数学 百文网手机站

小学数学知识点

时间:2021-09-27 16:36:12 数学 我要投稿

小学数学知识点15篇

  在日复一日的学习中,说起知识点,应该没有人不熟悉吧?知识点就是一些常考的内容,或者考试经常出题的地方。哪些才是我们真正需要的知识点呢?以下是小编为大家收集的小学数学知识点,供大家参考借鉴,希望可以帮助到有需要的朋友。

小学数学知识点15篇

小学数学知识点1

  1.1 整数和整除的意义

  1.在数物体的时候,用来表示物体个数的数1,2,3,4,5,??,叫做整数

  2.在正整数1,2,3,4,5,??,的前面添上“—”号,得到的数—1,—2,—3,—4,—5,??,叫做负整数

  3. 零和正整数统称为自然数

  4.正整数、负整数和零统称为整数

  5.整数a除以整数b,如果除得的商正好是整数而没有余数,我们就说a能被b整除,或者说b能整除a。

  1.2 因数和倍数

  1.如果整数a能被整数b整除,a就叫做b倍数,b就叫做a的因数

  3.一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身

  4.一个数的倍数的个数是无限的,其中最小的倍数是它本身

  1.3能被2,5整除的数

  1.个位数字是0,2,4,6,8的数都能被2整除

  2.在正整数中(除1外),与奇数相邻的两个数是偶数

  3.在正整数中,与偶数相邻的两个数是奇数

  4.个位数字是0,5的数都能被5整除

  5. 0是偶数

  1.4 素数、合数与分解素因数

  1.只含有因数1及本身的整数叫做素数或质数

  2.除了1及本身还有别的因数,这样的数叫做合数

  3. 1既不是素数也不是合数

  4.奇数和偶数统称为正整数,素数、合数和1统称为正整数

  5.每个合数都可以写成几个素数相乘的形式,这几个素数都叫做这个合数的素因数

  6.把一个合数用素因数相乘的形式表示出来,叫做分解素因数。

  7.通常用什么方法分解素因数: 树枝分解法,短除法

  1.5 公因数与最大公因数

  1.几个数公有的因数,叫做这几个数的公因数,其最大的一个叫做这几个数的最大公因数

  4.如果两个数中,较小数是较大数的因数,那么这两个数的最大公因数较小的数

  5.如果两个数是互素数,那么这两个数的最大公因数是

小学数学知识点2

  四则运算的法则

  1、加法a、整数和小数:相同数位对齐,从低位加起,满十进一b、同分母分数:分母不变,分子相加;异分母分数:先通分,再相加

  2、减法a、整数和小数:相同数位对齐,从低位减起,哪一位不够减,退一当十再减b、同分母分数:分母不变,分子相减;异分母分数:先通分,再相减

  3、乘法a、整数和小数:用乘数每一位上的数去乘被乘数,用哪一位上的数去乘,得数的末位就和哪一位对起,最后把积相加,因数是小数的,积的小数位数与两位因数的小数位数相同b、分数:分子相乘的积作分子,分母相乘的积作分母。能约分的先约分,结果要化简

  4、除法a、整数和小数:除数有几位,先看被除数的前几位,(不够就多看一位),除到被除数的哪一位,商就写到哪一位上。除数是小数是,先化成整数再除,商中的小数点与被除数的小数点对齐b、甲数除以乙数(0除外),等于甲数除以乙数的倒数

  运算定律

  加法交换律 a+b=b+a

  结合律 (a+b)+c=a+(b+c)

  减法性质 a-b-c=a-(b+c)

  a-(b-c)=a-b+c

  乘法交换律 a×b=b×a

  结合律 (a×b)×c=a×(b×c)

  分配律 (a+b)×c=a×c+b×c

  除法性质 a÷(b×c)=a÷b÷c

  a÷(b÷c)=a÷b×c

  (a+b)÷c=a÷c+b÷c

  (a-b)÷c=a÷c-b÷c

  商不变性质m≠0 a÷b=(a×m)÷(b×m) =(a÷m)÷(b÷m)

  积的变化规律:在乘法中,一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)相同的倍数。

  推广:一个因数扩大A倍,另一个因数扩大B倍,积扩大AB倍。

  一个因数缩小A倍,另一个因数缩小B倍,积缩小AB倍。

  商不变规律:在除法中,被除数和除数同时扩大(或缩小)相同的倍数,商不变。

  推广:被除数扩大(或缩小)A倍,除数不变,商也扩大(或缩小)A倍。

  被除数不变,除数扩大(或缩小)A倍,商反而缩小(或扩大)A倍。

  利用积的变化规律和商不变规律性质可以使一些计算简便。但在有余数的除法中要注意余数。

  如:8500÷200= 可以把被除数、除数同时缩小100倍来除,即85÷2= ,商不变,但此时的余数1是被缩小100被后的,所以还原成原来的余数应该是100。

小学数学知识点3

  主要内容

  求一个数比另一个数多(少)百分之几、纳税问题

  学习目标

  1、使学生在现实情境中,理解并掌握“求一个数比另一个数多(少)百分之几”的基本思考方法,并能正确解决相关的实际问题。

  2、使学生在探索“求一个数比另一个数多(少)百分之几”方法的过程中,进一步加深对百分数的理解,体会百分数与日常生活的密切联系,增强自主探索和合作交流的意识,提高分析问题和解决问题的能力。

  3、使学生初步认识纳税和税率,理解和掌握应纳税额的计算方法。

  4、初步培养学生的纳税意识,继续感知数学就在身边,提高知识的应用能力。

  5、培养和解决简单的实际问题的能力,体会生活中处处有数学。

  考点分析

  1、一个数比另一个数多(少)百分之几 = 一个数比另一个数多(少)的量÷另一个数。

  2、应该缴纳的税款叫做应纳税额,应纳税额与各种收入的比率叫做税率,应纳税额 = 收入 × 税率

  点评:想一想,在分数乘法应用题中的最基本的数量关系式:“单位1 × 分率 = 分率对应的量”,如果和百分数应用题结合起来,求一种量比另一种量多(少)百分之几,实际上就是求分率。就用“多(少)的量 ÷ 单位1”。

  例3、(难点突破)

  一筐苹果比一筐梨重20%,那么一筐梨就比一筐苹果轻20%

  分析与解:苹果比梨重20%,表示苹果比梨重的部分占梨的20%,把梨的质量看作单位“1”;而梨比苹果轻20%则表示梨比苹果轻的部分占苹果的20%,把苹果的质量看作单位“1”,两个单位“1”不同,切忌将两个问题混为一谈。一筐苹果比一筐梨重20%,是把梨看作单位“1”,梨有100份,苹果就是100 + 20 = 120份;一筐梨比一筐苹果轻百分之几 = 一筐梨比一筐苹果轻的部分 ÷ 苹果 = (120 - 100)÷ 120≈16.7%

  答:一筐苹果比一筐梨重20%,那么一筐梨就比一筐苹果轻16.7%

  点评:在求一个数比另一个数多(少)百分之几的百分数应用题中,关键还是要找准单位“1”的量。从结论可以得出“一个数比另一个数多百分之几,另一个数就比一个数少百分之几。”这句话是错的。为什么呢?把两个百分之几比较一下,就可以得出这两个百分之几对应的量是一个数比另一个数多的量或另一个数比一个数少的量,而这两种说法是相同的,也就表示的是同一个量;而单位“1”一个是梨,一个是苹果,所以这两个百分之几是不可能相等的。

  例4、(考点透视)

  一种电子产品,原价每台5000元,现在降低到3000元。降价百分之几?

  分析与解:降低到3000元,即现价为3000元,说明降低了2000元。求降价百分之几,就是求降低的价格占原价的百分之几。

  5000 – 3000 = 2000(元)

  2000 ÷ 5000 = 40%

  答:降价40﹪。

  例7、(和应纳税额有关的简单实际问题)

  王叔叔买了一辆价值16000元的摩托车。按规定,买摩托车要缴纳10%的车辆购置税。王叔叔买这辆摩托车一共要花多少钱?

  分析与解:王叔叔买这辆摩托车所需的钱应包含购买价和10%的车辆购置税两部分,而车辆购置税是占摩托车购买价的10%,可先算出要缴纳的车辆购置税。也可以这样想:车辆购置税占购买价的10%,把购买价看作单位“1”,王叔叔买这辆摩托车所需的钱相当于购买价的(1 + 10%),即求16000元的110%是多少,也用乘法计算。

  方法1:16000 ×10% + 16000 = 1600 + 16000 = 17600(元)

  方法2:16000 ×(1 + 10%) = 16000 ×1.1 = 17600(元)

  答:王叔叔买这辆摩托车一共要花17600元钱。

  例8、扬州某风景区2007年“十一”黄金周接待游客9万人次,门票收入达270

  万元。按门票的5%缴纳营业税计算,“十一”黄金周期间应缴纳营业税0.45万元。

  分析与解:营业税是按门票的5%缴纳,是占门票收入的5%,而不是占游客人数的5%

  答:“十一”黄金周期间应缴纳营业税13.5万元。

  模拟试题一

  一、填空。

  1、篮球个数是足球的125%,篮球比足球多( )%,足球个数是篮球的( )%,足球个数比篮球少( )%。

  2、排球个数比篮球多18%,排球个数相当于篮球的( )%。

  3、足球个数比篮球少20%。排球个数比篮球多18%,( )球个数最多,( )球个数最少。

  4、果园里种了60棵果树,其中36棵是苹果树。苹果树占总棵数的( )%,其余的果树占总棵数的( )%。

  5、女生人数占全班的百分之几 = ( )÷ ( )

  杨树的棵数比柏树多百分之几 = ( )÷ ( )

  实际节约了百分之几 = ( )÷ ( )

  比计划超产了百分之几 = ( )÷ ( )

  6、20的40%是( ),36的10%是( ),50千克的60%是( )千克,800米的25%是( )米。

  7、进口价a元的一批货物,税率和运费都是货物价值的10%,这批货物的成本是( )元。

  二、解决实际问题

  1、白兔有25只,灰兔有30只。灰兔比白兔多百分之几?

  2、四美食盐厂上月计划生产食盐450吨,实际生产了480吨。实际比计划多生产了百分之几?

  3、小明家八月份用电80千瓦时,小亮家比小明家节约10千瓦时,小亮家比小明家八月份节约用电百分之几?

  4、某化肥厂9月份实际生产化肥5000吨,比计划超产500吨。比计划超产百分之几?

  5、蓝天帽业厂去年收入总额达900万元,按国家的税率规定,应缴纳17%的增值税。一共要缴纳多少万元的增值税?

  6、爸爸买了一辆价值12万元的家用轿车。按规定需缴纳10%的车辆购置税。爸爸买这辆车共需花多少钱?

小学数学知识点4

  小学数学知识点全总结之一:运算定律

  加法交换律 a+b=b+a

  结合律 (a+b)+c=a+(b+c)

  减法性质 a-b-c=a-(b+c)

  a-(b-c)=a-b+c

  乘法交换律 a×b=b×a

  结合律 (a×b)×c=a×(b×c)

  分配律 (a+b)×c=a×c+b×c

  除法性质 a÷(b×c)=a÷b÷c

  a÷(b÷c)=a÷b×c

  (a+b)÷c=a÷c+b÷c

  (a-b)÷c=a÷c-b÷c

  商不变性质m≠0 a÷b=(a×m)÷(b×m) =(a÷m)÷(b÷m)

  ■积的变化规律:在乘法中,一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)相同的倍数.

  推广:一个因数扩大A倍,另一个因数扩大B倍,积扩大AB倍.

  一个因数缩小A倍,另一个因数缩小B倍,积缩小AB倍.

  ■商不变规律:在除法中,被除数和除数同时扩大(或缩小)相同的倍数,商不变.

  推广:被除数扩大(或缩小)A倍,除数不变,商也扩大(或缩小)A倍.

  被除数不变,除数扩大(或缩小)A倍,商反而缩小(或扩大)A倍.

  ■利用积的变化规律和商不变规律性质可以使一些计算简便.但在有余数的除法中要注意余数.

  如:8500÷200= 可以把被除数、除数同时缩小100倍来除,即85÷2= ,商不变,但此时的余数1是被缩小100被后的,所以还原成原来的余数应该是100.

  小学数学知识点全总结之二:简易方程

  ■用字母表示数

  用字母表示数是代数的基本特点.既简单明了,又能表达数量关系的一般规律.

  ■用字母表示数的注意事项

  1、数字与字母、字母和字母相乘时,乘号可以简写成““或省略不写.数与数相乘,乘号不能省略.

  2、当1和任何字母相乘时,“ 1” 省略不写.

  3、数字和字母相乘时,将数字写在字母前面.

  ■含有字母的式子及求值

  求含有字母的式子的值或利用公式求值,应注意书写格式

  ■等式与方程

  表示相等关系的式子叫等式.

  含有未知数的等式叫方程.

  判断一个式子是不是方程应具备两个条件:一是含有未知数;二是等式.所以,方程一定是等式,但等式不一定是方程.

  ■方程的解和解方程

  使方程左右两边相等的未知数的值,叫方程的解.

  求方程的解的过程叫解方程.

  ■在列方程解文字题时,如果题中要求的未知数已经用字母表示,解答时就不需要写设,否则首先演将所求的未知数设为x.

  ■解方程的方法

  1、直接运用四则运算中各部分之间的关系去解.如x-8=12

  加数+加数=和 一个加数=和-另一个加数

  被减数-减数=差 减数=被减数-差 被减数=差+减数

  被乘数×乘数=积 一个因数=积÷另一个因数

  被除数÷除数=商 除数=被除数÷商 被除数=除数×商

  2、先把含有未知数x的项看作一个数,然后再解.如3x+20=41

  先把3x看作一个数,然后再解.

  3、按四则运算顺序先计算,使方程变形,然后再解.如2.5×4-x=4.2,

  要先求出2.5×4的积,使方程变形为10-x=4.2,然后再解.

  4、利用运算定律或性质,使方程变形,然后再解.如:2.2x+7.8x=20

  先利用运算定律或性质使方程变形为(2.2+7.8)x=20,然后计算括号里面使方程变形为10x=20,最后再解.

  小学数学知识点全总结之三:比和比例

  ■比和比例应用题

  在工业生产和日常生活中,常常要把一个数量按照一定的比例来进行分配,这种分配方法通常叫“按比例分配”.

  ■解题策略

  按比例分配的有关习题,在解答时,要善于找准分配的总量和分配的比,然后把分配的比转化成分数或份数来进行解答

  ■正、反比例应用题的解题策略

  1、审题,找出题中相关联的两个量

  2、分析,判断题中相关联的两个量是成正比例关系还是成反比例关系.

  3、设未知数,列比例式

  4、解比例式

  5、检验,写答语

小学数学知识点5

  1、对长方形、正方形、三角形和圆的认识,能分辨出四种基本的图形。

  2、学会观察,能在生活中找出基本的形状,会举例。

  3、能区分出面和体的关系,体会“面在体上”。

  4、能找出一组图形的规律。

  5、能在复杂的图案中找出基本的图形。

小学数学知识点6

  【时分秒】

  1、钟面上有3根针,它们是时针、分针、秒针,其中走得最快的是秒针,走得最慢的是时针。时针最短,秒针最长。

  2、钟面上有12个数字,12个大格,60个小格;每两个数之间是1个大格,也就是5个小格。

  3、时针走1大格是1小时;分针走1大格是5分钟,走1小格是1分钟;秒针走1大格是5秒钟,走1小格是1秒钟。

  4、分针走1小格,秒针正好走1圈,秒针走1圈是60秒,也就是1分钟。

  5、时针从一个数走到下一个数是1小时。分针从一个数走到下一个数是5分钟。秒针从一个数走到下一个数是5秒钟。

  6、公式(每两个相邻的时间单位之间的进率是60):

  1时=60分

  1分=60秒

  7、常用的时间单位:时、分、秒、年、月、日、世纪等。

  1世纪=100年

  1年=12个月

  【分数的初步认识】

  1、几分之一:把一个物体或一个图形平均分成几份,每一份就是它的几分之一。

  几分之几:把一个物体或一个图形平均分成几份,取其中的几份,就是这个物体或图形的几分之几。

  2、把一个整体平均分得的份数越多,它的每一份所表示的数就越小。

  3、比较大小的方法:

  ①分子相同,分母小的分数反而大,分母大的分数反而小。

  ②分母相同,分子大的分数就大,分子小的分数就小。

  4、分数加减法:

  ①同分母的分数加、减法的计算方法:同分母分数相加减,分母不变,分子相加、减。

  ②计算1减几分之几时,先把1写成与减数分母相同的分数,再计算。

  5、分数的意义:把一个整体平均分成若干份,表示几份就是这个整体的几分之几,所分的份数作分母,所取的份数作分子。

  6、求一个数是另一个数的几分之几是多少的计算方法:先用这个数除以分母(求出1份的数量是多少),再用商乘分子(求出其中几份是多少)。

  【测量】

  1、在生活中,量比较短的物品,可以用毫米、厘米、分米做单位;量比较长的物体,常用米做单位;测量比较长的路程一般用千米做单位,千米也叫公里。

  2、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。

  3、在计算长度时,只有相同的长度单位才能相加减。

  4、长度单位的关系式有:

  ①进率是10:

  1米=10分米

  1分米=10厘米

  1厘米=10毫米

  ②进率是100:

  1米=100厘米

  1分米=100毫米

  ③进率是1000:

  1千米=1000米

  1公里==1000米

  5、当我们表示物体有多重时,通常要用到质量单位。在生活中,称比较轻的物品质量,可以用克做单位;称一般物品的质量,常用千克做单位;计量较重或大物品的质量,通常用吨做单位。

  6、相邻两个质量单位的进率是1000。

  1吨=1000千克

  1千克=1000克

  【万以内的加法和减法】

  1、读数和写数:

  ①一个数的末尾不管有一个0或几个0,这个0都不读。

  ②一个数的中间有一个0或连续两个0,都只读一个0。

  2、数的大小比较:

  ①位数不同的数比较大小,位数多的数大。

  ②位数相同的数比较大小,先比较这两个数位上的数,如果位上的数相同,就比较下一位,以此类推。

  3、求一个数的近似数:看数的后面一位,如果是0~4就用四舍法,如果是5~9就用五入法。

  4、被减数是三位数的连续退位减法的运算步骤:

  ①列竖式时相同数位一定要对齐;

  ②减法时,哪一位上的数不够减,从前一位退1,在本位上加上10再减;如果前一位是0,则再从前一位退1。

  【倍的认识】

  1、倍的意义:要知道两个数的关系,先确定谁是1倍数,然后把另一个数和它作比较,另一个数里有几个1倍数就是它的几倍。

  2、求一个数是另一个数的几倍的计算方法:一个数÷另一个数=倍数。

  3、求一个数的几倍是多少的计算方法:这个数×倍数=这个数的几倍。

  【长方形和正方形】

  1、有4条直的边和4个角封闭的图形叫做四边形。

  2、四边形的特点:有四条直的边,有四个角。

  3、长方形的特点:长方形有两条长,两条宽,四个角都是直角,对边相等。

  4、正方形的特点:有4个直角,4条边相等。

  5、长方形和正方形是特殊的平行四边形。

  6、平行四边形的特点:

  ①对边相等、对角相等;

  ②平行四边形容易变形。(三角形不容易变形)

  7、封闭图形一周的长度,就是它的周长。

  8、公式:

  长方形的周长=(长+宽)×2=长×2+宽×2

  长方形的长=周长÷2-宽

  长方形的宽=周长÷2-长

  正方形的周长=边长×4

  正方形的边长=周长÷4

  【多位数乘一位数】

  1、估算:先求出多位数的近似数,再进行计算,如497×7≈3500。

  2、

  ①0和任何数相乘都得0;

  ②1和任何不是0的数相乘还得原来的数。

  3、三位数乘一位数,积有可能是三位数,也有可能是四位数。

  4、多位数乘一位数(进位)的笔算方法:

  相同数位对齐,从个位乘起,用一位数分别去乘多位数每一位上的数,哪一位上乘得的数积满几十,就向前一位进几,与哪一位相乘,积就写在哪一位下面。

  5、一个因数中间有0的乘法:

  ①0和任何数相乘都得0;

  ②因数中间有0,用一位数去乘多位数每一位数上的数,与中间的.0相乘时,如果后面没有进上来的数,这一位上要用0来占位,如果有进上来的数必须加上。

  6、一个因数末尾有0的乘法的简便计算:笔算时,可以把一位数与多位数0前面的那个数字对齐,再看多位数的末尾有几个0,就在积的末尾添上几个0。

  7、关于“大约”的应用题:问题中出现“大约”“约”“估一估”“估算”“估计一下”,条件中无论有没有大约都是求近似数,用估算。

  8、减法的验算方法:

  ①用被减数减去差,看结果是不是等于减数;

  ②用差加减数,看结果是不是等于被减数。

  9、加法的验算方法:

  ①交换两个加数的位置再算一遍;

  ②用和减一个加数,看结果是不是等于另一个加数。

  小学数学学习方法

  掌握数学学习实践阶段:在高中数学学习过程中,我们需要使用正确的学习方法,以及科学合理的学习规则。先生著名的日本教育在米山国藏在他的数学精神、思想和方法,曾经说过,尤其是高阶段的数学学习数学,必须遵循“分层原则”和“循序渐进”的原则。与教学内容的第一周甚至是从基础开始,一周后的头几天,在教学难以提升。以及提升的困难进步一步一步,最好不要去追求所谓的“困难”除了(感兴趣),不利于解决问题方法掌握连续性。同时,根据时间和课程安排的长度适当的审查,只有这样才能记住和使用在长期学习数学知识,不要忘记前面的学习。

  小学数学学习技巧

  敢于表达自己的想法。在高中数学学习中,学生会遇到很多解决问题的技巧。也许这个方法对别人来说不是很熟悉,你知道。那么你需要学生敢于表达自己的想法,这样你才能掌握更多的技能。它也可以激发学生的学习兴趣,如果一个班是满的。是老师在说话,课堂气氛很沉闷,学生的学习效率也很低。

小学数学知识点7

  公式:长方形:周长=(长+宽)×2——【长=周长÷2-宽;宽=周长÷2-长】字母公式:C=(a+b)×2

  面积=长×宽字母公式:S=ab

  正方形:周长=边长×4字母公式:C=4a

  面积=边长×边长字母公式:S=a

  平行四边形的面积=底×高字母公式: S=ah

  三角形的面积=底×高÷2 ——【底=面积×2÷高;高=面积×2÷底】字母公式: S=ah÷2

  梯形的面积=(上底+下底)×高÷2字母公式: S=(a+b)h÷2

  ——【上底=面积×2÷高-下底,下底=面积×2÷高-上底;高=面积×2÷(上底+下底)】

  行四边形面积公式推导:剪拼、平移25、三角形面积公式推导:旋转

  平行四边形可以转化成一个长方形;两个完全一样的三角形可以拼成一个平行四边形;

  长方形的长相当于平行四边形的底;平行四边形的底相当于三角形的底;

  长方形的宽相当于平行四边形的高;平行四边形的高相当于三角形的高;

  长方形的面积等于平行四边形的面积,平行四边形的面积等于三角形面积的2倍,

  因为长方形面积=长×宽,所以平行四边形面积=底×高。因为平行四边形面积=底×高,所以三角形面积=底×高÷2

  形面积公式推导:旋转27、三角形、梯形的第二种推导方法老师已讲,自己看书,两个完全一样的梯形可以拼成一个平行四边形,知道就行。

  平行四边形的底相当于梯形的上下底之和;

  平行四边形的高相当于梯形的高;

  平行四边形面积等于梯形面积的2倍,因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2

  底等高的平行四边形面积相等;等底等高的三角形面积相等;

  等底等高的平行四边形面积是三角形面积的2倍。

  方形框架拉成平行四边形,周长不变,面积变小。

  合图形:转化成已学的简单图形,通过加、减进行计算。

小学数学知识点8

  退位减法含义:

  退位减法(也可以称作借位减法)就是当两个数相减,被减数的个位不够减时,往前一位借位,相当于给这位数加上10,再进行计算。

  计算方法举例:

  24-15

  竖式: 24- 15----------------------

  第一步,将2的上面点一点,算为借位·24- 15-----------------------

  第二步,将4看做是14计算(0是举例时打占位,实际时省略第二步)·2←← 141 ←← 05------------------------9

  第三步,2被借了以后,变成了1,然后计算(个位的0代表计算完毕,结果的0占位,实际时个位照写,占位的不写)2 ←← 10- 10------------------------09

  第四步,得出结果(最终写法)·24- 15--------------------------9

小学数学知识点9

  通过欣赏和设计图案的活动,进一步认识正方形、长方形、三角形和圆。

  小小运动会

  1、应用100以内的进位加法与退位减法的计算方法进行正确的计算。

  2、经历与他人交流各自算法的过程,体会算法多样化。

  3、体会长方形、正方形、三角形和圆在生活中的普遍存在。

  4、能利用图形设计美丽的图案。

小学数学知识点10

  一、圆的特征

  1、圆是平面内封闭曲线围成的平面图形。

  2、圆的特征:外形美观,易滚动。

  3、圆心O:圆中心的点叫做圆心.圆心一般用字母O表示。

  圆多次对折之后,折痕的相交于圆的中心即圆心。圆心确定圆的位置。

  半径r:连接圆心到圆上任意一点的线段叫做半径。在同一个圆里,有无数条半径,且所有的半径都相等。半径确定圆的大小。

  直径d:通过圆心且两端都在圆上的线段叫做直径。在同一个圆里,有无数条直径,且所有的直径都相等。直径是圆内最长的线段。

  同圆或等圆内直径是半径的2倍:d=2r或r=d÷2

  4、等圆:半径相等的圆叫做同心圆,等圆通过平移可以完全重合。同心圆:圆心重合、半径不等的两个圆叫做同心圆。

  5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的直线叫做对称轴。

  有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角。

  有二条对称轴的图形:长方形

  有三条对称轴的图形:等边三角形

  有四条对称轴的图形:正方形

  有无条对称轴的图形:圆,圆环

  6、画圆

  (1)圆规两脚间的距离是圆的半径。(2)画圆步骤:定半径、定圆心、旋转一周。

  二、圆的周长:

  围成圆的曲线的长度叫做圆的周长,周长用字母C表示。

  1、圆的周长总是直径的三倍多一些。

  2、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。

  即:圆周率π=周长÷直径≈3.14

  所以,圆的周长(c)=直径(d)×圆周率(π)—周长公式:c=πd,c=2πr

  圆周率π是一个无限不循环小数,3.14是近似值。

  3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。

  4、半圆周长=圆周长一半+直径=πr+d

  三、圆的面积s

  1、圆面积公式的推导

  如图把一个圆沿直径等分成若干份,剪开拼成长方形,份数越多拼成的图像越接近长方形。

  圆的半径=长方形的宽

  圆的周长的一半=长方形的长

  长方形面积=长×宽

  所以:圆的面积=圆的周长的一半(πr)×圆的半径(r)

  S圆=πr×r=πr2

  2、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则,而长方形的面积则最小。

  周长相同时,圆面积,利用这一特点,篮子、盘子做成圆形。

  3、圆面积的变化的规律:半径扩大多少倍,直径、周长也同时扩大多少倍,圆面积扩大的倍数是半径、直径扩大的倍数的平方倍。

  4、环形面积=大圆–小圆=πR2-πr2

  扇形面积=πr2×n÷360(n表示扇形圆心角的度数)

  5、跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加上两条直跑道的和。因为两条直跑道长度相等,所以,起跑线不同,相邻两条跑道起跑线也不同,间隔的距离是:2×π×跑道宽度。

  一个圆的半径增加a厘米,周长就增加2πa厘米。

  一个圆的直径增加b厘米,周长就增加πb厘米。

  6、任意一个正方形的内切圆即圆的直径是正方形的边长,它们的面积比是4∶π。

  7、常用数据

  π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7

小学数学知识点11

  一、读数、写数。

  1.读20以内的数。

  顺数:从小到大的顺序0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

  倒数:从大到小的顺序20 19 18 17······

  单数:1、3、5、7、9······

  双数:2、4、6、8、10······

  (注:0既不是单数,也不是双数,0是偶数。在生活中说单双数,在数学中说奇偶数。)

  2.两位数

  (1)我们生活中经常遇到十个物体为一个整体的情况,实际上十个“1”就是一个“10”,一个“10”就是十个“1”。

  如:A:11里有(1)个十和(1)个一;

  11里有(11)个一。

  12里有(1)个十和(2)个一;

  12里有(12)个一13里有(1)个十和(3)个一;

  13里有(13)个一14里有(1)个十和(4)个一;

  14里有(14)个一15里有(1)个十和(5)个一;

  15里有(15)个一······

  19里有(1)个十和(9)个一;

  或者说,19里有(19)个一20里有(2)个十;

  20里有(20)个一B:看数字卡片(11~20),说出卡片上的数是由几个十和几个一组成的。

  (2)在计数器上,从右边起第一位是什么位?(个位)第2位是什么位?(十位)个位上的1颗珠子表示什么?(表示1个一)十位上的1颗珠子表示什么?(表示1个十)

  (3)先读11、12、13、14、15、16、17、18、19、20,再写出来。

  如:14,读作:十四,写作:14。个位上是4,表示4个一,十位上数字是1,表示1个十。

  二、比较大小和第几。

  1.比较大小

  例如,给数字娃娃排队:5、6、10、3、20、17,可以按从大到小的顺序排列,也可以按从小到大的顺序排列。

  (注意做题时,写一个数字,划去一个,做到不重不漏。)

  2.任意取20以内的两个数,能够用谁比谁大或谁比谁小说一句话。

  如:16比15大,写出来就是16>159比13小,写出来就是9<133、“比”字的用法

  看“比”字的后面是谁,比几大1就要在几的基础上加1,比几小1就要在几的基础上减1。

  如:比5小2的数是(3),比4多3的数是(7)。

  3.几和第几

  △▲▲★△☆☆△△△▲★★★☆★

  观察图,说说有几个图形?(16个图形)从左数第几位是什么?从右数第几位是什么?把左边三个圈起来;把右边第2个圈起来。

  (复习此类知识时,分清左右,同时确定方向;知道几个和第几个的区别。)

  4.相邻数

  2的前面是1,2的后面是3,2再添上1就是3,3再去掉1就是2,与2相邻的数是1和3。

  3的前面是2,3的后面是4,3再添上1就是4,4再去掉1就是3,与3相邻的数是2和4。······

  20的前面是19,20的后面是21,······,与20相邻的数是19和21。

  三、比一比

  1.比较两个事物的大小、多少、长短、高矮、轻重等,要以其中的一个事物作为参照,或者说以其中的一个事物作为标准,然后再比较,这样就能说另一个事物比作为标准的那个事物大或者小、多或少等。

  比长短:常用的方法注意要一端对齐,也可以采用数格比较,或对称比较。比高矮:注意在同一平面上去比较。比多少:运用一一对应原则。

  2.三个事物比较,可以先两个两个的比较。然后根据比较的结果,得出三个事物比较的结论。

  如:A比B重,B比C重,那么可以得到A比C重。A最重,C最轻。

  A比B重,A比C重,只能得到A最重,还要比较B和C,才知道谁最轻。

小学数学知识点12

  一、小数乘法。

  1、积与因数的关系:

  一个数(0除外)乘大于1的数,积比原来的数大。

  一个数(0除外)乘小于1的数,积比原来的数小。

  2、一个因数不变,另一个因数扩大(或缩小)几倍,积也扩大(或缩小)几倍。

  一个因数扩大A倍,另一个因数扩大B倍,积就扩大AB倍

  一个因数扩大几倍,另一个因数缩小相同的倍数,积不变。

  二、小数除法

  3、小数除以整数:

  ①先按整数除法的方法去除;

  ②商的小数点要和被除数的小数点对齐;

  ③整数部分不够除,商0,点上小数点;

  ④除到最后一位如果还有余数,要添0再除。

  4除数是整数的小数除法

  5、小数除以小数:

  6、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

  7、小数部分的位数是有限的小数,叫做有限小数。

  8、小数部分的位数是无限的小数,叫做无限小数。

  9、一个循环小数的小数部分,依次不断重复出现的数字,叫做这个循环小数的循环节。

  三、

  10、当被除数与除数同时扩大或缩小相同的倍数时,商不变。

  当被除数扩大或缩小几倍,除数不变时,商也扩大或缩小相同的倍数。

  当被除数不变,除数扩大或缩小几倍时,商缩小或扩大相同的倍数 。

  11、当被除数(不为0)除以一个小于它的数时,商大于1。

  当被除数(不为0)除以一个大于它的数时,商小于1。

  当被除数(不为0)除以一个小于1的数时,商大于被除数。

  当被除数(不为0)除以一个大于1的数时,商小于被除数。

  12、求商的近似值:

  用四舍五入法,

  根据具体情况用去尾法取近似值。

  用进一法取近似值。

  四:倍数与因数

  概念:五年级数学期末考试必备知识点

  13、自然数a除以自然数b(b0)除得的商正好是整数,而没有余数,我们就说a能被b整除,或者说b能整除a。则a是b的倍数,b是a的因数。

  如84=2,可以说8是4和2的倍数,2和4是8的因数。

  14、因数和倍数是相互依存的关系,不能单独存在;一个数的因数的个数是有限个的,一个数的倍数有无数个,最大的因数和最小的倍数是它本身。

  15、2的倍数特征:个位上是0、2、4、6、8的数都是2的倍数

  16、5的倍数特征:个位上是0、5的数都是5的倍数

  17、3或9 的的倍数特征:各个数位上的数字之和是3或9的倍数的数

  18、11的倍数特征:一个数奇数位数字之和与偶数位数字之和相减(大数减小

  小数)其差是11的倍数,那么这个整数就是11的倍数。

  19一个较大的整数末三位数字所组成的三位数和末三位以前的数字组成的数之差(用大数减小数)是7、13、11的倍数,则这个数就是它们的倍数。

  20:判断这个数是合数还是质数,我们先用2、3、5、9的倍数特征去判断,然后可以用7、11、13等较小的质数去试除

  五、混合运算:

  21小数的四则运算顺序跟整数是一样的。整数的运算定律,对小数也一样适用。

  22乘法交换律:ab=ba

  乘法结合律:a(bc)=(ab)c

  乘法分配律:a(b+c)=ab +ac

  减法的性质:a-b-c = a-(b+c)

  除法的性质:abc = a(bc)

  ac+bc=(a+b)c

  ac-bc=(a-b)c

  单位换算

  23:大单位到小单位,乘进率。小单位到大单位,除以进率。

  六、图形面积计算

  24基本知识点:

  平行四边形的底:面积高

  平行四边形的高:面积底

  三角形的底:面积2高

  三角形的高:面积2底

  梯形的高:面积2(上底+下底)

  梯形的上底:面积2高-下底

  梯形的下底:面积2高-上底

  25、面积公式的推导过程

  有关规律:

  26、在平行四边形里画一个最大的三角形,这个三角形的面积等于这个平行四边形面积的一半。

  27、 用细木条钉成一个长方形框架,如果把他拉成一个平行四边形,则它的周长不变,面积变小了,因为底不变,高变小了;

  如果将平行四边形框架拉成一个长方形,则他们的周长不变,面积变大了。

  28、三角形和平行四边形面积相等,高相等,则三角形的底是平行四边形的2倍,平行四边形的底是三角形的一半。

  29、三角形和平行四边形的面积相等,底相等,则三角形的高是平行四边形的2倍,平行四边形的高是三角形的一半。

  30、三角形和平行四边形等底等高,则三角形的面积是平行四边形的一半,平行四边形的面积是三角形的2倍。

  31平行四边形面积是与它等底等高的三角形的面积的2倍。

  32、三角形面积是与它等底等高的平行四边形面积的一半。

  33、同底等高的三角形的面积相等;、

  34、两个完全一样的梯形可以拼成一个平行四边形。

  35、(顶层根数+底层根数)层数2

  36、100以内的质数歌谣

  二、三、五、七带十一

  十三、十七记心里

  十九、二三、二十九

  三十一来三十七

  四一、四三、四十七

  各个都要牢牢记

  五十三、五十九

  六十一来六十七

  七一、七三、七十九

  八三、八九、九十七。

  37、单位进率

  ①长度单位:1千米=1000米 1米=10分米

  1分米=10厘米 1厘米=10毫米

  ②面积单位:1平方千米=100公顷 1公顷=10000平方米

  1平方米=100平方分米 1平方分米=100平方厘米

  ⑤时间单位:1世纪=100年 1年=12月 1日=24时

  1时=60分 1分=60秒1时=3600秒

小学数学知识点13

  1、长度单位:是指丈量空间距离上的基本单元,是人类为了规范长度而制定的基本单位。其国际单位是“米”(符号“m”),常用单位有毫米(mm)、厘米(cm)、分米(dm)、千米(km)等等。长度单位在各个领域都有重要的作用。

  2、米:国际单位制中,长度的标准单位是“米”,用符号“m”表示。

  3、分米:分米(dm)是长度的公制单位之一,1分米相当于1米的十分之一。

  4、厘米:厘米,长度单位。简写(符号)为:cm、

  有关厘米的单位转换:1厘米=10毫米=0、1分米=0、01米=0、00001千米。

  5、毫米:英文缩写MM(或mm、㎜)

  进率关:1毫米=0、1厘米;

  6、进位:加法运算中,每一数位上的数等于基数时向前一位数进一。

  以个位向十位进位为例:基数为10(2进制的基数是2,类推),个位这个数位上的数量达到了10的情况下,则个位向前一位进1,成为一个十。

  在十进制的算法中,个位满十,在十位中加1;十位满十,在百位中加一。

  7、不退位减:减法运算中不用向高位借位的减法运算。例:56—22=34。6能够减去2,所以不用向高位5借位。

  8、退位减:减法运算中必须向高位借位的减法运算。例:51—22=39、

  1不能够减去2,所以必须向高位的5借位。

  9、连加:多个数字连续相加叫做连加。例如:28+24+23=85、

  10、连减:多个数字连续相减叫做连减。例如:85—40—26=19、

  11、加减混合:在运算中既有加法又有减法的运算。例如:67—25+28=70。

  12、角:具有公共端点的两条不重合的射线组成的图形叫做角。这个公共端点叫做角的顶点,这两条射线叫做角的两条边。

  符号:∠

  13、乘法算式中各数的名称:是指将相同的数加法起来的快捷方式。其运算结果称为积。

  “×”是乘号,乘号前面和后面的数叫做因数,“=”是等于号,等于号后面的数叫做积。

  10(因数)×(乘号)200(因数)=(等于号)20xx(积)

  14、1—6的乘法口诀

  1×1=1

  1×2=22×2=4

  1×3=32×3=63×3=9

  1×4=42×4=83×4=124×4=16

  1×5=52×5=103×5=154×5=205×5=25

  1×6=62×6=123×6=184×6=245×6=306×6=36

  15、7——9的乘法口诀

  1×7=72×7=143×7=214×7=285×7=356×7=427×7=49

  1×8=82×8=163×8=244×8=325×8=406×8=487×8=568×8=64

  1×9=92×9=183×9=274×9=365×9=456×9=547×9=638×9=729×9=81

  二年级上册知识点概括总结

  1、角的动态定义

  一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角。所旋转射线的端点叫做角的顶点,开始位置的射线叫做角的始边,终止位置的射线叫做角的终边

  2、角的种类

  角的大小与边的长短没有关系;角的大小决定于角的两条边张开的程度,张开的越大,角就越大,相反,张开的越小,角则越小。在动态定义中,取决于旋转的方向与角度。角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种。以度、分、秒为单位的角的度量制称为角度制。此外,还有密位制、弧度制等。

  锐角:大于0°,小于90°的角叫做锐角。

  直角:等于90°的角叫做直角。

  钝角:大于90°而小于180°的角叫做钝角。

  负角:按照顺时针方向旋转而成的角叫做负角。

  正角:逆时针旋转的角为正角。

  0角:等于零度的角。

  余角和补角:两角之和为90°则两角互为余角,两角之和为180°则两角互为补角。等角的余角相等,等角的补角相等。

  对顶角:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。两条直线相交,构成两对对顶角。互为对顶角的两个角相等。

  还有许多种角的关系,如内错角,同位角,同旁内角(三线八角中,主要用来判断平行)!

  3、乘法的运算定律

  整数的乘法运算满足:交换律,结合律,分配律,消去律。

  随着数学的发展,运算的对象从整数发展为更一般群。

  乘法交换律:a×b=b×a

  乘法结合律:(a×b)×c=a×(b×c)

  乘法分配律:(a+b)×c=a×c+b×c

小学数学知识点14

  购物

  【知识框架】

  购物

  1、买文具---(小面额的人民币)

  2、买衣服---(大面额的人民币)

  3、小小商店---(进行有关钱款的简单计算)

  【知识点】

  买文具(小面额的人民币)

  1、认识各种小面额的人民币。

  2、体会小面额人民币之间的换算关系。

  3、从实际问题中理解“付出的钱、应付的钱、应找回的钱”三者之间的关系。

  4、在购物情景中进行有关钱款的简单计算。

  买衣服(大面额的人民币)

  1、让学生在活动中认识大面额的人民币,能从相同点和不同点上辨认。

  2、会计算大面额人民币之间的换算。

  3、在购物活动中体会大面额人民币的作用,运用人民币的兑换知识,初步掌握付钱的方法。

  小小商店(进行有关钱款的简单计算)

  1.在购物情景中会进行有关钱款的简单计算。

  2.通过购物中的活动,了解付费的方式是多样化的。

  3.通过购物的活动,巩固复习100以内的加减法计算。

  4.购物中能解决一些简单的实际问题。

小学数学知识点15

  1、小数乘整数:意义——求几个相同加数的和的简便运算。

  如:1.5×3表示1.5的3倍是多少或3个1.5的和的简便运算。

  计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

  2、小数乘小数:意义——就是求这个数的几分之几是多少。

  如:1.5×0.8就是求1.5的十分之八是多少。

  1.5×1.8就是求1.5的1.8倍是多少。

  计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

  注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。

  3、规律(1):一个数(0除外)乘大于1的数,积比原来的数大;

  一个数(0除外)乘小于1的数,积比原来的数小。

  4、求近似数的方法一般有三种:

  ⑴四舍五入法;⑵进一法;⑶去尾法

  5、计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角。

  6、小数四则运算顺序跟整数是一样的。

  7、运算定律和性质:

  加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)

  减法:减法性质:a-b-c=a-(b+c)a-(b-c)=a-b+c

  乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】

  除法:除法性质:a÷b÷c=a÷(b×c)

【小学数学知识点15篇】相关文章:

小学数学必备知识点12-07

小学数学广角知识点10-18

小学数学知识点整理02-22

小学数学所需知识点12-07

小学数学进位加法知识点12-07

小学数学混合运算知识点10-18

小学数学分类知识点10-16

小学数学知识点(15篇)01-24

新人教版小学数学知识点11-18

小学数学读数写数知识点11-18