依次不断重复出现的数字,叫做这个循环小数的的循环节。

  4、循环小数的表示方法:

  一种是用省略号表示,要写出两个完整的循环节,后面标上省略号。如:0。3636…… 1。587587……

  另一种是简写的方法:即只写出一组循环节,然后在循环节的第一个数字和最后一个数上面点上圆点。如:12。

  5、有限小数:小数部分的位数是有限的小数,叫做有限小数。

  6、无限小数:小数部分的位数是无限的小数,叫做无限小数。

  小学数学单位间进率知识点

  1公里=1千米1千米=1000米

  1米=10分米1分米=10厘米1厘米=10毫米

  1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米

  1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米

  1吨=1000千克1千克= 1000克= 1公斤= 1市斤

  1公顷=10000平方米1亩=666。666平方米

  1升=1立方分米=1000毫升1毫升=1立方厘米

六年级上册数学知识点3

  一、百分数的意义和写法

  (一)、百分数的意义:表示一个数是另一个数的百分之几。百分数是指的两个数的比,因此也叫百分率或百分比。

  (二)、百分数和分数的主要联系与区别:

  联系:都可以表示两个量的倍比关系。

  区别:①、意义不同:百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位;

  分数既可以表示具体的数,又可以表示两个数的关系,表示具体数时可以带单位。

  ②、百分数的分子可以是整数,也可以是小数;

  分数的分子不能是小数,只能是除0以外的自然数。

  3、百分数的写法:通常不写成分数形式,而在原来分子后面加上“%”来表示,读作百分之。

  二、百分数和分数、小数的互化

  (一)百分数与小数的互化:

  1、小数化成百分数:把小数点向右移动两位(数位不够用0补足),同时在后面添上百分号。

  2.百分数化成小数:把小数点向左移动两位(数位不够用0补足),同时去掉百分号。

  (二)百分数的和分数的互化

  1、百分数化成分数:先把百分数改写成分母是100的分数,能约分要约成最简分数。

  2、分数化成百分数:

  ①用分数的基本性质,把分数分母扩大或缩小成分母是100的分数,再写成百分数形式。

  ②先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。(建议用这种方法)

  (三)常见分数小数百分数之间的互化;

  三、用百分数解决问题

  (一)一般应用题

  1、常见的百分率的计算方法:

  一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。

  2、求一个数是另一个数的百分之几用一个数除以另一个数,结果写为百分数形式。

  例如:例如:男生有20人,女生有15人,女生人数占男生人数的百分之几。

  列式是:15÷20=15/20=75%

  3、已知单位“1”的量(用乘法),求单位“1”的百分之几是多少的问题,数量关系式和分数乘法解决问题中的关系式相同:

  (1)百分率前是“的”:单位“1”的量×百分率=百分率对应量

  (2百分率前是“多或少”的数量关系:

  单位“1”的量×(1±百分率)=百分率对应量

  4、未知单位“1”的量(用除法),已知单位“1”的百分之几是多少,求单位“1”。方法与分数的方法相同。

  解法:(1)方程:根据数量关系式设未知量为X,用方程解答。

  (2)算术(用除法):百分率对应量÷对应百分率=单位“1”的量

  5、求一个数比另一个数多(少)百分之几的方法与分数的方法相同。只是结果要写为百分数形式。看百分率前有没有比多或比少的问题;

  百分率前是“多或少”的关系式:

  (比少):具体量÷ (1-百分率)=单位“1”的量;

  例如:大米有50千克,比面粉树少50%,面粉有多少千克。

  列式是:50÷(1-50%)

  (比多):具体量÷ (1+百分率)=单位“1”的量

  例如:工人做110个零件,比原计划多做了10%,原计划做多少个?

  列式是:110÷(1+10%)

  6、求一个数比另一个数多百分之几的方法:方法与分数的方法相同。

  用两个数的相差量÷单位“1”的量=百分之几

  即①求一个数比另一个数多百分之几:用(大数–小数) ÷另一个数(比那个数就除以那个数),结果写为百分数形式。

  甲比乙多几分之几的问题,方法A,(甲-乙)÷乙(建议用)

  方法B,甲÷乙-100%

  例如:老师计划改40本作业,实际改了50本,实际比计划多改了百分之几?

  列式是:(50-40)÷40=0.25=25%

  ②求一个数比另一个数少几分之几:用(大数–小数) ÷另一个数(比那个数就除以那个数),结果写为百分数形式。

  乙比甲少几分之几的问题,方法A,(甲-乙)÷甲(建议用)

  方法B,100%-乙÷甲

  例如:张三家用了100度电,李四家用了90度电,李四家比张三家少用百分之几?

  (100-90)÷100=0.1=10%

  说明:多百分之几不等于少百分之几,因为单位一不同。

  7、如果甲比乙多或少a%,求乙比甲少或多百分之几,用a%÷(1±a%)

  8、求价格先降a%又上升a%后的价格:1×(1-a%)×(1+a%)(假设原来的价格为“1”。求变化幅度(求降价后的价格是涨价后价格的百分之几)用1-降价后又上升的百分率。

  小学数学四大领域主要内容

  数与代数:的认识,数的表示,数的大小,数的运算,数量的估计;

  图形与几何:空间与平面的基本图形,图形的性质和分类;图形的平移、旋转、轴对称;

  统计与概率:收集、整理和描述数据,处理数据;

  实践与综合应用:以一类问题为载体,学生主动参与的学习活动,是帮助学生积累数学活动经验的重要途径。

  数学分数加减法知识点

  一、分数的意义

  1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。

  2、分数单位:把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位。

  二、分数与除法的关系,真分数和假分数

  1、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母。

  2、真分数和假分数:

  ①分子比分母小的分数叫做真分数,真分数小于1。

  ②分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于1。

  ③由整数部分和分数部分组成的分数叫做带分数。

  3、假分数与带分数的互化:

  ①把假分数化成带分数,用分子除以分母,所得商作整数部分,余数作分子,分母不变。

  ②把带分数化成假分数,用整数部分乘以分母加上分子作分子,分母不变。

  三、分数的基本质

  分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。

  四、分数的大小比较

  ①同分母分数,分子大的分数就大,分子小的分数就小;

  ②同分子分数,分母大的分数反而小,分母小的分数反而大。

  ③异分母分数,先化成同分母分数(分数单位相同),再进行比较。(依据分数的基本性质进行变化)

  五、约分(最简分数)

  1、最简分数:分子和分母只有公因数1的分数叫做最简分数。

  2、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。 (并不是一定要把分数化成与它相等的最简分数才叫约分;但一般要约到最简分数为止)

  注意:分数加减法中,计算结果能约分的,一般要约分成最简分数。

  六、分数和小数的互化:

  1、小数化分数:将小数化成分母是10、100、1000…的分数,能约分的要约分。具体是:看有几位小数,就在1后边写几个0做分母,把小数点去掉的部分做分子,能约分的要约分。

  2、分数化小数:用分子除以分母,除不尽的按要求保留几位小数。(一般保留三位小数。)

  如果分母只含有2或5的质因数,这个分数能化成有限小数。如果含有2或5以外的质因数,这个分数就不能化成有限小数。

  3、分数和小数比较大小:一般把分数变成小数后比较更简便。

  七、分数的加法和减法

  1、分数方程的计算方法与整数方程的计算方法一致,在计算过程中要注意统一分数单位。

  2、分数加减混和运算的运算顺序和整数加减混和运算的运算顺序相同。在计算过程,整数的运算律对分数同样适用。

  3、同分母分数加、减法:同分母分数相加、减,分母不变,只把分子相加减,计算的结果,能约分的要约成最简分数。

  4、异分母分数加、减法:异分母分数相加、减,要先通分,再按照同分母分数加减法的方法进行计算;或者先根据需要进行部分通分。根据算式特点来选择方法。

六年级上册数学知识点4

  小数

  1、小数的意义:把整数1平均分成10份、100份、1000份……得到的十分之几、百分之几、千分之几……可以用小数表示。

  一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……

  2、一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数是整数部分,小数点右边的数叫做小数部分。

  3、在小数里,每相邻两个计数单位之间的进率都是10。小数部分的分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。

  分数

  1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。

  2、把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。

  3、分数的分类

  真分数:分子比分母小的分数叫做真分数。真分数小于1。假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。

  4、约分:把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。

  5、分子分母是互质数的分数叫做最简分数。

  6、把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

  约分和通分

  1、约分的方法:用分子和分母的公因数(1除外)去除分子、分母;通常要除到得出最简分数为止。

  2、通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。

  数学0的性质

  1、0既不是正数也不是负数,而是介于—1和+1之间的整数。

  2、0的相反数是0,即—0=0。

  3、0的绝对值是其本身。

  4、0乘任何实数都等于0,除以任何非零实数都等于0,任何实数加上0等于其本身。

  5、0没有倒数和负倒数,一个非0的数除以0在实数范围内无意义。

  6、0的正数次方等于0,0的负数次方无意义,因为0没有倒数。

  7、除0外,任何数的的0次方等于1。

  8、0也不能做除数、分数的分母、比的后项。

  9、0的阶乘等于1。

  小学数学运算定律和性质知识点

  加法:

  加法交换律:a+b=b+a

  加法结合律:(a+b)+c=a+(b+c)

  乘法:乘法交换律:a×b=b×a

  乘法结合律:(a×b)×c=a×(b×c)

  乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c(b=1时,省略b)

  变式:(a—b)×c=a×c—b×c或a×c—b×c=(a—b)×c

  减法:减法性质:a—b—c=a—(b+c)

  除法:除法性质:a÷b÷c=a÷(b×c)

六年级上册数学知识点5

  第六单元 百分数(一)

  一、百分数的意义:

  表示一个数是另一个数的百分之几的数叫做百分数。百分数又叫百分比或百分率,百分数不能带单位。

  注意:百分数是专门用来表示一种特殊的倍比关系的,表示两个数的比。

  1、百分数和分数的区别和联系:

  (1)联系:都可以用来表示两个量的倍比关系。

  (2)区别:意义不同:百分数只表示倍比关系,不表示具体数量,所以不能带单位。分数不仅表示倍比关系,还能带单位表示具体数量。百分数的分子可以是小数,分数的分子只可以是整数。

  注意:百分数在生活中应用广泛,所涉及问题基本和分数问题相同,分母是100的分数并不是百分数,必须把分母写成“%”才是百分数,所以“分母是100的分数就是百分数”这句话是错误的。“%”的两个0要小写,不要与百分数前面的数混淆。一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。一般出粉率在70%、80%,出油率在30%、40%。

  2、小数、分数、百分数之间的互化

  (1)百分数化小数:小数点向左移动两位,去掉“%”。

  (2)小数化百分数:小数点向右移动两位,添上“%”。

  (3)百分数化分数:先把百分数写成分母是100的分数,然后再化简成最简分数。

  (4)分数化百分数:分子除以分母得到小数,(除不尽的保留三位小数)然后化成百分数。

  (5)小数化分数:把小数成分母是10、100、1000等的分数再化简。

  (6)分数化小数:分子除以分母。

  二、百分数应用题:

  1、求常见的百分率,如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几。

  2、求一个数比另一个数多(或少)百分之几,实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。

  求甲比乙多百分之几:(甲-乙)÷乙。

  求乙比甲少百分之几:(甲-乙)÷甲。

  3、求一个数的百分之几是多少。一个数(单位“1”)×百分率

  4、已知一个数的百分之几是多少,求这个数。

  部分量÷百分率=一个数(单位“1”)。

  7、百分数应用题型分类

  (1)求甲是乙的百分之几——(甲÷乙)×100%=百分之几。

  (2)求甲比乙多百分之几——(甲-乙)÷乙×100%。

  (3)求甲比乙少百分之几——(乙-甲)÷乙×100%。

  第七单元 扇形统计图的意义

  1、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比图。

  2、常用统计图的优点:

  (1)条形统计图直观显示每个数量的多少。

  (2)折线统计图不仅直观显示数量的增减变化,还可清晰看出各个数量的多少。

  (3)扇形统计图直观显示部分和总量的关系。

  第八单元 数学广角--数与形

  2+4+6+8+10+12+14+16+18+20=(110)

  规律:从2开始的n个连续偶数的和等于n×(n+1)。所以:10×(10+1)=10×11=110。

  从1开始的连续奇数的和正好是这串数个数的平方。

六年级上册数学知识点6

  一、扇形统计图的意义:

  用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间的关系。

  也就是各部分数量占总数的百分比(因此也叫百分比图)。

  二、常用统计图的优点:

  1、条形统计图:可以清楚的看出各种数量的多少。

  2、折线统计图:不仅可以看出各种数量的多少,还可以清晰看出数量的增减变化情况。

  3、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系。

  三、扇形的面积大小:在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角越大,扇形越大。(因此扇形面积占圆面积的百分比,同时也是该扇形圆心角度数占圆周角度数的百分比。)

  四统计图:复式折线统计图是用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来,以折线的上升或下降来表示统计数量增减变化。折线统计图不但可以表示出数量的多少,而且还能够清楚的表示出数量增减变化的情况。

  小学数学图形的变换知识点

  1、轴对称图形:把一个图形沿着某一条直线对折,两边能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。

  2、成轴对称图形的特征和性质:①对称点到对称轴的距离相等;②对称点的连线与对称轴垂直;③对称轴两边的图形大小形状完全相同。

  3、物体旋转时应抓住三点:①旋转中心;②旋转方向;③旋转角度。旋转只改变物体的位置,不改变物体的形状、大小。

  六年级数学必考难题整理

  1圆柱侧面积

  1.王师傅用面积是9.42平方分米的铁皮做成了一个长2分米的烟囱(接头处忽略不计)则,这个烟囱的横截面的直径是多少?

  解:横截面的周长:9.42/2=4.71(分米)

  横截面的直径:4.71/3.14=1.5(分米)

  答:这个烟囱的横截面的直径是1.5分米。

  2计算整除

  2.只修改970405的某一个数字,就可使修改后的六位数能被225整除,修改后的六位数是_____。

  解:逆向思考:因为225=25×9,且25和9互质,所以,只要修改后的数能分别被25和9整除,这个数就能被225整除。我们来分别考察能被25和9整除的情形。由能被25整除的数的特征(末两位数能被25整除)知,修改后的六位数的末两位数可能是25,或75。再据能被9整除的数的特征(各位上的数字之和能被9整除)检验,得9+7+0+4+5=25,25+2=27,25+7=32。故知,修改后的六位数是970425。

  3路程问题

  3.车队向灾区运送一批救灾物资,去时每小时行80km,5小时到达灾区。回来时每小时行100km,这支车队要多长时间能够返回出发地?

  解:80×5÷100=400÷100=4(小时)

  答:这支车队要四个小时能够返回出发地。

六年级上册数学知识点7

  百分数

  1.百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。

  百分数表示两个数之间的比率关系,不表示具体的数量,无单位名称。

  例如:25%的意义:表示一个数是另一个数的25%。

  2.百分数通常不写成分数形式,而在原来分子后面加上“%”来表示。分子部分可为小数、整数,可以大于100,小于100或等于100。

  3.小数与百分数互化的规则:

  把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;(加向右)

  把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。(去向左)

  4.百分数与分数互化的规则:

  把分数化成百分数,通常先把分数化成小数(除不尽的保留三位小数),再把小数化成百分数;

  把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。

  5、常用的分数、小数及百分数的互化

  2(1)=0.5=50%4(1)=0.25=25%

  4(3)=0.75=75%5(1)=0.2=20%

  5(2)=0.4=40%5(3)=0.6=60%

  5(4)=0.8=80%8(1)=0.125=12.5%

  8(3)=0.375=37.5%8(5)=0.625=62.5%

  8(7)=0.875=87.5%10(1)=0.1=10%

  16(1)=0.0625=6.25(1)=0.05=5%

  25(1)=0.04=4%40(1)=0.025=2.5%

  50(1)=0.02=2%100(1)=0.01=1%

  6.百分率公式:求百分率就是求一个数是另一个数的百分之几。(算式要加×100%,包括浓度、利润率)

  7.求一个数比另一个数多(或少)百分之几(另一个数是单位“1”)

  实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。

  求甲比乙多百分之几(甲-乙)÷乙

  求乙比甲少百分之几(甲-乙)÷甲

  8.求一个数的百分之几是多少

  一个数(单位“1”)×百分率

  9.已知一个数的百分之几是多少,求这个数?

  部分量÷百分率=一个数(单位“1”)

  10、浓度问题

  溶质(盐)的重量+溶剂(水)的重量=溶液(盐水)的重量

  溶质(盐)的重量÷溶液(盐水)的重量×100%=浓度

  溶液(盐水)的重量×浓度=溶质(盐)的重量

  溶质(盐)的重量÷浓度=溶液(盐水)的重量

  最常用的是用方程解浓度问题

  比如两种不同浓度的溶液混合,最常用的数量关系是

  甲溶液质量×甲的浓度+乙溶液质量×乙的浓度

  =总溶液质量×总的浓度

  11.折扣:商品的现价是原价的百分之几。几折就是十分之几也就是百分之几十。

  “八折”的含义是:现价是原价的80%;“八五折”的含义是:现价是原价的85%

  公式:现价=原价×折数(通常写成百分数形式)

  利润=售价-成本

  利润率=成本(利润)×100%

  成数:表示一个数是另一个数十分之几的数,叫做成数。例如,今年的粮食产量比去年增产“二成”。“二成”即是十分之二,也就是今年的粮食产量比去年增加了20%。

  12.纳税:纳税是根据国家各种税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。国家用收来的税款发展经济、科技、教育、文化和国防安全。纳税的种类:将纳税主要分为增值税、消费税、营业税、个人所得税等几类。

  13.应纳税额:缴纳的税款叫应纳税额。

  14.税率:应纳税额与各种收入的比率叫做税率。

  15.应纳税额的计算:应纳税额=各种收入×税率

  例如:一家饭店十月份的营业额约是30万元,如果安营业额的5%缴纳营业税,这家饭店十月份应缴纳营业税多少万元?

  16.储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。

  17.存款的类型:存款分为活期、整存整取、零存整取等方式。

  18.本金:存入银行的钱叫做本金。

  19.利息:取款时银行多支付的钱叫做利息。本息:本金与利息的总和叫做本息。

  20.国家规定,存款的利息要按5%(根据题目要求数据计算)的税率纳税。国债的利息不纳税。

  21.利率:利息与本金的比值叫做利率。

  22.银行存款税后利息的计算公式:利息=本金×利率×时间×(1-5%)

  23.银行存款利息的税金=利息×5% 或 =本金×利率×时间×5%

六年级上册数学知识点8

  一、分数除法的意义:分数除法是分数乘法的逆运算,已知两个数的积与其中一个因数,求另一个因数的运算。

  二、分数除法计算法则:除以一个数(0除外),等于乘上这个数的倒数。

  1、被除数÷除数=被除数×除数的倒数。例 ÷3= × = 3÷ =3× =5

  2、除法转化成乘法时,被除数一定不能变,“÷”变成“×”,除数变成它的倒数。

  3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。

  4、被除数与商的变化规律:

  ①除以大于1的数,商小于被除数:a÷b=c 当b>1时,c

  ②除以小于1的数,商大于被除数:a÷b=c 当b<1时,c>a (a≠0 b≠0)

  ③除以等于1的数,商等于被除数:a÷b=c 当b=1时,c=a

  三、分数除法混合运算

  1、混合运算用梯等式计算,等号写在第一个数字的左下角。

  2、运算顺序:

  ①连除:属同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据“除以几个数,等于乘上这几个数的积”的简便方法计算。加、减法为一级运算,乘、除法为二级运算。

  ②混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面。

  注:(a±b)÷c=a÷c±b÷c

  四、比:两个数相除也叫两个数的比

  1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。

  注:连比如:3:4:5读作:3比4比5

  2、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。

  例:12∶20= =12÷20= =0.6 12∶20读作:12比20

  注:区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。

  比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。

  3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。

  3、化简比:化简之后结果还是一个比,不是一个数。

  (1)、 用比的前项和后项同时除以它们的最大公约数。

  (2)、 两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。也可以求出比值再写成比的形式。

  (3)、 两个小数的比,向右移动小数点的位置,也是先化成整数比。

  4、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。

  5、比和除法、分数的区别:

  除法 被除数 除号(÷) 除数(不能为0) 商不变性质 除法是一种运算

  分数 分子 分数线(——) 分母(不能为0) 分数的基本性质 分数是一个数

  比 前项 比号(∶) 后项(不能为0) 比的基本性质 比表示两个数的关系

  附:商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变。

  分数的基本性质:分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

  五、分数除法和比的应用

  1、已知单位“1”的量用乘法。例:甲是乙的 ,乙是25,求甲是多少?即:甲=乙× (15× =9)

  2、未知单位“1”的量用除法。例: 甲是乙的 ,甲是15,求乙是多少?即:甲=乙× (15÷ =25)(建议列方程答)

  3、分数应用题基本数量关系(把分数看成比)

  (1)甲是乙的几分之几?

  甲=乙×几分之几 (例:甲是15的 ,求甲是多少?15× =9)

  乙=甲÷几分之几 (例:9是乙的 ,求乙是多少?9÷ =15)

  几分之几=甲÷乙 (例:9是15的几分之几?9÷15= )(“是”字相当“÷”号,乙是单位“1”)

  (2)甲比乙多(少)几分之几?

  A 差÷乙= (“比”字后面的量是单位“1”的量)(例:9比15少几分之几?(15-9)÷15= = = )

  B 多几分之几是: –1 (例: 15比9少几分之几?15÷9= -1= –1= )

  C 少几分之几是:1– (例:9比15少几分之几?1-9÷15=1– =1– = )

  D 甲=乙±差=乙±乙× =乙±乙× =乙(1± ) (例:甲比15少 ,求甲是多少?15–15× =15×(1– )=9(多是“+”少是“–”)

  E 乙=甲÷(1± )(例:9比乙少 ,求乙是多少?9÷(1- )=9 ÷ =15)(多是“+”少是“–”)

  (例:15比乙多 ,求乙是多少?15÷(1+ )=15 ÷ =9)(多是“+”少是“–”)

  4、按比例分配:把一个量按一定的比分配的方法叫做按比例分配。

  例如:已知甲乙的和是56,甲、乙的比3∶5,求甲、乙分别是多少?

  方法一:56÷(3+5)=7 甲:3×7=21 乙:5×7=35

  方法二:甲:56× =21 乙:56× =35

  例如:已知甲是21,甲、乙的比3∶5,求乙是多少?

  方法一:21÷3=7 乙:5×7=35

  方法二:甲乙的和21÷ =56 乙:56× =35

  方法二:甲÷乙= 乙=甲÷ =21÷ =35

  5、画线段图:

  (1)找出单位“1”的量,先画出单位“1”,标出已知和未知。

  (2)分析数量关系。

  (3)找等量关系。

  (4)列方程。

  注:两个量的关系画两条线段图,部分和整体的关系画一条线段图。

六年级上册数学知识点9

  一、与圆有关的概念

  1、圆是由一条曲线围成的平面图形。而长方形、梯形等都是由几条线段围成的平面图形把圆对折,再对折(对折2次)就能找到圆心。因此,圆是轴对称图形,直径所在的直线是圆的对称轴,圆有无数条对称轴。半圆只有1条对称轴。常见的轴对称图形:等腰三角形(1条)、等边三角形(3条)、等腰梯形(1条)、长方形(2条)、正方形(4条)、圆(无数条)、半圆(1条)。

  2、车轮为什么是圆的?答:因为圆心到圆上各点的距离相等,所以圆在滚动时,圆心在一条直线上运动,这样的车轮运行才稳定。

  3、圆内最长的线段是直径,圆规两脚之间的距离是半径。

  4、在同一个圆里,半径是直径的一半,直径是半径的2倍。(d=2r, r =d÷2)

  5、圆心决定圆的位置,半径决定圆的大小。

  6、任何一个圆的周长除以它直径的商都是一个固定的数,我们把它叫做圆周率。用字母π表示。π是一个无限不循环小数。π=3.141592653……

  我们在计算时,一般保留两位小数,取它的近似值3.14。π>3.14

  7、周长相等的平面图形中,圆的面积最大;面积相等的平面图形中,圆的周长最短。

  8、几个直径和为n的圆的周长=直径为n的圆的周长

  几个直径和为n的圆的面积<直径为n的圆的周长

  (如图)略

  9.大小两个圆比较,半径的倍数=直径的倍数=周长的倍数,面积的倍数=半径倍数的平方(即半径扩大n倍,直径扩大n倍,周长扩大n倍,面积扩大n×n倍)

  10、常用的3.14的倍数:

  3.14×2=6.28 3.14×3=9.42 3.14×4=12.56 3.14×5=15.7 0

  3.14×6=18.84 3.14×7=21.98

  3.14×8=25.12 3.14×9=28.26 3.14×16=50.24 3.14×25=78.50

  3.14×36=113.04 3.14×49=153.86 3.14×64=200.96 3.14×81=254.34

  11、常用的平方数:

  11?=121 12?=144 13?=169 14?=196 15?=225 16?=256 17?=289

  18?=324 19?=361 20?=400

  二、圆的周长公式

  1、已知圆的半径(r),求圆的周长(c):C=2πr

  2、已知圆的直径(d),求圆的周长(c)C=πd

  3、已知圆的周长,求圆的半径:r=C÷π÷2

  4、已知圆的周长,求圆的直径:d=C÷π

  5、求半圆的弧长,半圆的弧长等于圆周长的`一半:半圆的弧长=πr或者半圆的弧长=πd÷2

  6、求半圆的周长,半圆的周长等于圆周长的一半加一条直径:C半圆= πr+2r

  C半圆= πd÷2+d

  7、车轮滚动一周前进的路程就是车轮的周长。

  每分前进米数(速度)=车轮的周长×每分的转数

  8、求阴影部分的周长:总体思路,记住一点,周长的概念,所有围成这个图形的线段或曲线的长度之和。所以求阴影部分的周长时,首先把阴影部分这个图形的轮廓画出来,找出这个图形都由哪些线段、哪些曲线组合起来的。再分别求出这些线段、曲线的长度,最后相加。比如,这个图形:

  首先,我找出阴影部分在哪,找出阴影部分后发现,这个阴影部分的周长是由两个圆弧、两个条线段组成。那么这两个圆弧合起来正好是一个圆的周长,所以这个阴影部分的周长=10×2×3.14+10×2+10×2

  例题:

  1、小红沿直径6.4米的圆形花圃边走一周,需要走多少米?(走一周的路程就是圆的周长)

  2、一捆电线绕了9圈,每圈直径都是48厘米,这捆电线长多少米?(圆的周长就是绕一圆的长度,有9圈)

  三、圆面积公式

  圆所占平面的大小叫圆的面积。把圆等分的份数越多,拼成的图形就越接近平行四边形或长方形。拼成的平行四边形的底相当于圆周长的一半,高相当于圆的半径;

  1.已知圆的半径,求圆的面积S=πr?

  2.已知圆的周长,求圆的面积S=π(C÷π÷2)?

  3.半圆的面积,即整圆面积的一半:半圆面积=πr?÷2

  4.求圆环的面积一般是用外圆的面积减去内圆的面积,还可以利用乘法分配律进行简便计算。

  S圆环=S外圆—S内圆=πR?-πr?=π(R?-r?)

  5、正方形里最大的圆。两者联系:边长=直径;圆的面积=78.5%正方形的面积

  画法:(1)画出正方形的两条对角线;(2)以对角线交点为圆心,以边长为直径画圆。

  6、长方形里最大的圆。两者联系:宽=直径

  画法:(1)画出长方形的两条对角线;(2)以对角线交点为圆心,以宽为直径画圆。

  例:在长10分米,宽8分米的长方形中画一个最大的圆,圆的周长和面积各是多少?

  7、在圆内画一个最大的正方形这个最大的正方形的面积=直径×半径

  8、在半圆内画一个最大的三角形,三角形的底就是圆的直径,三角形的高就是圆的关径。三角形的面积=直径直径×半径÷2

  二、分数混合运算

  (一)分数混合运算

  1、分数混合运算顺序与整数混合运算顺序相同,没有括号的先算(乘除),再算(加减);有括号的先算(括号里面的),再算(括号外面的)。

  2、整数的运算律在分数运算中同样适用。

  3、加法交换律:a+b=b+a

  4、加法结合律:a+b+c=a+(b+c)

  5、乘法交换律:a×b=b×a

  6、乘法结合律:a×b×c=a×(b×c)

  7、乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c

  8、减法定律:减法的性质a-b-c=a-(b+c)或a-(b+c) =a-b-c连减等于一次性减除

  9、除法的性质:a÷b÷c=a÷(b×c)或a÷(b×c)= a÷b÷c

  连除等于除以两个除数的积

  三、观察物体

  1.观察的范围将眼睛、障碍物的最高处这两点连成线,并将这条线延长,线的一侧没被障碍物挡住的部分就是观察到的范围。站的越高,观察的范围越大。离观察物越近,观察的范围越小。

  2.天安门广场:观察角度不同,看到物体的形状也不同。

  四、分数及百分数的应用

  1、表示一个数是另一个数的百分之几的数叫作(百分数),也叫作(百分率)或(百分比)。

  2、百分率一般是指(部分)占(整体)的百分之几。

  3、小数化百分数时,把小数点向(右)移动(两)位,后面添上百分号;分数化成百分数,可以先化成小数,再化成百分数。

  4、百分数化成小数时,把(百分号)先去掉,再把小数点向(左)移动(两)位;百分数化成分数,先写成分母是(100)的分数形式,再化成(最简)分数。

  5、求一个数是另一个数的几分之几(或百分之几)?

  “是”字前面的数÷“是”字后面的数

  6、求一个数比另一个数多(或少)几分之几(或百分之几)?

  (大数-小数)÷“比”字后面的数

  7、常见的小数、百分比和分数的互化。略

  8、应纳税额。计算方法:营业额×税率

  9、利息=本金×利率×时间,本金=利息÷利率÷时间,利率=利息÷本金÷时间,时间=利息÷本金÷利率

  10、税后利息计算方法:利息-利息×税率

  11、到期后可以取出的钱数计算方法:本金+税后利息

  12、生活中的百分率:

  出勤率、缺勤率、发芽率、优秀率、及格率、合格率、命中率、近视率、出粉率、出米率、出油率、入学率、升学率、森林覆盖率、绿化覆盖率、收视率、体育达标率、疫苗接种率、含糖率、含盐率、正确率、错误率

  达标率=达标学生人数÷学生总人数发芽率=发芽种子数÷种子总数

  出勤率=出勤人数÷学生总人数合格率=合格的产品数÷产品总数

  出米率=米的重量÷稻谷的重量成活率=成活的数量÷种植总数

  出粉率=粉的重量÷小麦的重量出油率=油的重量÷花生的重量

  命中率=命中的次数÷投篮总数含盐率=盐的重量÷盐水的重量

  有关分数百分数应用题解题技巧与方法指导:

  一、解分数,百分数应用题

  二、找单位1的方法

  1、部分数和总数

  在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。

  例如我国人口约占世界人口的1/5,世界人口是总数,我国人口是部分数,所以,世界人口就是单位“1”。

  再如,食堂买来100千克白菜,吃了2/5,吃了多少千克?在这里,食堂一共买来的白菜是总数,吃掉的是部分数,所以100千克白菜就是单位“1”。

  解答这类分数应用题,只要找准总数和部分数,确定单位“1”就很容易了。

  2、两种数量比较

  分数应用题中,两种数量相比的关键句非常多。有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”。在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。

  例如:六(2)班男生比女生多1/2。就是以女生人数为标准(单位“1”),男生比女生多的人数作为比较量。在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于”谁的,“是”谁的几分之几。这个“占”,“相当于”,“是”后面的数量——谁就是单位“1”。

  例如,一个长方形的宽是长的5/12。在这关键句中,很明显是以长作为标准,宽和长相比较,也就是说长是单位“1”。又如,今年的产量相当于去年的4/3倍。那么相当于后面的去年的产量就是标准量,也就是单位“1”。

  3、原数量与现数量

  有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系。这类分数应用题的单位“1”比较难找。

  例如,水结成冰后体积增加了1/10,冰融化成水后,体积减少了1/12。象这样的水和冰两种数量到底谁作为单位“1”?两句关键句的单位“1”是不是相同?

  用上面讲过的两种方法不容易找出单位“1”。其实我们只要看,原来的数量是谁?这个原来的数量就是单位“1”!比如水结成冰,原来的数量就是水,那么水就是单位“1”。冰融化成水,原来的数量是冰,所以冰的体积就是单位“1”。

  三、如何根据分率句来写等量关系

  四、百分数题型分类及解题方法

  百分数应用题三种类型

  第一大类求分率用除法:求一个数是另一个数的百分之几

  1.直接求一个数是另一个数的百分之几一个数÷另一个数

  2.求一个数比另一个数多百分之几多的部分÷单位1

  3.求一个数比另一个数少百分之几少的部分÷单位1

  例:(1)男生有25人,女生有20人,女生是男生的百分之几?

  (2)男生有25人,女生有20人,男生比女生多百分之几?

  (3)男生有25人,女生有20人,女生比男生少百分之几?

  第二大类单位1已知用乘法:求一个数的百分之几是多少

  1.直接求一个数的百分之几是多少单位1×分率

  2.求比一个数多百分之几的数是多少

  单位1×(1+分率)3.求比一个数少百分之几的数是多少

  单位1×(1-分率)

  例:(1)男生有25人,女生是男生的80% ,女生有多少人?

  (2)女生有20人,男生比女生多25%,女生有多少人?

  (3)男生有25人,女生比男生少20%,女生有多少人?

  第三大类单位1未知用除法:已知一个数的百分之几是多少,求这个数。

  1.已知一个数的百分之几是多少,求这个数。

  已知量÷分率=单位1

  2.已知比一个数多百分之几的数是多少,求这个数

  已知量÷(1+多的分率)=单位1

  3.已知比一个数少百分之几的数是多少,求这个数

  已知量÷(1-少的分率)=单位1

  例:(1)女生有25人,是男生的80%,男生有多少人?

  (2)男生有25人,比女生多25%,女生有多少人?

  (3)女生有20人,比男生少20%,男生有多少人?

  四、比的认识

  (一)、比的意义

  1、比的意义:两个数相除又叫做两个数的比。

  2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

  3、比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。

  例:路程÷速度=时间。

  4、区分比和比值比:表示两个数的关系,可以写成比的形式,也可以用分数表示。比值:相当于商,是一个数,可以是整数,分数,也可以是小数。

  5、根据分数与除法的关系,两个数的比也可以写成分数形式。

  6、比和除法、分数的联系:略

  7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。

  8、根据比与除法、分数的关系,可以理解比的后项不能为0。体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。

  (二)、比的基本性质

  1、根据比、除法、分数的关系:

  商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。

  分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。

  比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

  2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。

  3、根据比的基本性质,可以把比化成最简单的整数比。

  4、化简比:略

  5、按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。

  6、路程一定,速度比和时间比成反比。

  (如:路程相同,速度比是4:5,时间比则为5:4)

  工作总量一定,工作效率和工作时间成反比。

  (如:工作总量相同,工作时间比是3:2,工作效率比则是2:3)

  (三)和比的应用题有关的概念

  1、求每份数的方法和÷分数和=每份数相差数÷相差份数=每份数部分数÷对应份数=每份数

  2、图形求比的常见公式长方体:(长+宽+高)的和=棱长和÷4长方形:(长+宽)的和=周长÷2

  3、相遇问题速度和=路程÷相遇时间

  (四)比的应用

  ★知识体系

  1、在工农业生产和生活中,常常需要把一个数量按照一定的比来进行分配。这种分配方法通常叫按比例分配。

  按比例分配应用题分为三种情况,看下面的三个例子:

  例(1)一年级与二年级共有学生130人,一年级与二年级人数比是5︰8,两个年级各有学生多少人?

  例(2)二年级比一年级多30人,一年级与二年级人数比是5︰8,两个年级各有多少人?例(3)二年级有80人,一年级与二年级人数比是5︰8,一年级有多少人?

  五、数据处理:略

  六、常用的数量关系

  1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数

  2、速度×时间=路程路程÷速度=时间路程÷时间=速度

  3、单价×数量=总价总价÷单价=数量总价÷数量=单价

  4、工作效率×工作时间=工作总量

  工作总量÷工作效率=工作时间

  工作总量÷工作时间=工作效率

  5、加数+加数=和和-一个加数=另一个加数

  6、被减数-减数=差被减数-差=减数差+减数=被减数

  7、因数×因数=积积÷一个因数=另一个因数

  8、被除数÷除数=商被除数÷商=除数商×除数=被除数

六年级上册数学知识点10

  第一部分填空题

  1、分数、除法、比、百分数的关系考查

  比如:4÷5=( ):25=( )%=( )折

  这样的题型对于成绩差的孩子还是很成问题的,每节课开始的几分钟都会让学生练习一道。首先要理解分数、除法、比的关系,然后要会小数、分数、百分数的互化,解决这样的题让学生找出完全已知的一个数,根据这个数填个各空,根据题目中的最简分数来填每一个题。

  2、分数、百分数、小数的大小比较。

  这样的题目我是让学生根据题中数字的特点都化成统一类型的数字,比如都化成百分数,或者都化成小数或者都化成百分数,从而比较数的大小,但是要提醒孩子写到卷面上的一定是题目中的数字,而不是自己化好的数,统一数的类型是我们解决这类型题目的手段,但一定要切记最后回归原来的数。

  3、求百分数

  在复习中我们把求百分数的题目分成三种题型联系,分别是:(1)百分数意义的考查,一个数是另一个数的百分之几,除法计算;(2)一个量比另一个量多百分之几或者少百分之几,把被比较量看作单位“1”,问题问的是多(少)的部分占单位“1”的百分之几,对于这样的题首先找到两个量的差,差除以单位“1”;(3)各种率的计算,对于这样的题目,首先想公式,这样的题目把总量看作单位“1”。

  4、比例尺的应用

  比例尺分为数值比例尺和线段比例尺,关于比例尺这一单元的题目考查的是三个题型分别是求比例尺,注意数值比例尺的前项和后项的单位一定要一致,线段比例尺和数值比例尺的互化,化单位很关键;求实际距离,对于求实际距离的题目,如果题目中已知是数值比例尺,我们为了计算的方便,将数值比例尺的后项厘米化成以米或者千米为单位的数,具体看题目。求图上距离。其实比例尺的题目,无论哪种题型,列比例解决问题可以事半功倍。

  5、按比例分配

  比和比例这一单元,学生除了要知道比和除法、分数的关系,还要知道比的基本性质和比例的基本性质,并会应用性质解决题目。

  6、折扣、税收、储蓄

  关于买衣服的折扣问题,孩子要知道原价看作单位“1”,在原价的基础上打折扣,孩子要理清打折扣后衣服比原来便宜了多少,“全场优惠10%”对于这样的题目,孩子理解有困难, 这是对于商家而言,商家让利10%,衣服按照原价的90%出售。税收的问题把营业额看作单位“1”;储蓄的问题好好利用公式利息=本金*年利率*存期。

  7、自主设计一个问题

  这样的题属于开放性的题目,要求学生平时多练习生活。多思考。

  第二部分和第三部分判断题、选择题

  1、关于扇形的概念的考查,扇形与圆的关系

  2、百分数的小概念,比如百分数没有单位,不表示量。

  3、比例尺的概念考查

  4、圆的面积和周长的公式应用,注意面积是面积单位,周长是长度单位。

  5、陈述的理由的题目在平时要锻炼孩子做题时要知其然知其所以然。

  6、判断是否得成比例的方法,也就是比例的概念的考查。

  第四部分计算

  1、求比值(化简比)

  这样题目,平时要练习的题型多样化,分数:分数,小数:小数;分数:小数;

  总之,要知道比值是一个数,可以是分数、小数、整数,是比的前项除以后项的结果,但是除不尽的情况一定要写成最简分数形式,不能取近似值。

  在化最简整数比时,平时一定注意最后结果写成最简的形式,比的形式,整数的形式。

  2、求未知数X

  这样的题目“解”字在先,方程的考查,比例的基本性质的应用。

  3、能简便的要简便

  各种运算定律的灵活运用,在题目中出现百分数的题,首先把题目中的百分数根据题中数字的特点化成分数或者小数,再观察式子的特点,想运算定律。

  第五部分操作题

  1、阴影部分面积

  学生掌握一个思想,首先看阴影部分的图形规则吗,如果不规则,则阴影部分的面积=整个大图形的面积-空白图形的面积。包括圆环的面积都是应用的这个思想。

  2、圆规画圆

  看清楚已知的是直径还是半径,知道圆规两脚间岔开的距离是圆的半径,注意画好后标注好圆心和半径或者是直径。

  3、按比例尺作图

  数清楚已知图形的格子数目是解题关键

  第六部分解决问题

  1、折扣问题,求百分数的问题。前面有分析

  2、百分数的应用中关于两个数量之间的比较的问题

  3、找准单位“1”是关键。

  4、探索乐园中对于推理能力的考查

  5、扇形统计图的应用

  理解圆表示的就是整体“1”,每个扇形表示的是部分占整体的百分之几

  两种题型:(1)已知部分量求整体;(2)已知整体求部分量。

六年级上册数学知识点11

  一、分数乘法

  (一)分数乘法的意义和计算法则

  1、分数乘整数的意义

  2/11×3 表示: 求3个2/11是多少? 求2/11的3倍是多少?

  2、分数乘整数的计算方法

  分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。(能约分的要先约分再乘)

  3、一个数乘分数的意义:就是求这个数的几分之几是多少。3/5×1/4表示:求3/5的1/4是多少。

  4、分数乘分数的的计算方法

  分数乘分数,用分子乘分子,分母乘分母。(能约分的要先约分再乘)

  (二)求一个数的几分之几是多少的问题

  1、找单位“1”的方法

  (1)是谁的几分之几,就把谁看作单位“1”。

  (2)一般把“比”字、“是”字、“占”字、“相当于”后面的量看作单位“1”。

  注意: 找单位“1”在分率句里找,有分率的句子称为分率句。

  分率不带单位,具体数量带有单位。

  2、求一个数的几倍、几分之几是多少,用乘法计算。

  15的3/5是多少? 15×3/5=9

  3、已知单位“1”用乘法计算

  单位“1”×分率=分率的对应量

  注意:(1) 乘上什么样的分率就等于什么样的数量。

  (2) 乘上谁占的分率就等于谁的数量。

  (3) 是谁的几分之几,就用谁乘上几分之几。

  4、已知A比B多(或少)几分之几,求A的解题方法

  5、积与因数的大小关系

  大于1的数,积大于A。

  A(0除外)乘上

  小于1的数,积小于A。

  二、位置与方向

  1、确定物体的位置:(上北下南,左西右东)

  (1)北偏东30°就是从北向东移,夹角靠北。

  (2)东偏北30°就是从东向北移,夹角靠东。

  2、物体位置的相对性

  (1)两地的位置关系是相对的,方向刚好相反,距离是一样的。

  例如:少年宫在学校南偏东35°的方向上,相距250米,(在学校是以学校为观测点)

  南对北 东对西

  则学校在少年宫北偏西35°的方向上,相距250米。(在少年宫是以少年宫为观测点)

  三、分数除法

  (一)倒数的认识

  1、倒数的意义

  乘积是1的两个数互为倒数。 (注意:不能单独说某个数是倒数。)

  2、求倒数的方法

  求一个分数的倒数(0除外),只要把这个分数的分子、分母调换位置。

  是带分数的先化成假分数

  是小数的先化成分数

  整数的倒数:整数是几,它的倒数就是几分之一。

  3、 1的倒数是1,0没有倒数。

  (三)分数除法

  1、分数除法的意义

  3/10÷1/10表示:已知两个因数的积是3/10,与其中一个因数是1/10,求另一个因数是多少。

  2、分数除法的计算方法

  除以一个不等于0的数,等于乘这个数的倒数。

  3、被除数与商的大小关系

  当除数小于1时,商就大于被除数。(0除外)

  当除数大于1时,商就小于被除数。(0除外)

  4、分数四则混合运算的运算顺序

  (1) 只有“+、-”或只有“×、÷”,从左往右计算。

  (2) 有“+、-”,也有“×、÷”,先乘除后加减。

  (3) 有( )、[ ]的,先算( )里面的,再算[ ]里面的。

  (一)已知一个数的几倍、几分之几是多少,求这个数。用除法计算。

  1、已知一个数的几分之几是多少,求这个数的问题

  例:甲数是15,甲数是乙数的3/5。乙数是多少? 15÷3/5=25

  2、求一个数是另一个数的几倍、几分之几,用除法计算。

  方法是:用“是”字前面的数÷“是”字后面的数。

  例:1、15是5的几倍? 15÷5=3

  2、20是25的几分之几? 20÷25=4/5

  3、求一个数比另一个数多(或少)几分之几的解题方法是:

  用相差量÷问题“比”字后面的量

  例:(1)甲数是25,乙数是20。甲数比乙数多几分之几? (25-20)÷20=1/4

  (2) 甲数是25,乙数是20。乙数比甲数少几分之几? (25-20)÷25=1/5

  4、求单位“1”用除法计算。

  具体量(对应量)÷对应分率=单位“1”

  什么样的数量就对应什么样的分率。

  什么样的分率就对应什么样的数量。

  5、求平均数问题: 总量÷总份数=每份数

  注意:求平均每什么就除以什么数。(求每天就除以天数;求每人就除以人数;求每千克就除以千克数;求每米就除以米数……)

  6、已知A比B多(或少)几分之几,求B的解题方法:

  A÷(1+/-几分之几)=B

  7、已知单位“1”用乘法,求单位“1”用除法;

  分率比多的就1+,比少的就1-。

  8、工程问题

  把工作总量看作“1”,工作效率就是1/工作时间。

  工作时间=工作量 ÷ 工作效率

  要做的工作量 由谁做就除以谁的工作效率

  1人的效率=两人的效率和-另1人的效率

六年级上册数学知识点12

  分数乘法

  (一)分数乘法意义:

  1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

  “分数乘整数”指的是第二个因数必须是整数,不能是分数。

  2、一个数乘分数的意义就是求一个数的几分之几是多少。

  “一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)

  (二)分数乘法计算法则:

  1、分数乘整数的运算法则是:分子与整数相乘,分母不变。

  (1)为了计算简便能约分的可先约分再计算。(整数和分母约分)

  (2)约分是用整数和下面的分母约掉最大公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)。

  2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。

  (分子乘分子,分母乘分母)

  (1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

  (2)分数化简的方法是:分子、分母同时除以它们的最大公因数。

  (3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。

  (4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。

  (三)积与因数的关系:

  一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b >1时,c>a。

  一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b<1时,c>a。

  一个数(0除外)乘等于1的数,积等于这个数。a×b=c,当b =1时,c=a 。

  在进行因数与积的大小比较时,要注意因数为0时的特殊情况。

  (四)分数乘法混合运算

  1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。

  2、整数乘法运算定律对分数乘法同样适用;

  运算定律可以使一些计算简便。

  乘法交换律:a×b=b×a

  乘法结合律:(a×b)×c=a×(b×c)

  乘法分配律:a×(b±c)=a×b±a×c

  (五)倒数的意义:乘积为1的两个数互为倒数。

  1、倒数是两个数的关系,它们互相依存,不能单独存在。单独一个数不能称为倒数。(必须说清谁是谁的倒数)

  2、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”。例如:a×b=1则a、b互为倒数。

  3、求倒数的方法:

  ①求分数的倒数:交换分子、分母的位置。

  ②求整数的倒数:整数分之1。

  ③求带分数的倒数:先化成假分数,再求倒数。

  ④求小数的倒数:先化成分数再求倒数。

  4、1的倒数是它本身,因为1×1=1,0没有倒数,因为任何数乘0积都是0,且0不能作分母。

  5、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身,假分数的倒数小于或等于1。带分数的倒数小于1。

  (六)分数乘法应用题——用分数乘法解决问题

  1、求一个数的几分之几是多少?(用乘法)

  已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘。

  2、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。

  3、什么是速度?

  速度是单位时间内行驶的路程。

  速度=路程÷时间; 时间=路程÷速度;路程=速度×时间。

  单位时间指的是1小时1分钟1秒等这样的大小为1的时间单位,每分钟、每小时、每秒钟等。

  4、求甲比乙多(少)几分之几?

  多:(甲-乙)÷乙; 少:(乙-甲)÷乙。

六年级上册数学知识点13

  比

  比:两个数相除也叫两个数的比

  1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。

  连比如:3:4:5读作:3比4比5

  2、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。

  例:12∶20,读作:12比20

  区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。

  比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。

  3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。

  4、化简比:化简之后结果还是一个比,不是一个数。

  (1)用比的前项和后项同时除以它们的最大公约数。

  (2)两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。也可以求出比值再写成比的形式。

  (3)两个小数的比,向右移动小数点的位置,也是先化成整数比。

  5、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。

  6、比和除法、分数的区别:

  除法:被除数除号(÷) 除数(不能为0) 商不变性质 除法是一种运算。

  分数:分子分数线(—)分母(不能为0) 分数的基本性质 分数是一个数。

  比:前项比号(∶) 后项(不能为0) 比的基本性质 比表示两个数的关系。

  商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变。

  分数的基本性质:分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

  分数除法和比的应用:

  1、已知单位“1”的量用乘法。

  2、未知单位“1”的量用除法。

  3、分数应用题基本数量关系(把分数看成比)

  (1)甲是乙的几分之几?

  甲=乙×几分之几 乙=甲÷几分之几 几分之几=甲÷乙

  (2)甲比乙多(少)几分之几?

  4、按比例分配:把一个量按一定的比分配的方法叫做按比例分配。

  5、画线段图:

  (1)找出单位“1”的量,先画出单位“1”,标出已知和未知。

  (2)分析数量关系。

  (3)找等量关系。

  (4)列方程。

  两个量的关系画两条线段图,部分和整体的关系画一条线段图。

【六年级上册数学知识点13篇】相关文章:

数学上册知识点08-02

数学六年级上册分数除法知识点11-17

六年级上册数学知识点归纳12-07

小学六年级数学知识点上册12-23

六年级数学上册圆形知识点12-07

六年级上册数学知识点汇总01-18

人教版六年级上册数学知识点12-02

青岛版小学数学六年级上册知识点11-16

六年级上册数学知识点苏教版11-16

沪教版数学六年级上册知识点11-16