九年级上册数学二次函数知识点
在我们平凡的学生生涯里,大家都没少背知识点吧?知识点也可以通俗的理解为重要的内容。掌握知识点是我们提高成绩的关键!以下是小编精心整理的九年级上册数学二次函数知识点,欢迎阅读与收藏。
1、二次函数的概念
1.二次函数的概念:一般地,形如(是常数,)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数,而可以为零。二次函数的定义域是全体实数。
2.二次函数的结构特征:
⑴等号左边是函数,右边是关于自变量的二次式,的最高次数是2。
⑵是常数,是二次项系数,是一次项系数,是常数项。
2、初三数学二次函数的.三种表达式
一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)。
顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]。
交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线]。
注:在3种形式的互相转化中,有如下关系:h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a。
3、二次函数的性质
1.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
2.k,b与函数图像所在象限:
当k>0时,直线必通过一、三象限,y随x的增大而增大;
当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;
当b=0时,直线通过原点;
当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
4、初三数学二次函数图像
对于一般式:
①y=ax2+bx+c与y=ax2-bx+c两图像关于y轴对称。
②y=ax2+bx+c与y=-ax2-bx-c两图像关于x轴对称。
③y=ax2+bx+c与y=-ax2-bx+c-b2/2a关于顶点对称。
④y=ax2+bx+c与y=-ax2+bx-c关于原点中心对称。(即绕原点旋转180度后得到的图形)
对于顶点式:
①y=a(x-h)2+k与y=a(x+h)2+k两图像关于y轴对称,即顶点(h,k)和(-h,k)关于y轴对称,横坐标相反、纵坐标相同。
②y=a(x-h)2+k与y=-a(x-h)2-k两图像关于x轴对称,即顶点(h,k)和(h,-k)关于x轴对称,横坐标相同、纵坐标相反。
③y=a(x-h)2+k与y=-a(x-h)2+k关于顶点对称,即顶点(h,k)和(h,k)相同,开口方向相反。
④y=a(x-h)2+k与y=-a(x+h)2-k关于原点对称,即顶点(h,k)和(-h,-k)关于原点对称,横坐标、纵坐标都相反。(其实①③④就是对f(x)来说f(-x),-f(x),-f(-x)的情况)
数学的学习方法和技巧总结
多做
主要是指做习题,学数学一定要做习题,并且应该适当地多做些。做习题的目的首先是熟练和巩固学习的知识;其次是初步启发灵活应用知识和培养独立思考的能力;第三是融会贯通,把不同内容的数学知识沟通起来。在做习题时,要认真审题,认真思考,应该用什么方法做?能否有简便解法?做到边做边思考边总结,通过练习加深对知识的理解。
必须要有错题本
说到错题本不少同学都觉得自己的记忆力好,不需要错题本就能记住,这是一种“错觉”,每个人都有这种感觉,等到题目增多,学习内容加深,这时就会发现自己力不从心了。
错题本能够随时记录自己的知识短板,帮助强化知识体系,有助于提升学习效率。有很多学霸都是因为积极使用了错题本,而考取了高分。
数学有理数的概念
(1)正整数、0、负整数统称为整数(0和正整数统称为自然数)
(2)正分数和负分数统称为分数
(3)正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①π是无限不循环小数,不能写成分数形式,不是有理数。
②有限小数和无限循环小数都可化成分数,都是有理数。
③整数也能化成分数,也是有理数
注意:引入负数以后,奇数和偶数的范围也扩大了,像—2,—4,—6,—8也是偶数,—1,—3,—5也是奇数。
【九年级上册数学二次函数知识点】相关文章:
初三上册数学二次函数知识点09-30
数学《二次函数》优秀教案12-26
数学九年级下册二次函数知识点11-29
二次函数的初三数学知识点归纳05-20
初中数学二次函数图像的中考知识点总结10-31
浙教版数学初三上学期二次函数知识点10-13
初三数学二次函数习题11-03
二次根式初三数学上册知识点10-06
中考数学易错知识点:函数10-31