- 相关推荐
高二会考数学重要知识点整理分享
在学习中,大家最不陌生的就是知识点吧!知识点也不一定都是文字,数学的知识点除了定义,同样重要的公式也可以理解为知识点。你知道哪些知识点是真正对我们有帮助的吗?下面是小编为大家整理的高二会考数学重要知识点整理分享,希望对大家有所帮助。
高二会考数学重要知识点整理分享 1
画圆柱、圆锥、圆台和球的直观图的方法——正等测
(1)正等测画直观图的要求:
①画正等测的X、Y、Z三个轴时,z轴画成铅直方向,X轴和Y轴各与Z轴成120°。
②在投影图上取线段长度的方法是:在三轴上或平行于三轴的线段都取实长。
这里与斜二测画直观图的方法不同,要注意它们的区别。
(2)正等测圆柱、圆锥、圆台的直观图的区别主要是水平放置的.平面图形。
用正等测画水平放置的平面圆形时,将X轴画成水平位置,Y轴画成与X轴成120°,在投影图上,X轴和Y轴上,或与X轴、Y轴平行的线段都取实长,在Z轴上或与Z轴平行的线段的画法与斜二测相同,也都取实长。
关于几何体表面内两点间的最短距离问题
柱、锥、台的表面都可以平面展开,这些几何体表面内两点间最短距离,就是其平面内展开图内两点间的线段长。
由于球面不能平面展开,所以求球面内两点间的球面距离是一个全新的方法,这个最短距离是过这两点大圆的劣弧长。
高二会考数学重要知识点整理分享 2
空间角问题
(1)直线与直线所成的角
两平行直线所成的角:规定为.
两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角.
两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角.
(2)直线和平面所成的角
平面的平行线与平面所成的角:规定为.平面的垂线与平面所成的角:规定为.
平面的斜线与平面所成的.角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角.
求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”.
在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线,
在解题时,注意挖掘题设中主要信息:
(1)斜线上一点到面的垂线;
(2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线.
(3)二面角和二面角的平面角
二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面.
二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角.
直二面角:平面角是直角的二面角叫直二面角.
两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角
求二面角的方法
定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角
垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角
高二会考数学重要知识点整理分享 3
(1)直线的倾斜角
定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°
(2)直线的斜率
①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。
②过两点的直线的斜率公式:
注意下面四点:
(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;
(2)k与P1、P2的顺序无关;
(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;
(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(3)直线方程
①点斜式:直线斜率k,且过点
注意:当直线的'斜率为0°时,k=0,直线的方程是y=y1。
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。
②斜截式:,直线斜率为k,直线在y轴上的截距为b
③两点式:
④截矩式:
其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。
⑤一般式:(A,B不全为0)
注意:各式的适用范围特殊的方程如:
平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);
(5)直线系方程:即具有某一共同性质的直线
(一)平行直线系
平行于已知直线(是不全为0的常数)的直线系:(C为常数)
(二)垂直直线系
垂直于已知直线(是不全为0的常数)的直线系:(C为常数)
(三)过定点的直线系
(ⅰ)斜率为k的直线系:,直线过定点;
(ⅱ)过两条直线,的交点的直线系方程为
(为参数),其中直线不在直线系中。
(6)两直线平行与垂直
注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。
(7)两条直线的交点相交,交点坐标即方程组的一组解。
方程组无解;方程组有无数解与重合
(8)两点间距离公式:设是平面直角坐标系中的两个点。
(9)点到直线距离公式:一点到直线的距离
(10)两平行直线距离公式
在任一直线上任取一点,再转化为点到直线的距离进行求解。
高二会考数学重要知识点整理分享 4
抛物线的性质:
1.抛物线是轴对称图形。对称轴为直线
x=-b/2a。
对称轴与抛物线的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为
P(-b/2a,(4ac-b^2)/4a)
当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的'开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
6.抛物线与x轴交点个数
Δ=b^2-4ac>0时,抛物线与x轴有2个交点。
Δ=b^2-4ac=0时,抛物线与x轴有1个交点。
Δ=b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)
焦半径:
焦半径:抛物线y2=2px(p>0)上一点P(x0,y0)到焦点Fè???÷?
p2,0的距离|PF|=x0+p2.
求抛物线方程的方法:
(1)定义法:根据条件确定动点满足的几何特征,从而确定p的值,得到抛物线的标准方程.
(2)待定系数法:根据条件设出标准方程,再确定参数p的值,这里要注意抛物线标准方程有四种形式.从简单化角度出发,焦点在x轴的,设为y2=ax(a≠0),焦点在y轴的,设为x2=by(b≠0).
高二会考数学重要知识点整理分享 5
等差数列
对于一个数列{an},如果任意相邻两项之差为一个常数,那么该数列为等差数列,且称这一定值差为公差,记为d;从第一项a1到第n项an的总和,记为Sn。
那么,通项公式为,其求法很重要,利用了“叠加原理”的思想:
将以上n—1个式子相加,便会接连消去很多相关的项,最终等式左边余下an,而右边则余下a1和n—1个d,如此便得到上述通项公式。
此外,数列前n项的和,其具体推导方式较简单,可用以上类似的叠加的`方法,也可以采取迭代的方法,在此,不再复述。
值得说明的是,前n项的和Sn除以n后,便得到一个以a1为首项,以d/2为公差的新数列,利用这一特点可以使很多涉及Sn的数列问题迎刃而解。
等比数列
对于一个数列{an},如果任意相邻两项之商(即二者的比)为一个常数,那么该数列为等比数列,且称这一定值商为公比q;从第一项a1到第n项an的总和,记为Tn。
那么,通项公式为(即a1乘以q的(n—1)次方,其推导为“连乘原理”的思想:
a2=a1x,
a3=a2x,
a4=a3x,
an=an—1x,
将以上(n—1)项相乘,左右消去相应项后,左边余下an,右边余下a1和(n—1)个q的乘积,也即得到了所述通项公式。
此外,当q=1时该数列的前n项和Tn=a1x
当q≠1时该数列前n项的和Tn=a1x1—q^(n))/(1—q)
高二会考数学重要知识点整理分享 6
高二数学重点知识点梳理
简单随机抽样的定义:
一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样。
简单随机抽样的特点:
(1)用简单随机抽样从含有N个个体的总体中抽取一个容量为n的样本时,每次抽取一个个体时任一个体被抽到的概率为xxx;在整个抽样过程中各个个体被抽到的概率为xxx。
(2)简单随机抽样的特点是,逐个抽取,且各个个体被抽到的概率相等;
(3)简单随机抽样方法,体现了抽样的客观性与公平性,是其他更复杂抽样方法的基础.
(4)简单随机抽样是不放回抽样;它是逐个地进行抽取;它是一种等概率抽样
简单抽样常用方法:
(1)抽签法:先将总体中的所有个体(共有N个)编号(号码可从1到N),并把号码写在形状、大小相同的号签上(号签可用小球、卡片、纸条等制作),然后将这些号签放在同一个箱子里,进行均匀搅拌,抽签时每次从中抽一个号签,连续抽取n次,就得到一个容量为n的样本适用范围:总体的个体数不多时优点:抽签法简便易行,当总体的个体数不太多时适宜采用抽签法.
(2)随机数表法:随机数表抽样“三步曲”:第一步,将总体中的个体编号;第二步,选定开始的数字;第三步,获取样本号码概率.
高二数学重点知识点
函数的性质:
函数的单调性、奇偶性、周期性
单调性:定义:注意定义是相对与某个具体的区间而言。
判定方法有:定义法(作差比较和作商比较)
导数法(适用于多项式函数)
复合函数法和图像法。
应用:比较大小,证明不等式,解不等式。
奇偶性:定义:注意区间是否关于原点对称,比较f(x)与f(-x)的关系。f(x)-f(-x)=0f(x)=f(-x)f(x)为偶函数;
f(x)+f(-x)=0f(x)=-f(-x)f(x)为奇函数。
判别方法:定义法,图像法,复合函数法
应用:把函数值进行转化求解。
周期性:定义:若函数f(x)对定义域内的任意x满足:f(x+T)=f(x),则T为函数f(x)的周期。
其他:若函数f(x)对定义域内的任意x满足:f(x+a)=f(x-a),则2a为函数f(x)的周期.
应用:求函数值和某个区间上的函数解析式。
人教版高二数学知识点总结
在中国古代把数学叫算术,又称算学,最后才改为数学。
1.任意角
(1)角的分类:
①按旋转方向不同分为正角、负角、零角.
②按终边位置不同分为象限角和轴线角.
(2)终边相同的角:
终边与角相同的角可写成+k360(kZ).
(3)弧度制:
①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角.
②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零||=,l是以角作为圆心角时所对圆弧的长,r为半径.
③用弧度做单位来度量角的制度叫做弧度制.比值与所取的r的大小无关,仅与角的大小有关.
④弧度与角度的换算:360弧度;180弧度.
⑤弧长公式:l=||r,扇形面积公式:S扇形=lr=||r2.
2.任意角的`三角函数
(1)任意角的三角函数定义:
设是一个任意角,角的终边与单位圆交于点P(x,y),那么角的正弦、余弦、正切分别是:sin=y,cos=x,tan=,它们都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数.
(2)三角函数在各象限内的符号口诀是:一全正、二正弦、三正切、四余弦.
3.三角函数线
设角的顶点在坐标原点,始边与x轴非负半轴重合,终边与单位圆相交于点P,过P作PM垂直于x轴于M.由三角函数的定义知,点P的坐标为(cos_,sin_),即P(cos_,sin_),其中cos=OM,sin=MP,单位圆与x轴的正半轴交于点A,单位圆在A点的切线与的终边或其反向延长线相交于点T,则tan=AT.我们把有向线段OM、MP、AT叫做的余弦线、正弦线、正切线.
高二会考数学重要知识点整理分享 7
简单随机抽样的定义:
一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样。
简单随机抽样的特点:
(1)用简单随机抽样从含有N个个体的总体中抽取一个容量为n的样本时,每次抽取一个个体时任一个体被抽到的概率为
;在整个抽样过程中各个个体被抽到的概率为
(2)简单随机抽样的特点是,逐个抽取,且各个个体被抽到的概率相等;
(3)简单随机抽样方法,体现了抽样的客观性与公平性,是其他更复杂抽样方法的基础.
(4)简单随机抽样是不放回抽样;它是逐个地进行抽取;它是一种等概率抽样
简单抽样常用方法:
(1)抽签法:先将总体中的所有个体(共有N个)编号(号码可从1到N),并把号码写在形状、大小相同的号签上(号签可用小球、卡片、纸条等制作),然后将这些号签放在同一个箱子里,进行均匀搅拌,抽签时每次从中抽一个号签,连续抽取n次,就得到一个容量为n的样本适用范围:总体的个体数不多时优点:抽签法简便易行,当总体的个体数不太多时适宜采用抽签法.
(2)随机数表法:随机数表抽样“三步曲”:第一步,将总体中的个体编号;第二步,选定开始的数字;第三步,获取样本号码概率.
高二数学重点知识点
集合的分类:
(1)按元素属性分类,如点集,数集。
(2)按元素的个数多少,分为有/无限集
关于集合的概念:
(1)确定性:作为一个集合的元素,必须是确定的,这就是说,不能确定的对象就不能构成集合,也就是说,给定一个集合,任何一个对象是不是这个集合的元素也就确定了。
(2)互异性:对于一个给定的集合,集合中的元素一定是不同的(或说是互异的),这就是说,集合中的任何两个元素都是不同的对象,相同的对象归入同一个集合时只能算作集合的一个元素。
(3)无序性:判断一些对象时候构成集合,关键在于看这些对象是否有明确的标准。
集合可以根据它含有的元素的个数分为两类:
含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。
非负整数全体构成的集合,叫做自然数集,记作N;
在自然数集内排除0的集合叫做正整数集,记作N+或N.;
整数全体构成的集合,叫做整数集,记作Z;
有理数全体构成的.集合,叫做有理数集,记作Q;(有理数是整数和分数的统称,一切有理数都可以化成分数的形式。)
实数全体构成的集合,叫做实数集,记作R。(包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。数学上,实数直观地定义为和数轴上的点一一对应的数。)
1.列举法:如果一个集合是有限集,元素又不太多,常常把集合的所有元素都列举出来,写在花括号“{}”内表示这个集合,例如,由两个元素0,1构成的集合可表示为{0,1}.
有些集合的元素较多,元素的排列又呈现一定的规律,在不致于发生误解的情况下,也可以列出几个元素作为代表,其他元素用省略号表示。
例如:不大于100的自然数的全体构成的集合,可表示为{0,1,2,3,…,100}.
无限集有时也用上述的列举法表示,例如,自然数集N可表示为{1,2,3,…,n,…}.
2.描述法:一种更有效地描述集合的方法,是用集合中元素的特征性质来描述。
例如:正偶数构成的集合,它的每一个元素都具有性质:“能被2整除,且大于0”
而这个集合外的其他元素都不具有这种性质,因此,我们可以用上述性质把正偶数集合表示为
{x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},
大括号内竖线左边的X表示这个集合的任意一个元素,元素X从实数集合中取值,在竖线右边写出只有集合内的元素x才具有的性质。
一般地,如果在集合I中,属于集合A的任意一个元素x都具有性质p(x),而不属于集合A的元素都不具有的性质p(x),则性质p(x)叫做集合A的一个特征性质。于是,集合A可以用它的性质p(x)描述为{x∈I│p(x)}
它表示集合A是由集合I中具有性质p(x)的所有元素构成的,这种表示集合的方法,叫做特征性质描述法,简称描述法。
例如:集合A={x∈R│x2-1=0}的特征是X2-1=0
高二会考数学重要知识点整理分享 8
1.向量的基本概念
(1)向量
既有大小又有方向的量叫做向量.物理学中又叫做矢量.如力、速度、加速度、位移就是向量。
向量可以用一条有向线段(带有方向的线段)来表示,用有向线段的长度表示向量的大小,用箭头所指的方向表示向量的方向.向量也可以用一个小写字母a,b,c表示,或用两个大写字母加表示(其中前面的字母为起点,后面的字母为终点)
(2)平行向量
方向相同或相反的非零向量,叫做平行向量,平行向量也叫做共线向量。
若向量a、b平行,记作a∥b。
规定:0与任一向量平行。
(3)相等向量
长度相等且方向相同的向量叫做相等向量。
①向量相等有两个要素:一是长度相等,二是方向相同,二者缺一不可。
②向量a,b相等记作a=b。
③零向量都相等。
④任何两个相等的非零向量,都可用同一有向线段表示,但特别要注意向量相等与有向线段的起点无关。
2.对于向量概念需注意
(1)向量是区别于数量的'一种量,既有大小,又有方向,任意两个向量不能比较大小,只可以判断它们是否相等,但向量的模可以比较大小。
(2)向量共线与表示它们的有向线段共线不同。向量共线时,表示向量的有向线段可以是平行的,不一定在同一条直线上;而有向线段共线则是指线段必须在同一条直线上。
(3)由向量相等的定义可知,对于一个向量,只要不改变它的大小和方向,它是可以任意平行移动的,因此用有向线段表示向量时,可以任意选取有向线段的起点,由此也可得到:任意一组平行向量都可以平移到同一条直线上。
高二会考数学重要知识点整理分享 9
高二数学重要知识点归纳
1、科学记数法:将数字写成形式的记数法。
2、统计图:生动地表示收集到的数据图。
3、扇形统计图:用圆形和扇形表示整体和部分之间的关系。扇形大小反映了部分占整体百分比的大小;在扇形统计图中,每个部分占整体百分比等于相应的扇形圆心角和360°的比。
4、条形统计图:明确表示每个项目的具体数量。
5、折线统计图:清楚地反映事物的变化。
6、确定事件包括:必然事件和不可能事件。
7、不确定事件:可能发生或不可能发生的事件;不确定事件发生的可能性不同;不确定。
8、事件概率:可以将事件结果除以,因此可能的结果得到理论概率。
9、有效数字:对于一个近似数,从左边第一个不是0的数字到精确到的数字。
10、游戏双方公平:双方获胜的可能性相同。
11、算数平均值:简称“平均值”,最常用,受极端值影响较大;加权平均值。
12、中位数:数据按大小排列,中间位置数,计算简单,受极端值影响较小。
13、众数:一组数据中出现次数最多的数据受极端值影响较小,与其他数据关系不大。
14、平均数、众数、中位数都是数据的代表,描绘了一组数据的“平均水平”。
15、普查:为一定目的对调查对象进行全面调查;所有的调查对象都叫整体,每个调查对象都叫个体。
16、抽样调查:从整体中提取部分个体进行调查;从整体中提取的部分个体称为样本(具有代表性)。
17、随机调查:按机会平等的原则进行调查,一般每个人被调查的概率相同。
18、频率:每个对象出现的次数。
19、频率:每个对象出现的次数与总次数的比值。
20、等级差:一组数据中数据与最小数据的`差异,描述数据的离散程度。
21、方差:每个数据与平均数之差的平均数,描述数据的离散程度。
21、标准方差:方差的算数平方根描述了数据的离散程度。
23、一组数据的等级差、方差、标准方差越小,这组数据就越稳定。
24、利用树形图或表格方便地找出事件发生的概率。
25、在两个对比图像中,坐标轴上同一单位的长度具有相同的含义,纵坐标从0开始绘制。
高二数学必修五知识点
1.排列和计算公式
从n个不同的元素中,任取m(m≤n)一个元素按一定顺序排列,称为从n个不同元素中取出m个元素的排列;从n个不同元素中取出m(m≤n)所有一个元素的排列数称为从n个不同元素中取出m个元素的排列数,并使用符号p(n,m)表示。
p(n,m)=n(n-1)(n-2)……(n-m 1)=n!/(n-m)!(规定0!=1)。
2.组合及计算公式
从n个不同的元素中,任取m(m≤n)一组元素被称为从n个不同元素中取出m个元素的组合;从n个不同元素中取出m(m≤n)所有组合的个元素数称为从n个不同元素中取出m个元素的组合数。
用符号c(n,m)表示。
3.其他排列和组合公式
从n个元素中提取r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!。
n每个元素分为k类,每个类的数量分别为k类n1,n2...nk这n个元素的全排列数为
k类元素,每个类的数量是无限的,从中取出m个元素的组合数为c(m k-1,m)。
排列(Pnm(n为下标,m为上标))
Pnm=n×(n-1)...(n-m 1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n下标1为上标)=n
组合(Cnm(n为下标,m为上标))
Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1;Cn1(n下标1为上标)=n;Cnm=Cnn-m
高二数学必修四知识点
1.任意角
(1)角分类:
①根据旋转方向的不同,可分为正角、负角、零角。
②根据最终位置的不同,分为象限角和轴线角。
(2)终端相同的角度:
最终边缘和角度相同的角度可以写成 k360(kz)。
(3)弧度制:
①1弧度角:将长度等于半径长的弧所对的圆心角称为1弧度角。
②规定:正角弧度数为正数,负角弧度数为负数,零角弧度数为零||=,l是以角作为圆心角时的圆弧长度,r为半径。
③用弧度作为单位来衡量角度的制度称为弧度制度.比值与r的大小无关,只与角的大小有关。
④弧度与角度的转换:360弧度;180弧度。
高二会考数学重要知识点整理分享 10
一、不等式的性质
1.两个实数a与b之间的大小关系
2.不等式的性质
4乘法单调性
3.绝对值不等式的性质
2如果a>0,那么
3|a?b|=|a|?|b|.
5|a|-|b|≤|a±b|≤|a|+|b|.
6|a1+a2+……+an|≤|a1|+|a2|+……+|an|.
二、不等式的证明
1.不等式证明的依据
2不等式的性质略
3重要不等式:①|a|≥0;a2≥0;a-b2≥0a、b∈R
②a2+b2≥2aba、b∈R,当且仅当a=b时取“=”号
2.不等式的证明方法
1比较法:要证明a>ba0a-bgx①与fx>gx或fxagx与fx>gx同解,当0agx与fx
平方关系:
sin^2α+cos^2α=11+tan^2α=sec^2α1+cot^2α=csc^2α
积的关系:
sinα=tanα×cosα cosα=cotα×sinα tanα=sinα×secα cotα=cosα×cscα secα=tanα×cscα cscα=secα×cotα
倒数关系:
tanα ·cotα=1sinα ·cscα=1cosα ·secα=1
商的关系:
sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα
直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边
正切等于对边比邻边,·[1]三角函数恒等变形公式
·两角和与差的三角函数:
cosα+β=cosα·cosβ-sinα·sinβcosα-β=cosα·cosβ+sinα·sinβsinα±β=sinα·cosβ±cosα·sinβtanα+β=tanα+tanβ/1-tanα·tanβtanα-β=tanα-tanβ/1+tanα·tanβ
·三角和的三角函数:
sinα+β+γ=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcosα+β+γ=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtanα+β+γ=tanα+tanβ+tanγ-tanα·tanβ·tanγ/1-tanα·tanβ-tanβ·tanγ-tanγ·tanα
·辅助角公式:
Asinα+Bcosα=A2+B2^1/2sinα+t,其中sint=B/A2+B2^1/2cost=A/A2+B2^1/2tant=B/AAsinα-Bcosα=A2+B2^1/2cosα-t,tant=A/B
·倍角公式:
sin2α=2sinα·cosα=2/tanα+cotαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2αtan2α=2tanα/[1-tan2α]
·三倍角公式:
sin3α=3sinα-4sin3α=4sinα·sin60+αsin60-αcos3α=4cos3α-3cosα=4cosα·cos60+αcos60-αtan3α=tan a · tanπ/3+a· tanπ/3-a
·半角公式:
sinα/2=±√1-cosα/2cosα/2=±√1+cosα/2tanα/2=±√1-cosα/1+cosα=sinα/1+cosα=1-cosα/sinα
·降幂公式
sin2α=1-cos2α/2=versin2α/2cos2α=1+cos2α/2=covers2α/2tan2α=1-cos2α/1+cos2α
·万能公式:
sinα=2tanα/2/[1+tan2α/2]cosα=[1-tan2α/2]/[1+tan2α/2]tanα=2tanα/2/[1-tan2α/2]
·积化和差公式:
sinα·cosβ=1/2[sinα+β+sinα-β]
cosα·sinβ=1/2[sinα+β-sinα-β]
cosα·cosβ=1/2[cosα+β+cosα-β]
sinα·sinβ=-1/2[cosα+β-cosα-β]
·和差化积公式:
sinα+sinβ=2sin[α+β/2]cos[α-β/2]sinα-sinβ=2cos[α+β/2]sin[α-β/2]cosα+cosβ=2cos[α+β/2]cos[α-β/2]cosα-cosβ=-2sin[α+β/2]sin[α-β/2]
·推导公式
tanα+cotα=2/sin2α
tanα-cotα=-2cot2α
1+cos2α=2cos2α
1-cos2α=2sin2α
1+sinα=sinα/2+cosα/22
·其他:
sinα+sinα+2π/n+sinα+2π*2/n+sinα+2π*3/n+……+sin[α+2π*n-1/n]=0
cosα+cosα+2π/n+cosα+2π*2/n+cosα+2π*3/n+……+cos[α+2π*n-1/n]=0以及
sin2α+sin2α-2π/3+sin2α+2π/3=3/2
tanAtanBtanA+B+tanA+tanB-tanA+B=0
cosx+cos2x+...+cosnx= [sinn+1x+sinnx-sinx]/2sinx
证明:
左边=2sinxcosx+cos2x+...+cosnx/2sinx
=[sin2x-0+sin3x-sinx+sin4x-sin2x+...+ sinnx-sinn-2x+sinn+1x-sinn-1x]/2sinx积化和差
=[sinn+1x+sinnx-sinx]/2sinx=右边
等式得证
sinx+sin2x+...+sinnx= - [cosn+1x+cosnx-cosx-1]/2sinx
证明:
左边=-2sinx[sinx+sin2x+...+sinnx]/-2sinx
=[cos2x-cos0+cos3x-cosx+...+cosnx-cosn-2x+cosn+1x-cosn-1x]/-2sinx
=- [cosn+1x+cosnx-cosx-1]/2sinx=右边
等式得证
三角函数的诱导公式
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin2kπ+α=sinα
cos2kπ+α=cosα
tan2kπ+α=tanα
cot2kπ+α=cotα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sinπ+α=-sinα
cosπ+α=-cosα
tanπ+α=tanα
cotπ+α=cotα
公式三:
任意角α与-α的三角函数值之间的关系:
sin-α=-sinα
cos-α=cosα
tan-α=-tanα
cot-α=-cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sinπ-α=sinα
cosπ-α=-cosα
tanπ-α=-tanα
cotπ-α=-cotα
公式五:
利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin2π-α=-sinα
cos2π-α=cosα
tan2π-α=-tanα
cot2π-α=-cotα
公式六:
π/2±α及3π/2±α与α的.三角函数值之间的关系:
sinπ/2+α=cosα
cosπ/2+α=-sinα
tanπ/2+α=-cotα
cotπ/2+α=-tanα
sinπ/2-α=cosα
cosπ/2-α=sinα
tanπ/2-α=cotα
cotπ/2-α=tanα
sin3π/2+α=-cosα
cos3π/2+α=sinα
tan3π/2+α=-cotα
cot3π/2+α=-tanα
sin3π/2-α=-cosα
cos3π/2-α=-sinα
tan3π/2-α=cotα
cot3π/2-α=tanα
以上k∈Z
对于任意非直角三角形中,如三角形ABC,总有tanA+tanB+tanC=tanAtanBtanC
证明:
已知A+B=π-C
所以tanA+B=tanπ-C
则tanA+tanB/1-tanAtanB=tanπ-tanC/1+tanπtanC
整理可得
tanA+tanB+tanC=tanAtanBtanC
类似地,我们同样也可以求证:当α+β+γ=nπn∈Z时,总有tanα+tanβ+tanγ=tanαtanβtanγ
设a=x,y,b=x",y"。
1、向量的加法
向量的加法满足平行四边形法则和三角形法则。
AB+BC=AC。
a+b=x+x",y+y"。
a+0=0+a=a。
向量加法的运算律:
交换律:a+b=b+a;
结合律:a+b+c=a+b+c。
2、向量的减法
如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0
AB-AC=CB.即“共同起点,指向被减”
a=x,y b=x",y"则a-b=x-x",y-y".
4、数乘向量
实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。
当λ>0时,λa与a同方向;
当λ1时,表示向量a的有向线段在原方向λ>0或反方向λ
【高二会考数学重要知识点整理分享】相关文章:
语文会考知识点归纳整理03-17
高二地理会考精选知识点整理5篇03-04
高中政治会考重要的知识点06-06
《光和眼睛》重要知识点整理07-02
高二历史会考知识点归纳02-24
初中生物会考重要的知识点06-06
重庆小升初奥数重要知识点的整理04-18
四年级上册数学重要知识点整理10-19
数学重要知识点:位置10-15
高二物理复习知识点资料整理07-03