数学 百文网手机站

五年级上册数学知识点

时间:2022-07-11 11:36:43 数学 我要投稿

人教版五年级上册数学知识点大全

  上学期间,说到知识点,大家是不是都习惯性的重视?知识点也可以理解为考试时会涉及到的知识,也就是大纲的分支。为了帮助大家掌握重要知识点,以下是小编精心整理的人教版五年级上册数学知识点,欢迎阅读,希望大家能够喜欢。

人教版五年级上册数学知识点大全

  五年级上册数学知识点 篇1

  1、公式:

  长方形:周长=(长+宽)×2--【长=周长÷2-宽;宽=周长÷2-长】字母公式:C=(a+b)×2

  面积=面积=长×宽字母公式:S=ab

  正方形:周长=边长×4字母公式:C=4a

  平行四边形的面积=底×高字母公式:S=ah

  三角形的面积=底×高÷2--【底=面积×2÷高;高=面积×2÷底】字母公式:S=ah÷2

  梯形的面积=(上底+下底)×高÷2字母公式:S=(a+b)h÷2

  【上底=面积×2÷高-下底,下底=面积×2÷高-上底;高=面积×2÷(上底+下底)】

  2、平行四边形面积公式推导:

  剪拼、平移

  3、三角形面积公式推导:

  旋转

  平行四边形可以转化成一个长方形;

  两个完全一样的三角形可以拼成一个平行四边形,

  长方形的长相当于平行四边形的底;

  平行四边形的底相当于三角形的底;

  长方形的宽相当于平行四边形的高;

  平行四边形的高相当于三角形的高;

  长方形的面积等于平行四边形的面积,

  平行四边形的面积等于三角形面积的2倍,

  因为长方形面积=长×宽,所以平行四边形面积=底×高。

  因为平行四边形面积=因为平行四边形面积=底×高,所以三角形面积=底×高÷2

  4、梯形面积公式推导:

  旋转

  5、三角形、梯形的第二种推导方法老师已讲,自己看书

  两个完全一样的梯形可以拼成一个平行四边形,知道就行。

  平行四边形的底相当于梯形的上下底之和;

  平行四边形的高相当于梯形的高;

  平行四边形面积等于梯形面积的2倍,

  因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2

  6、等底等高的平行四边形面积相等;

  等底等高的三角形面积相等;

  等底等高的平行四边形面积是三角形面积的2倍。

  7、长方形框架拉成平行四边形,周长不变,面积变小。

  8、组合图形:转化成已学的简单图形,通过加、减进行计算。

  数学0是奇数还是偶数

  0是一个特殊的偶数(20xx年国际数学协会规定零为偶数;我国20xx年也规偶数定零为偶数)。它既是正偶数与负偶数的分界线,又是正奇数与负奇数的分水岭。

  小学规定0为最小的偶数,但是在初中学习了负数,出现了负偶数时,0就不是最小的偶数了。

  哥德巴赫猜想说明任何大于二的偶数都可以写为两个质数之和,但尚未有人能证明这个猜想。

  小学数学必背关系表达式

  1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数

  2、 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数

  3、速度×时间=路程路程÷速度=时间路程÷时间=速度

  4、单价×数量=总价总价÷单价=数量总价÷数量=单价

  5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率

  6、加数+加数=和和-一个加数=另一个加数

  7、被减数-减数=差被减数-差=减数差+减数=被减数

  8、因数×因数=积积÷一个因数=另一个因数

  9、被除数÷除数=商被除数÷商=除数商×除数=被除数

  五年级上册数学知识点 篇2

  1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。两个面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

  长方体特点:

  (1)有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。

  (2)一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。

  2、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。

  正方体特点:

  (1)正方体有12条棱,它们的长度都相等。

  (2)正方体有6个面,每个面都是正方形,每个面的面积都相等。

  (3)正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。

  相同点

  不同点

  面棱

  长方体

  都有6个面,12条棱,8个顶点。

  6个面都是长方形。

  (有可能有两个相对的面是正方形)。

  相对的棱的长度都相等

  正方体

  6个面都是正方形。

  12条棱都相等。

  3、长方体、正方体有关棱长计算公式:

  长方体的棱长总和=(长+宽+高)×4=长×4+宽×4+高×4

  L=(a+b+h)×4

  长=棱长总和÷4-宽-高

  a=L÷4-b-h

  宽=棱长总和÷4-长-高

  b=L÷4-a-h

  高=棱长总和÷4-长-宽

  h=L÷4-a-b

  正方体的棱长总和=棱长×12

  L=a×12

  正方体的棱长=棱长总和÷12

  a=L÷12

  4、长方体或正方体6个面和总面积叫做它的表面积。

  长方体的表面积=(长×宽+长×高+宽×高)×2

  S=2(ab+ah+bh)

  无底(或无盖)

  长方体表面积=长×宽+(长×高+宽×高)×2

  S=2(ab+ah+bh)-ab

  S=2(ah+bh)+ab

  无底又无盖长方体表面积=(长×高+宽×高)×2

  S=2(ah+bh)

  贴墙纸

  正方体的表面积=棱长×棱长×6 S=a×a×6用字母表示:S= 6a2

  生活实际:

  油箱、罐头盒等都是6个面

  游泳池、鱼缸等都只有5个面

  水管、烟囱等都只有4个面。

  注意1:用刀分开物体时,每分一次增加两个面。(表面积相应增加)

  注意2:长方体或正方体的长、宽、高同时扩大几倍,表面积会扩大倍数的平方倍。

  (如长、宽、高各扩大2倍,表面积就会扩大到原来的4倍)。

  5、物体所占空间的大小叫做物体的体积。

  长方体的体积=长×宽×高V=abh

  长=体积÷宽÷高a=V÷b÷h

  宽=体积÷长÷高b=V÷a÷h

  高=体积÷长÷宽h= V÷a÷b

  正方体的体积=棱长×棱长×棱长

  V=a×a×a = a3

  读作“a的立方”表示3个a相乘,(即a·a·a)

  长方体或正方体底面的面积叫做底面积。

  长方体(或正方体)的体积=底面积×高

  用字母表示:V=S h(横截面积相当于底面积,长相当于高)。

  注意:一个长方体和一个正方体的棱长总和相等,但体积不一定相等。

  6、箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积。

  固体一般就用体积单位,计量液体的体积,如水、油等。

  常用的容积单位有升和毫升也可以写成L和ml。

  1升=1立方分米

  1毫升=1立方厘米

  1升=1000毫升

  (1L = 1dm3 1ml = 1cm3)

  长方体或正方体容器容积的计算方法,跟体积的计算方法相同。

  但要从容器里面量长、宽、高。(所以,对于同一个物体,体积大于容积。)

  注意:长方体或正方体的长、宽、高同时扩大几倍,体积就会扩大倍数的立方倍。

  (如长、宽、高各扩大2倍,体积就会扩大到原来的8倍)。

  x形状不规则的物体可以用排水法求体积,形状规则的物体可以用公式直接求体积。

  排水法的公式:

  V物体=V现在-V原来

  也可以V物体=S×(h现在- h原来)

  V物体=S×h升高

  8、【体积单位换算】

  大单位乘进率=小单位

  小单位÷进率=大单位

  进率:1立方米=1000立方分米=1000000立方厘米(立方相邻单位进率1000)

  1立方分米=1000立方厘米=1升=1000毫升

  1立方厘米=1毫升

  1平方米=100平方分米=10000平方厘米

  1平方千米=100公顷=1000000平方米

  注意:长方体与正方体关系

  把长方体或正方体截成若干个小长方体(或正方体)后,表面积增加了,体积不变。

  重量单位进率,时间单位进率,长度单位进率

  大单位乘进率=小单位

  小单位÷进率=大单位

  数学奇偶数性质

  1、两个连续整数中必有一个奇数和一个偶数。

  2、奇数+奇数=偶数;偶数+奇数=奇数;偶数+偶数+...+偶数=偶数。

  3、奇数-奇数=偶数;偶数-奇数=奇数;奇数-偶数=奇数。

  4、若a、b为整数,则a+b与a-b有相同的奇偶性,即a+b与a-b同为奇数或同为偶数。

  5、n个奇数的乘积是奇数,n个偶数的乘积是偶数;算式中有一个是偶数,则乘积是偶数。

  6、奇数的个位是1、3、5、7、9;偶数的个位是0、2、4、6、8。

  7、奇数的平方除以2、4、8余1。

  8、任意两个奇数的平方差是2、4、8的倍数。

  数学时分秒知识点

  1、钟面上有3根针,它们分别是时针、分针、秒针,其中走得最快的是秒针,走得最慢的.是时针。(时针最短,秒针最长)

  2、计量很短的时间,常用秒。秒是比分更小的时间单位。

  3、钟面上最长最细的针是秒针。秒针走一小格的时间是1秒。

  4、秒表:一般在体育运动中用来记录以秒为单位的时间。

  5、常用时间单位:时、分、秒。

  6、时间单位:时、分、秒,每相邻两个个单位之间的进率都是60。

  1时=60分1分=60秒半时=30分30分=半时

  7、分针走一圈,时针走一大格,是1小时。秒针走一圈,分针走一小格,是1分。

  8、计算一段时间,可以用结束的时刻减去开始的时刻。

  五年级上册数学知识点 篇3

  1、a×b=c(a、b、c是不为0的整数),c是a和b的倍数,a和b是c的因数。

  找因数的方法:

  一个数的因数的个数是有限的,其中最小的因数是1,1的因数是它本身。

  一个数的倍数的个数是无限的,最小的倍数是它本身。

  2、自然数按是否是2的倍数来分:奇数偶数

  奇数:不是2的倍数

  偶数:是2的倍数(0也是偶数)

  最小的奇数是1,最小的偶数是0.

  个位上是0,2,4,6,8的数都是2的倍数。

  个位上是0或5的数,是5的倍数。

  一个数各位上的数的和是3的倍数,这个数就是3的倍数。

  能同时是2、3、5的倍数的的两位数是90,最小的三位数是120。

  3、自然数按因数的个数来分:质数、合数、1.

  质数:有且只有两个因数,1和它本身

  合数:至少有三个因数,1、它本身、别的因数

  1:只有1个因数。“1”既不是质数,也不是合数。

  最小的质数是2,最小的合数是4。

  20以内的质数:有8个(2、3、5、7、11、13、17、19)

  100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、

  43、47、53、59、61、67、71、73、79、83、89、97

  4、分解质因数

  用短除法分解质因数(一个合数写成几个质数相乘的形式)

  5、公因数、公因数

  几个数公有的因数叫这些数的公因数。其中的那个就叫它们的公因数。

  用短除法求两个数或三个数的公因数(除到互质为止,把所有的除数连乘起来)

  几个数的公因数只有1,就说这几个数互质。

  两数互质的特殊情况:

  ⑴1和任何自然数互质;⑵相邻两个自然数互质;⑶两个质数一定互质;

  ⑷2和所有奇数互质;⑸质数与比它小的合数互质;

  6、公倍数、最小公倍数

  几个数公有的倍数叫这些数的公倍数。其中最小的那个就叫它们的最小公倍数。

  用短除法求两个数的最小公倍数(除到互质为止,把所有的除数和商连乘起来)

  用短除法求三个数的最小公倍数(除到两两互质为止,把所有的除数和商连乘起来)

  如果两数是倍数关系时,那么较小的数就是它们的公因数;

  较大的数就是它们的最小公倍数。

  如果两数互质时,那么1就是它们的公因数

  它们的积就是它们的最小公倍数。

  小学数学四大领域主要内容

  数与代数:的认识,数的表示,数的大小,数的运算,数量的估计;

  图形与几何:空间与平面的基本图形,图形的性质和分类;图形的平移、旋转、轴对称;

  统计与概率:收集、整理和描述数据,处理数据;

  实践与综合应用:以一类问题为载体,学生主动参与的学习活动,是帮助学生积累数学活动经验的重要途径。

  数学做计算题型时需要注意什么

  (1)认真读题,仔细审题;

  (2)在计算一般算式时,得数的末尾也应该写出单位名称,但不打括号。例:32千克×4=128千克;

  (3)应用题在算式中要在得数后加括号,填上单位名称。

  例:一筐苹果重5千克,8箱苹果重多少千克?5×8=40(千克)

  五年级上册数学知识点 篇4

  整除的算式的特征:

  1、除数、被除数都是自然数,且除数不为0。

  2、被除数除以除数,商是自然数而没有余数。

  例:15能被5整除,我们就说,15是5的

  倍数,5是15的因数。

  知识点一:因数

  问题一:一个长方形,它的面积是12平方厘米,如果长方形的长和宽都是整数,请同学们猜一猜这个长方形的长和宽各是多少?

  所以12的因数有:

  注意:1、在说因数(或倍数)时,必须说明谁是谁的因数(或倍数)。不能单独说谁是因数(或倍数)。2、因数和倍数不能单独存在。

  例1 18的因数有那些?

  方法一:想18可以有哪两个数相乘得到18=1×18 18=2×9 18=3×6

  方法二:根据整除的意义得到

  18÷1=18 18÷2=9 18÷3=6

  所以18的因数有:

  表示方法:

  1、列举法︰12的因数有:1,2,3,4,6,12

  2、用集合表示︰

  练习1:30的因数有哪些?36呢?

  30的因数有:

  36的因数有:

  观察:18的最小因数是(),的因数是()

  30的最小因数是(),的因数是)

  36的最小因数是(),的因数是()

  一个数的因数的个数是有限的,一个数的最小因数是(),因数是()

  你要知道:

  (1)1的因数只有1,的因数和最小的因数都是它本身。

  (2)除1以外的整数,至少有两个因数。

  (3)任何自然数都有因数1。

  知识点二:倍数

  问题二:2的倍数有哪些?

  2的倍数有:2,4,6,8 …

  例1、小蜗牛找倍数(找出3的倍数)。

  练习3、5的倍数有哪些?7的倍数呢?

  5的倍数:

  7的倍数:

  一个数的倍数的个数是(),一个数的最小的倍数是(),()的倍数。

  用字母表示因数与倍数的关系:a — b = c(a、b、c都是不为0的整数)a、b都是c的因数,c是a和b的倍数。因数和倍数是相互依存的。

  说一说:在0、3、4、7、15、16、77、31、62中择两个数,说一说谁是谁的因数?谁是谁的倍数?

  1、根据算式:4×8=32

  说一说,谁是谁的因数?谁是的倍数?

  2、根据算式:63÷7=9

  说一说,谁是谁的因数?谁是的倍数?

  3、判断:1.2÷0.2=6我们能说0.2和6是1.2的因数;1.2是0.2的倍数,也是6的倍数吗?为什么?

  知识点三:质数和合数

  1、自然数按因数的个数来分:质数、合数、1、0四类。

  (1)质数(或素数):只有1和它本身两个因数。

  (2)合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)。

  (3)1:只有1个因数。“1”既不是质数,也不是合数。

  注:

  ①最小的质数是2,最小的合数是4,连续的两个质数是2、3。

  ②每个合数都可以由几个质数相乘得到,质数相乘一定得合数。

  ③ 20以内的质数:有8个()

  ④ 100以内的质数有25个:()

  关系:奇数×奇数=奇数质数×质数=合数

  2、常见、最小

  A的最小因数是:1;最小的奇数是:1;

  A的因数是:本身;最小的偶数是:0;

  A的最小倍数是:本身;最小的质数是:2;

  最小的自然数是:0;最小的合数是:4;

  3、分解质因数:把一个合数分解成多个质数相乘的形式。树状图

  例:

  分析:先把36写成两个因数相乘的形式,如果两个因数都是质数就不再进行分解了;如果两个因数中海油合数,那我们继续分解,一直分解到全部因数都是质数为止。把36分解质因数是:36=2×2×3×3

  4、用短除法分解质因数(一个合数写成几个质数相乘的形式)。例:

  分析:看上面两个例子,分别是用短除法对18,30分解质因数,左边的数字表示“商”,竖折下面的表示余数,要注意步骤。具体步骤是:

  5、互质数:公因数只有1的两个数,叫做互质数。

  两个质数的互质数:5和7

  两个合数的互质数:8和9

  一质一合的互质数:7和8

  6、两数互质的特殊情况:

  ⑴1和任何自然数互质;

  ⑵相邻两个自然数互质;

  ⑶两个质数一定互质;⑷2和所有奇数互质;

  ⑸质数与比它小的合数互质;

  三、经验之谈:

  书写分解质因数的结果时不能把质因数相乘写在等号左边,把合数写在右边,比如36=2×2×3×3就不能写成2×2×3×3=36;

  短除法是除法一种简化,利用短除法分解质因数时,除数和商都不能是1,因为1不是质数

  图形的变换

  1、轴对称图形:把一个图形沿着某一条直线对折,两边能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。

  2、成轴对称图形的特征和性质:①对称点到对称轴的距离相等;②对称点的连线与对称轴垂直;③对称轴两边的图形大小形状完全相同。

  3、物体旋转时应抓住三点:①旋转中心;②旋转方向;③旋转角度。旋转只改变物体的位置,不改变物体的形状、大小。

  五年级上册数学知识点 篇5

  1、表示相等关系的式子叫做等式。

  2、含有未知数的等式是方程。

  3、方程一定是等式;等式不一定是方程。等式>方程

  4、等式两边同时加上或减去同一个数,所得结果仍然是等式。这是等式的性质。

  等式两边同时乘或除以同一个不等于0的数,所得结果仍然是等式。这也是等式的性质。

  5、求方程中未知数的过程,叫做解方程。

  解方程时常用的关系式:

  一个加数=和-另一个加数减数=被减数-差被减数=减数+差

  一个因数=积÷另一个因数除数=被除数÷商被除数=商×除数

  注意:解完方程,要养成检验的好习惯。

  6、五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。奇数个连续的自然数(或连续的奇数,连续的偶数)的和÷个数=中间数

  7、4个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间两个数或首尾两个数的和×个数÷2(高斯求和公式)

  8、列方程解应用题的思路:

  A、审题并弄懂题目的已知条件和所求问题。

  B、理清题目的等量关系。

  C、设未知数,一般是把所求的数用X表示。

  D、根据等量关系列出方程E、解方程F、检验G、作答。

【五年级上册数学知识点】相关文章:

数学上册知识点08-02

五年级数学上册知识点03-02

五年级数学上册的知识点01-26

北师版数学五年级上册知识点10-26

五年级上册数学知识点10-29

小学五年级上册数学知识点:数学广角01-20

数学上册实数的知识点归纳01-19

初三数学上册知识点11-16

五年级上册数学重点知识点08-17

五年级数学上册面积的知识点12-18